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We introduce an iterative process for finding an element in the common fixed point sets of two
continuous pseudocontractivemappings. As a consequence,we provide an approximationmethod
for a common fixed point of a finite family of pseudocontractive mappings. Furthermore, our
convergence theorem is applied to a convex minimization problem. Our theorems extend and
unify most of the results that have been proved for this class of nonlinear mappings.

1. Introduction

Let H be a real Hilbert space. A mapping T with domain D(T) ⊂ H and range R(T) in H is
called pseudocontractive if for each x, y ∈ D(T) we have

〈
Tx − Ty, x − y

〉 ≤ ∥∥x − y
∥∥2

. (1.1)

T is called strongly pseudocontractive if there exists k ∈ (0, 1) such that

〈
x − y, Tx − Ty

〉 ≤ k
∥
∥x − y

∥
∥2

, ∀x, y ∈ D(T), (1.2)

and T is said to be k-strict pseudocontractive if there exists a constant 0 ≤ k < 1 such that

〈
x − y, Tx − Ty

〉 ≤ ∥
∥x − y

∥
∥2 − k

∥
∥(I − T)x − (I − T)y

∥
∥2

, ∀x, y ∈ D(T). (1.3)

The operator T is called Lipschitzian if there exists L ≥ 0 such that ‖Tx − Ty‖ ≤ L‖x − y‖
for all x, y ∈ D(T). If L = 1, then T is called nonexpansive, and if L ∈ [0, 1), then T is called
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a contraction. As a result of Kato [1], it follows from inequality (1.1) that T is pseudocontract-
ive if and only if the inequality

∥∥x − y
∥∥ ≤ ∥∥(1 + t)

(
x − y

) − t
(
Tx − Ty

)∥∥ (1.4)

holds for each x, y ∈ D(T) and for all t > 0.
Apart from being an important generalization of nonexpansive, strongly pseudocon-

tractive and k-strict pseudocontractive mappings, interest in pseudocontractive mappings
stems mainly from their firm connection with the important class of nonlinear accretive
operators, where a mapping A with domain D(A) and range R(A) in H is called accretive
if the inequality

∥∥x − y
∥∥ ≤ ∥∥x − y + s

(
Ax −Ay

)∥∥ (1.5)

holds for every x, y ∈ D(A) and for all s > 0. We observe that A is accretive if and only if
T := I − A is pseudocontractive, and thus a zero of A, N(A) := {x ∈ D(A) : Ax = 0}, is a
fixed point of T , F(T) := {x ∈ D(T) : Tx = x}. It is now well known that if A is accretive then
the solutions of the equation Ax = 0 correspond to the equilibrium points of some evolution
systems. Consequently, considerable research efforts have been devoted to iterative methods
for approximating fixed points of T when T is pseudocontractive (see, e.g., [2–4] and the
references contained therein).

Construction of fixed points of nonexpansive mappings via Mann’s algorithm [5] has
extensively been investigated recently in the literature (see, e.g., [6, 7] and references therein).
Related works can also be found in [7–18]. Mann’s algorithm is defined by x0 ∈ K and

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1.6)

where {αn} is a real control sequence in the interval (0, 1). If T is a nonexpansive mapping
with a fixed point and if the control sequence {αn} is chosen so that

∑∞
n=0 αn(1−αn) = ∞, then

the sequence {xn} generated by Mann’s algorithm (1.6) converges weakly to a fixed point of
T (this is indeed true in a uniformly convex Banach space with a Fréchet differentiable norm
[7]). However, this convergence is in general not strong (see the counterexample in [19]; see
also [20]).

