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The scattering of waves in an inhomogeneous infinite string with one change in the density of the
string is well known. In this paper, we study the case where there are two discontinuities in the
density of the string. It turns out that we can write the solution for this case as well. The form of
the solution will be given in finite sums of reflected and transmitted waves over finite time. The
finite sums become converging infinite series for infinite time.

1. Introduction

The scattering of waves in an infinite string due to a single change in the density of the string
has been studied in graduate text books such as [1, 2]. In [1] the author notes that in practice
a scattering of this sort occurs in physical systems such as submarine cables or telephone
lines when a join in the system creates a transmitted as well as a reflected wave. Both of these
waves can be computed in terms of the incoming signal. For practical purposes it is desirable
to suppress the reflected waves by attaching, at the join, a damping mechanism or a point
mass so that the reflected waves do not interfere with the incoming signals. All three cases of
no suppression, suppression by damping, and suppression by point mass have been studied
in [1] by assigning appropriate boundary conditions at the join. In this paper we study the
case where the string has more than one change in its density and no suppression occurs at
the joins. We write the form of the solution when there are only two changes in the density.
We also showwhat the reflected and transmittedwaves due to an incident wave on both sides
of a join at an arbitrary point in the string look like. This will allow us to theoretically write
the form of the reflected and transmitted waves for higher number of changes. But because of
the repetitive bouncing back and forth of the waves between each interface writing a general
formula for the solution of the wave problem with more than two discontinuities will be
impossible. Just imagine that all the waves inside one pair of joins get transmitted to the
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neighboring pair and in turn bounce against the joins and create waves of their own. Writing
a formula to account for all of these waves will require a horrendous amount of work if at all
possible, and we are not going to tackle it here.

To fix the ideas, consider two semi-infinite strings with densities ρ1 and ρ2, ρ1 /= ρ2,
joined together at the origin O. The speed of the waves traveling along the two pieces is c1
and c2, respectively. An incoming wave f(x − c1t), such that f(s) = 0, s > 0, will be scattered
to partly reflected and partly outgoing at x = 0. Suppose the resulting wave u(x, t) satisfies
that

utt − c2(x)uxx = 0, (x, t) ∈ R × (0,∞), (1.1)

where

c(x) =

⎧
⎨

⎩

c1, x ≤ 0,

c2, x > 0.
(1.2)

Under the geometric continuity (the string is continuous at x = 0) and dynamical continuity
(the transverse force is continuous at x = 0) conditions,

u(0−, t) = u(0+, t), t ≥ 0,

ux(0−, t) = ux(0+, t), t ≥ 0,
(1.3)

and the initial conditions,

u(x, 0) = f(x), x ∈ R,

ut(x, 0) = −c1f ′(x), x ∈ R,
(1.4)

the solution is well known to be (see [1, 2])

u(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

f(x − c1t) +
c2 − c1
c2 + c1

f(−x − c1t), x < 0,

2c2
c2 + c1

f

(
c1
c2
(x − c2t)

)

, x > 0.
(1.5)

Now, consider the above setup extended to a string made of three pieces in the intervals
(−∞, 0), (0, σ), and (σ,∞) for some constant σ > 0. Denote the densities and their
correspondingwave speeds by ρ1, ρ2, ρ3 and c1, c2, c3, respectively.Wewill study the behavior
of an incoming wave f(x − c1t), where f(s) = 0, s > 0, at the interfaces and show how, under
similar conditions as above, similar formulas for the scattered waves can be written. We note
that each outgoing wave from an interface will be incident on the next, and the reflected
waves at the next interface will be incident on the previous. Each incident wave will, in turn,
be scattered into reflected and outgoing waves at the interfaces. We will write the solution to
the wave problem as sums of these scattered waves.
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2. The Problem

Consider the problem

utt − c2(x)uxx = 0, (x, t) ∈ R × (0,∞),

c(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1, x ≤ 0,

c2, 0 < x ≤ σ,

c3, x > σ.