For a sequence {αn} of real numbers in (0, 1) and an arbitrary u ∈ C, let the sequence
{xn} in K be iteratively defined by x0 ∈ K and

xn+1 := αn+1u + (1 − αn+1)T(xn), n ≥ 0, (1.7)

where T is a nonexpansive mapping of C into itself. Halpern [11] was the first to study the
convergence of Algorithm (1.7) in the framework of Hilbert spaces. Lions [14] andWittmann
[21] improved the result of Halpern by proving strong convergence of {xn} to a fixed point
of T if the real sequence {αn} satisfies certain conditions. Reich [22], Shioji and Takahashi
[16], and Zegeye and Shahzad [23] extend the result of Wittmann [21] to the case of Banach
space.
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In 2000, Moudafi [24] introduced viscosity approximation method and proved that if
H is a real Hilbert space, for given x0 ∈ C, the sequence {xn} generated by the algorithm

xn+1 := αnf(xn) + (1 − αn)T(xn), n ≥ 0, (1.8)

where f : C → C is a contraction mapping and {αn} ⊂ (0, 1) satisfies certain conditions,
converges strongly to a common fixed point of T . Moudafi [24] generalizes Halpern’s
theorems in the direction of viscosity approximations. In [25], Zegeye et al. extended
Moudafi’s result to the class of Lipschitz pseudocontractive mappings in Banach spaces
more general than Hilbert spaces. Viscosity approximations are very important because they
are applied to convex optimization, linear programming, monotone inclusions, and elliptic
differential equations.

Our concern now is the following. Is it possible to construct a viscosity approximation
sequence that converges strongly to a fixed point of pseudocontractive mappings more
general than nonexpansive mappings?

In this paper, motivated and inspired by the work of Halpern [11], Moudafi [24], and
the methods of Takahashi and Zembayashi [26], we introduce a viscosity approximation
method for finding a common fixed point of two continuous pseudocontractive mappings.
As a consequence, we provide an approximation method for a common fixed point of
finite family of pseudocontractive mappings. This provides affirmative answer to the above
concern. Furthermore, we apply our convergence theorem to the convex minimization
problem. Our theorems extend and unify most of the results that have been proved for this
important class of nonlinear operators.

2. Preliminaries

Let C be closed and convex subset of a real Hilbert space H . For every point x ∈ H , there
exists a unique nearest point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ C. (2.1)

PC is called the metric projection of H onto C. We know that PC is a nonexpansive mapping
of H onto C. In connection with metric projection, we have the following lemma.

Lemma 2.1. Let C be a nonempty convex subset of a Hilbert space H . Let x ∈ H and x0 ∈ C. Then,
x0 = PCx if and only if

〈z − x0, x0 − x〉 ≥ 0, ∀z ∈ C. (2.2)

Lemma 2.2 (see [27]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤
(
1 − γn

)
an + σn, n ≥ 0, (2.3)

where (i) {γn} ⊂ [0, 1],
∑

γn = ∞ and (ii) lim supn→∞σn/γn ≤ 0 or
∑ |σn| < ∞. Then, an → 0 as

n → ∞.

By a similar argument in [28], we have the following lemma.
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Lemma 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be
a continuous accretive mapping. Then, for r > 0 and x ∈ H , there exists z ∈ C such that

〈
y − z,Az

〉
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.4)

Moreover, by a similar argument of the proof of Lemmas 2.8 and 2.9 of [26], we get the
following lemma.

Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert spaceH . Let A : C → H be
a continuous accretive mapping. For r > 0 and x ∈ H , define a mapping Tr : H → C as follows:

Trx :=
{
z ∈ C :

〈
y − z,Az

〉
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(2.5)

for all x ∈ H . Then, the following hold:

(1) Tr is single valued;

(2) Tr is firmly nonexpansive type mapping, that is, for all x, y ∈ H ,

∥
∥Trx − Try

∥
∥2 ≤ 〈

Trx − Try, x − y
〉
; (2.6)

(3) F(Tr) = VI(C,A);

(4) VI(C,A) is closed and convex.

3. Main Results

In the sequel, we will make use of the following lemmas.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → H be
a continuous pseudocontractive mapping. Then, for r > 0 and x ∈ H , there exists z ∈ C such that

〈
y − z, Tz

〉 − 1
r

〈
y − z, (1 + r)z − x

〉 ≤ 0, ∀y ∈ C. (3.1)

Proof. Let x ∈ H and r > 0. Let A := I − T , where I is the identity mapping on C. Then,
clearly A is continuous accretive mapping. Thus, by Lemma 2.3, there exists z ∈ C such that
〈y − z,Az〉 + (1/r)〈y − z, z − x〉 ≥ 0, for all y ∈ C. But this is equivalent to 〈y − z, Tz〉 −
(1/r)〈y − z, (1 + r)z − x〉 ≤ 0, for all y ∈ C. Hence, the lemma holds.

Lemma 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H . Let T : C → C
be continuous pseudocontractive mapping. For r > 0 and x ∈ H , define a mapping Fr : H → C as
follows:

Frx :=
{
z ∈ C : 〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C

}
(3.2)
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for all x ∈ H . Then, the following hold:

(1) Fr is single valued;

(2) Fr is firmly nonexpansive type mapping, that is, for all x, y ∈ H ,

∥∥Frx − Fry
∥∥2 ≤ 〈

Frx − Fry, x − y
〉
; (3.3)

(3) F(Fr) = F(T);

(4) F(T) is closed and convex.

Proof. We note that 〈y − z, Tz〉 − (1/r)〈y − z, (1 + r)z − x〉 ≤ 0, for all y ∈ C, is equivalent
to 〈y − z,Az〉 + (1/r)〈y − z, z − x〉 ≥ 0, for all y ∈ C, where A := I − T is continuous
accretive mapping and I the identity mapping on C. Moreover, as T is self-map, we have that
VI(C,A) = F(T). Thus, by Lemma 2.4, the conclusions of (1)–(4) hold.

LetC be a nonempty closed convex subset of a realHilbert spaceH . Let Ti : C → C, for
i = 1, 2, be continuous pseudocontractive mappings. Then, in what follows, Trn , Frn : H → C
are defined as follows. For x ∈ H and {rn} ⊂ (0,∞), define

Trnx :=
{
z ∈ C :

〈
y − z, T1z

〉 − 1
rn

〈
y − z, (1 + rn)z − x

〉 ≤ 0, ∀y ∈ C

}
,

Frnx :=
{
z ∈ C :

〈
y − z, T2z

〉 − 1
rn

〈
y − z, (1 + rn)z − x

〉 ≤ 0, ∀y ∈ C

}
.

(3.4)

Now, we prove our main convergence theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H . Let Ti : C → C,
for i = 1, 2, be continuous pseudocontractive mappings such that F :=

⋂2
i=1 F(Ti)/= ∅. Let f be a

contraction of C into itself, and let {xn} be a sequence generated by x1 ∈ C and

xn+1 = αnf(xn) + (1 − αn)TrnFrnxn, (3.5)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1−αn| < ∞,
lim infn→∞rn > 0, and

∑∞
n=1 |rn+1−rn| < ∞. Then, the sequence {xn}n≥1 converges strongly to z ∈ F,

where z = PFf(z).

Proof. LetQ = PF . Then, Qf is a contraction of C into C. In fact, we have that

∥∥Qf(x) −Qf
(
y
)∥∥ ≤ ∥∥f(x) − f

(
y
)∥∥ ≤ β

∥∥x − y
∥∥, (3.6)

for all x, y ∈ C, where β is contraction constant of f . So Qf is a contraction of C into itself.
Since C is closed subset of H , there exists a unique element z of C such that z = Qf(z).

Let v ∈ F, and let un := Trnwn, wherewn := Frnxn. Then, we have from Lemma 3.2 that

‖un − v‖ = ‖Trnwn − Trnv‖ ≤ ‖wn − v‖ = ‖Frnxn − Frnv‖ ≤ ‖xn − v‖. (3.7)



6 ISRN Mathematical Analysis

Moreover, from (3.5) and (3.7), we get that

‖xn+1 − v‖ =
∥∥αn

(
f(xn) − v

)
+ (1 − αn)(TrnFrnxn − v)