(2.1)

Assume that a wave f(x− c1t) ∈ C2(R), where f(s) ≡ 0, s > 0, is incoming. At x = 0 the wave
scatters as follows:

u1(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

f(x − c1t) +
c2 − c1
c1 + c2

f(−x − c1t), x < 0,

2c2
c1 + c2

f

(
c1
c2
(x − c2t)

)

, 0 ≤ x ≤ σ.

(2.2)

The transmitted wave (2c2/(c1 + c2))f((c1/c2)(x − c2t)) becomes incident at the point x = σ.
Let us denote

g(x − c2t) =
2c2

c1 + c2
f

(
c1
c2
(x − c2t)

)

, 0 ≤ x < σ. (2.3)

We will show here, for the sake of completeness, that g also scatters at x = σ and creates new
waves.

Theorem 1. The incoming wave g given by (2.3) scatters at x = σ, for t > σ/c2, in the form

u2(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

g(x − c2t) +
c3 − c2
c2 + c3

g(2σ − (x + c2t)), 0 < x ≤ σ,

2c3
c2 + c3

g

(
c3 − c2
c3

σ +
c2
c3
(x − c3t)

)

, x > σ.

(2.4)

Proof. First note that g(x − c2t) = g(x − σ) when t = σ/c2, and g(x − σ) = 0, x > σ, by
the definition of g in (2.3). Consider the wave function u(x, t), which we assume as u(x, t) =
u1(x, t) on (−∞, 0) × (0, σ/c2]. The solution to the wave equation

utt − c2(x)uxx = 0, (x, t) ∈ (0,∞) ×
(
σ

c2
,∞

)

, (2.5)

where

c(x) =

⎧
⎨

⎩

c2, 0 < x ≤ σ,

c3, x > σ,
(2.6)
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is of the form

u(x, t) =

⎧
⎨

⎩

j(x − c2t) + q(x + c2t), 0 < x < σ,

l(x − c3t) +m(x + c3t), 0 > σ.
(2.7)

We use the geometric and dynamical continuity conditions,

u(σ−, t) = u(σ+, t), t ≥ σ

c2
,

ux(σ−, t) = ux(σ+, t), t ≥ σ

c2
,

(2.8)

and the initial conditions,

u

(

x,
σ

c2

)

= g(x − σ), x ∈ (0,∞),

ut

(

x,
σ

c2

)

= −c2g ′(x − σ), x ∈ (0,∞),

(2.9)

to find j, q, l, and m. From continuity of the wave function u(x, t) at x = σ, we have

j(σ − c2t) + q(σ + c2t) = l(σ − c3t) +m(σ + c3t). (2.10)

Using dynamical condition (2.8) at x = σ and differentiating equation (2.10) with respect to
t, we have the system

j ′(σ − c2t) + q′(σ + c2t) = l′(σ − c3t) +m′(σ + c3t) − c2j
′(σ − c2t) + c2q

′(σ + c2t)

= −c3l′(σ − c3t) + c3m
′(σ + c3t).

(2.11)

Solving the system (2.11) for q′ and j ′ and integrating, we have

q(σ + c2t) =
c3 − c2
2c3

l(σ − c3t) +
c3 + c2
2c3

m(σ + c3t), (2.12)

j(σ − c2t) =
c3 + c2
2c3

l(σ − c3t) +
c3 − c2
2c3

m(σ + c3t). (2.13)
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From initial conditions (2.9) at t = σ/c2,

u

(

x,
σ

c2

)

= g(x − σ)

= j(x − σ) + q(x + σ), x < σ,

ut

(

x,
σ

c2

)

= −c2g ′(x − σ)

= −c2j ′(x − σ) + c2q
′(x + σ), x < σ.