∥∥

≤ αn

∥∥f(xn) − v
∥∥ + (1 − αn)‖un − v‖

≤ αn

∥∥f(xn) − v
∥∥ + (1 − αn)‖xn − v‖

≤ αn

∥∥f(xn) − f(v)
∥∥ + αn

∥∥f(v) − v
∥∥ + (1 − αn)‖xn − v‖

≤ αnβ‖xn − v‖ + αn

∥
∥f(v) − v

∥
∥ + (1 − αn)‖xn − v‖

=
(
1 − (

1 − β
)
αn

)‖xn − v‖ + (
1 − β

)
αn

(
1

1 − β

∥∥f(v) − v
∥∥
)

≤ max
{
‖xn − v‖, 1

1 − β

∥∥f(v) − v
∥∥
}
.

(3.8)

By induction, we get that

‖xn − v‖ ≤ max
{
‖x1 − v‖, 1

1 − β

∥∥f(v) − v
∥∥
}
, n ≥ 1. (3.9)

Therefore, {xn} is bounded. Consequently, we get that {wn}, {Trnwn}, {Frnxn}, and {f(xn)}
are bounded. Next, we show that ‖xn+1 − xn‖ → 0. But from (3.5) we have that

‖xn+1 − xn‖ =
∥∥αnf(xn) + (1 − αn)un − αn−1f(xn−1) − (1 − αn−1)un−1

∥∥

≤ ∥∥αnf(xn) − αnf(xn−1) + αnf(xn−1) − αn−1f(xn−1)

+ (1 − αn)un − (1 − αn)un−1 + (1 − αn)un−1 − (1 − αn−1)un−1‖
≤ αnβ‖xn − xn−1‖ + |αn − αn−1|K + (1 − αn) · ‖un − un−1‖
≤ αnβ‖xn − xn−1‖ + |αn − αn−1|K + (1 − αn) · ‖wn −wn−1‖,

(3.10)

where K = 2 sup{‖f(xn)‖ + ‖un‖ : n ∈ N}. Moreover, since wn = Frnxn and wn+1 = Frn+1xn+1,
we get that

〈
y −wn, T2wn

〉 − 1
rn

〈
y −wn, (1 + rn)wn − xn

〉 ≤ 0, ∀y ∈ C, (3.11)

〈
y −wn+1, T2wn+1

〉 − 1
rn+1

〈
y −wn+1, (1 + rn+1)wn+1 − xn+1

〉 ≤ 0, ∀y ∈ C. (3.12)
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Putting y := wn+1 in (3.11) and y := wn in (3.12), we get that

〈wn+1 −wn, T2wn〉 − 1
rn
〈wn+1 −wn, (1 + rn)wn − xn〉 ≤ 0, (3.13)

〈wn −wn+1, T2wn+1〉 − 1
rn+1

〈wn −wn+1, (1 + rn+1)wn+1 − xn+1〉 ≤ 0. (3.14)

Adding (3.13) and (3.14), we have

〈wn+1 −wn, T2wn − T2wn+1〉 −
〈
wn+1 −wn,

(1 + rn)wn − xn

rn
− (1 + rn+1)wn+1 − xn+1

rn+1

〉
≤ 0,

(3.15)

which implies that

〈wn+1 −wn, (wn+1 − T2wn+1) − (wn − T2wn)〉 −
〈
wn+1 −wn,

wn − xn

rn
− wn+1 − xn+1

rn+1

〉
≤ 0.

(3.16)

Now, using the fact that T2 is pseudocontractive, we get that

〈
wn+1 −wn,

wn − xn

rn
− wn+1 − xn+1

rn+1

〉
≥ 0, (3.17)

and hence

〈
wn+1 −wn,wn −wn+1 +wn+1 − xn − rn

rn+1
(wn+1 − xn+1)

〉
≥ 0. (3.18)

Without loss of generality, let us assume that there exists a real number b such that rn > b > 0
for all n ∈ N. Then, we have

‖wn+1 −wn‖2 ≤
〈
wn+1 −wn, xn+1 − xn +

(
1 − rn

rn+1

)
(wn+1 − xn+1)

〉

≤ ‖wn+1 −wn‖
{
‖xn+1 − xn‖ +

∣∣∣
∣

(
1 − rn

rn+1

)∣∣∣
∣ · ‖wn+1 − xn+1‖

}
,

(3.19)

and hence from (3.19) we obtain that

‖wn+1 −wn‖ ≤ ‖xn+1 − xn‖ + 1
rn+1

|rn+1 − rn| · ‖wn+1 − xn+1‖

≤ ‖xn+1 − xn‖ + 1
b
|rn+1 − rn|L,

(3.20)
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where L = sup{‖wn − xn‖ : n ∈ N}. Furthermore, from (3.10) and (3.20), we have that

‖xn+1 − xn‖ ≤ αnβ‖xn − xn−1‖ + |αn − αn−1|K

+ (1 − αn)
(
‖xn − xn−1‖ + 1

b
|rn − rn−1|L

)

=
(
1 − αn

(
1 − β

))‖xn − xn−1‖ +K|αn − αn−1|

+ (1 − αn)
L

b
|rn − rn−1|.

(3.21)

Now, using conditions of {αn}, {rn} and Lemma 2.2, we have that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.22)

Consequently, from (3.20) and (3.22), we obtain that

lim
n→∞

‖wn+1 −wn‖ = 0. (3.23)

Similarly, taking un = Trnwn and un+1 = Trn+1wn+1 and following the method used for wn, we
get that limn→∞‖un+1 −un‖ = 0. Furthermore, since xn = αn−1f(xn−1) + (1− αn−1)un−1, we have
that

‖xn − un‖ ≤ ‖xn − un−1‖ + ‖un−1 − un‖
≤ αn−1

∥∥f(xn−1) − un−1
∥∥ + ‖un−1 − un‖.

(3.24)

Thus, since αn → 0, we obtain that

‖xn − un‖ −→ 0. (3.25)

Moreover, for v ∈ F, using Lemma 3.2, we get that

‖wn − v‖2 = ‖Frnxn − Frnv‖2

≤ 〈Frnxn − Frnv, xn − v〉
= 〈wn − v, xn − v〉

=
1
2

(
‖wn − v‖2 + ‖xn − v‖2 − ‖xn −wn‖2

)
,

(3.26)

and hence

‖wn − v‖2 ≤ ‖xn − v‖2 − ‖xn −wn‖2. (3.27)
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Therefore, from (3.5), the convexity of ‖ · ‖2, (3.7) and (3.27) we get that

‖xn+1 − v‖2 = ∥∥αnf(xn) + (1 − αn)un − v
∥∥2

≤ αn

∥
∥f(xn) − v

∥
∥2 + (1 − αn)‖un − v‖2

≤ αn

∥∥f(xn) − v
∥∥2 + (1 − αn)‖wn − v‖2

≤ αn

∥
∥f(xn) − v

∥
∥2 + (1 − αn)

(
‖xn − v‖2 − ‖xn −wn‖2

)

≤ αn

∥∥f(xn) − v
∥∥2 + ‖xn − v‖2 − (1 − αn)‖xn −wn‖2,

(3.28)

and hence

(1 − αn)‖xn −wn‖2 ≤ αn

∥∥f(xn) − v
∥∥2 + ‖xn − v‖2 − ‖xn+1 − v‖2

≤ αn

∥∥f(xn) − v
∥∥2 + ‖xn − xn+1‖(‖xn − v‖ + ‖xn+1 − v‖).

(3.29)

So we have ‖xn −wn‖ → 0 as n → ∞. This implies with (3.25) that ‖un −wn‖ ≤ ‖un − xn‖ +
‖xn −wn‖ → 0 as n → ∞.

Next, we show that

lim sup
n→∞

〈
f(z) − z, xn − z

〉 ≤ 0, (3.30)

where z = PFf(z). To show this inequality, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈f(z) − z, xn − z〉 = lim
i→∞

〈
f(z) − z, xni − z

〉
. (3.31)

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} andw ∈ H such that xnij

⇀

w. Without loss of generality, we may assume that xni ⇀ w. Since {xni} ⊂ C and C is convex
and closed, we get thatw ∈ C. Moreover, since xn−wn → 0 as n → ∞, we have thatwni ⇀ w.
Now, we show thatw ∈ F. Note that, from the definition ofwni , we have

〈
y −wni , T2wni

〉 − 1
rni

〈
y −wni , (rni + 1)wni − xni

〉 ≤ 0, ∀y ∈ C. (3.32)
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Put zt = tv + (1− t)w for all t ∈ (0, 1] and v ∈ C. Consequently, we get that zt ∈ C. From (3.32)
and pseudocontractivity of T2, it follows that

〈wni − zt, T2zt〉 ≥ 〈wni − zt, T2zt〉 + 〈zt −wni , T2wni〉 −
1
rni

〈zt −wni , (1 + rni)wni − xni〉

= −〈zt −wni , T2zt − T2wni〉 −
1
rni

〈zt −wni ,wni − xni〉 − 〈zt −wni ,wni〉

≥ −‖zt −wni‖2 −
1
rni

〈zt −wni ,wni − xni〉 − 〈zt −wni ,wn〉

= 〈wni − zt, zt〉 −
〈
zt −wni ,

wni − xni

rni

〉
.

(3.33)

Then, since wn − xn → 0, as n → ∞, we obtain that (wni − xni)/rni → 0 as i → ∞. Thus, as
i → ∞, it follows that

〈w − zt, T2zt〉 ≥ 〈w − zt, zt〉, (3.34)

and hence

−〈v −w, T2zt〉 ≥ −〈v −w, zt〉 ∀v ∈ C. (3.35)

Letting t → 0 and using the fact that T2 is continuous, we obtain that

−〈v −w, T2w〉 ≥ −〈v −w,w〉 ∀v ∈ C. (3.36)

Now, let v = T2w. Then, we obtain that w = T2w, and hence w ∈ F(T2). Furthermore, the fact
that un − wn → 0 and wni ⇀ w imply that uni ⇀ w, following the method used for wn, we
obtain that w ∈ F(T1), and hence w ∈ ⋂2

i=1 F(Ti). Therefore, since z = PFf(z), by Lemma 2.1,
we have

lim sup
n→∞

〈
f(z) − z, xn − z

〉
= lim

i→∞
〈f(z) − z, xni − z〉

=
〈
f(z) − z,w − z

〉 ≤ 0.
(3.37)

Now, we show that xn → z as n → ∞. From xn+1 − z = αn(f(xn) − z) + (1 − αn)(un − z), we
have that

‖xn+1 − z‖2 ≤ (1 − αn)2‖un − z‖2 + 2αn

〈
f(xn) − z, xn+1 − z

〉

= (1 − αn)2‖un − z‖2 + 2αn

〈
f(xn) − f(z), xn+1 − z

〉
+ 2αn〈f(z) − z, xn+1 − z〉

≤ (1 − αn)2‖xn − z‖2 + 2αnβ‖xn − z‖ · ‖xn+1 − z‖ + 2αn

〈
f(z) − z, xn+1 − z

〉

≤ (1 − αn)2‖xn − z‖2 + αnβ
{
‖xn − z‖2 + ‖xn+1 − z‖2

}
+ 2αn

〈
f(z) − z, xn+1 − z

〉
.

(3.38)
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This implies that,

‖xn+1 − z‖2 ≤ (1 − αn)2 + αnβ

1 − αnβ
‖xn − z‖2 + 2αn

1 − αnβ

〈
f(z) − z, xn+1 − z

〉

=
1 − 2αn + αnβ

1 − αnβ
‖xn − z‖2 + α2

n

1 − αnβ
‖xn − z‖2 + 2αn

1 − αnβ

〈
f(z) − z, xn+1 − z

〉

≤ (
1 − γn

)‖xn − z‖2 + σn,

(3.39)

where γn := 2(1−β)αn/(1−αnβ), σn := (2(1−β)αn/(1−αnβ)){αnM/2(1−β)+(1/(1−β))〈f(z)−
z, xn+1 − z〉}, for M = sup{‖xn − z‖2 : n ∈ N}. But note that

∑∞
n=1 γn = ∞, limn→∞γn = 0, and

lim supn→∞σn/γn ≤ 0. Therefore, by Lemma 2.2, we conclude that {xn} converges to z ∈ F,
where z = PFf(z). This completes the proof.

If, in Theorem 3.3, f = u ∈ C is a constant mapping, then we get z = PF(u). In fact, we
have the following corollary.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Ti : C → C,
for i = 1, 2, be continuous pseudocontractive mappings such that F :=

⋂2
i=1 F(Ti)/= ∅. Let {xn} be a

sequence generated by x1, u ∈ C and

xn+1 = αnu + (1 − αn)TrnFrnxn, (3.40)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1−αn| < ∞,
lim infn→∞rn > 0, and

∑∞
n=1 |rn+1−rn| < ∞. Then, the sequence {xn}n≥1 converges strongly to z ∈ F,

where z = PF(u).

If, in Theorem 3.3, we have that T2 ≡ I, identity mapping on C, then we obtain the
following corollary.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1 : C → C
be continuous pseudocontractive mapping such that F(T1)/= ∅. Let f be a contraction of C into itself,
and let {xn} be a sequence generated by x1 ∈ C and

xn+1 = αnf(xn) + (1 − αn)Trnxn, (3.41)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1−αn| < ∞,
lim infn→∞rn > 0, and

∑∞
n=1 |rn+1−rn| < ∞. Then, the sequence {xn}n≥1 converges strongly to z ∈ F,

where z = PF(T1)f(z).

Let H be a real Hilbert space. Let Ai : H → H , for i = 1, 2, be accretive mappings.
Let T ′

rn
x := {z ∈ H : 〈y − z, (I − A1)z〉 − (1/rn)〈y − z, (1 + rn)z − x〉 ≤ 0, for all y ∈ H},

F ′
rnx := {z ∈ H : 〈y − z, (I −A2)z〉 − (1/rn)〈y − z, (1 + rn)z − x〉 ≤ 0, for all y ∈ H}. Then we

have the following convergence theorem for a zero of two accretive mappings.
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Theorem 3.6. Let H be a real Hilbert space. Let Ai : H → H , for i = 1, 2, be continuous accretive
mappings such that N :=

⋂2
i=1 N(Ai)/= ∅. Let f be a contraction of H into itself, and let {xn} be a

sequence generated by x1 ∈ H and

xn+1 = αnf(xn) + (1 − αn)T ′
rn
F ′
rn
xn, (3.42)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1−αn| < ∞,
lim infn→∞rn > 0, and

∑∞
n=1 |rn+1−rn| < ∞. Then, the sequence {xn}n≥1 converges strongly to z ∈ N,

where z = PN(f(z)).

Proof. Let Ti := (I − Ai), for i = 1, 2. Then, we get that Ti, for i = 1, 2, are continuous
pseudocontractive mappingswith

⋂2
i=1N(Ai) =

⋂2
i=1 F(Ti). Thus, the conclusion follows from

Theorem 3.3.

The proof of the following theorem can be easily obtained from the method of proof of
Theorem 3.3.

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Ti : C → C,
for i = 1, 2, . . . , L, be continuous pseudocontractive mappings such that F :=

⋂L
i=1 F(Ti)/= ∅. Let f be

a contraction of C into itself, and let {xn} be a sequence generated by x1 ∈ C and

xn+1 = αnf(xn) + (1 − αn)K1,rnK2,rn , . . . , KN,rnxn, (3.43)

where Ki,rnx := {z ∈ C : 〈y − z, Tiz〉 − (1/rn)〈y − z, (1 + rn)z − x〉 ≤ 0, for all y ∈ C}, for
i = 1, 2, . . . , L, and {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) such that limn→∞αn = 0,

∑∞
n=1 αn = ∞,∑∞

n=1 |αn+1 − αn| < ∞, lim infn→∞rn > 0, and
∑∞

n=1 |rn+1 − rn| < ∞. Then, the sequence {xn}n≥1
converges strongly to z ∈ F, where z = PF(f(z)).

4. Application

In this section, we study the problem of finding a minimizer of a continuously Fréchet
differentiable convex functional in Hilbert spaces. Let h and g be continuously Fréchet
differentiable convex functionals such that the gradient of h, (∇h) and the gradient of g,
(∇g) are continuous and accretive. For γ > 0 and x ∈ H , let T ′′

rnx := {z ∈ H : 〈y −
z, (I − (∇h))z〉 − (1/rn)〈y − z, (1 + rn)z − x〉 ≤ 0, for all y ∈ H} and F ′′

rn
x := {z ∈ H :

〈y − z, (I − (∇g))z〉 − (1/rn)〈y − z, (1 + rn)z − x〉 ≤ 0, for all y ∈ H} for all x ∈ H . Then, the
following theorem holds.

Theorem 4.1. LetH be a real Hilbert space. Let h and g be continuously Fréchet differentiable convex
functionals such that the gradient of h, (∇h) and the gradient of g, (∇g) are continuous and accretive
such thatN := N(∇h)∩N(∇g)/= ∅. Let f be a contraction ofH into itself, and let {xn} be a sequence
generated by x1 ∈ H and

xn+1 = αnf(xn) + (1 − αn)T ′′
rn
F ′′
rn
xn, (4.1)
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where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1−αn| < ∞,
lim infn→∞rn > 0, and

∑∞
n=1 |rn+1−rn| < ∞. Then, the sequence {xn}n≥1 converges strongly to z ∈ F,

where z = PN(f(z)).

Proof. The conclusion follows from Theorem 3.6. We note that from the convexity and Fréchet
differentiability of h and g we have N(∇h) = argminy∈Ch(y) and N(∇g) = argminy∈Cg(y).

Remark 4.2. Our theorems extend and unify most of the results that have been proved for
this important class of nonlinear operators. In particular, Theorem 3.3 extends Theorem 2.2 of
Moudafi [24] and Theorem 4.1 of Iiduka and Takahashi [12] in the sense that our convergence
is for the more general class of continuous pseudocontractive mappings. Moreover, this
provides affirmative answer to the concern raised.
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[20] O. Güler, “On the convergence of the proximal point algorithm for convex minimization,” SIAM
Journal on Control and Optimization, vol. 29, no. 2, pp. 403–419, 1991.

[21] R.Wittmann, “Approximation of fixed points of nonexpansive mappings,”Archiv der Mathematik, vol.
58, no. 5, pp. 486–491, 1992.

[22] S. Reich, “Strong convergence theorems for resolvents of accretive operators in Banach spaces,”
Journal of Mathematical Analysis and Applications, vol. 75, no. 1, pp. 287–292, 1980.

[23] H. Zegeye and N. Shahzad, “Viscosity approximation methods for a common fixed point of finite
family of nonexpansive mappings,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 155–163,
2007.

[24] A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of Mathematical
Analysis and Applications, vol. 241, no. 1, pp. 46–55, 2000.

[25] H. Zegeye, N. Shahzad, and T. Mekonen, “Viscosity approximation methods for pseudocontractive
mappings in Banach spaces,” Applied Mathematics and Computation, vol. 185, no. 1, pp. 538–546, 2007.

[26] W. Takahashi and K. Zembayashi, “Strong and weak convergence theorems for equilibrium problems
and relatively nonexpansive mappings in Banach spaces,” Nonlinear Analysis. Theory, Methods &
Applications, vol. 70, no. 1, pp. 45–57, 2009.

[27] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society.
Second Series, vol. 66, no. 1, pp. 240–256, 2002.

[28] E. Blum andW. Oettli, “From optimization and variational inequalities to equilibrium problems,” The
Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