(2.14)

The right-hand sides of (2.14) provide a system that can be solved for j and q:

j(x − σ) = g(x − σ), x < σ, (2.15)

q(x + σ) = 0, x < σ. (2.16)

At the time t = σ/c2 and x > σ, we have

g(x − σ) = u

(

x,
σ

c2

)

= l

(

x − c3
c2
σ

)

+m

(

x +
c3
c2
σ

)

= 0, x > σ, (2.17)

−c2g ′(x − σ) = ut

(

x,
σ

c2

)

= −c3l′
(

x − c3
c2
σ

)

+ c3m
′
(

x +
c3
c2
σ

)

= 0, x > σ, (2.18)

Differentiating the right-hand side of (2.17) and solving the system obtained from (2.17) and
(2.18), namely,

l′
(

x − c3
c2
σ

)

+m′
(

x +
c3
c2
σ

)

= 0, x > σ,

−c3l′
(

x − c3
c2
σ

)

+ c3m
′
(

x +
c3
c2
σ

)

= 0, x > σ,

(2.19)

we will have

l

(

x − c3
c2
σ

)

= 0, x > σ, (2.20)

m

(

x +
c3
c2
σ

)

= 0, x > σ. (2.21)

By (2.15), when the arguments of g and j are negative the functions are equal. This means
that

j(x − c2t) = g(x − c2t), t >
σ

c2
. (2.22)



6 ISRN Mathematical Analysis

Notice that by (2.21) if the argument of m satisfies x + (c3/c2)σ > σ + (c3/c2)σ, then m = 0.
For t > σ/c2 the argument of m in (2.12) and (2.13) is larger than σ + (c3/c2)σ. Therefore,

m(x + c3t) = 0, x ≥ σ, t >
σ

c2
, (2.23)

and (2.12) and (2.13) become,

q(σ + c2t) =
c3 − c2
2c3

l(σ − c3t), t >
σ

c2
, (2.24)

j(σ − c2t) =
c3 + c2
2c3

l(σ − c3t), t >
σ

c2
. (2.25)

From (2.22) and (2.25) we obtain

g(σ − c2t) =
c3 + c2
2c3

l(σ − c3t), t >
σ

c2
. (2.26)

Equation (2.26) determines l as follows:

l(σ − c3t) =
2c3

c3 + c2
g(σ − c2t), t >

σ

c2
. (2.27)

Denote the argument of l in (2.27) by τ , then

l(τ) =
2c3

c3 + c2
g

(

σ − c2
c3
(σ − τ)

)

, τ >
c3 − c2
c2

σ. (2.28)

Due to (2.28),

l(x − c3t) =
2c3

c3 + c2
g

(
c3 − c2
c3

σ +
c2
c3
(x − c3t)

)

, t >
σ

c2
. (2.29)

Finally, putting (2.23) and (2.27) in (2.12) determines q:

q(σ + c2t) =
c3 − c2
c3 + c2

g(σ − c2t), t >
σ

c2
. (2.30)

A similar change of independent variable in (2.30) yields

q(x + c2t) =
c3 − c2
c3 + c2

g(2σ − (x + c2t)), 0 < x < σ, t >
σ

c2
. (2.31)

Plugging j, m, l, and q determined by (2.22), (2.23), (2.29), and (2.31), respectively, in (2.7)
yields u2 in (2.4).
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By an argument similar to the one in Theorem 1, we can show the following. The
reflected wave at x = σ, namely ((c3 − c2)/(c2 + c3))g(2σ − (x+ c2t)) in (2.4), becomes incident
at the point x = 0. Let us denote

h(x + c2t) =
c3 − c2
c2 + c3

g(2σ − (x + c2t)), 0 < x < σ. (2.32)

Then, the wave h scatters at x = 0, for t > 2σ/c2, as follows:

u3(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

2c1
c1 + c2

h

(
c2
c1
(x + c1t)

)

, x < 0,

h(x + c2t) +
c1 − c2
c1 + c2

h(−x + c2t), 0 < x < σ.

(2.33)

We note here that h(x + c2t) is the wave that moves to the left with h(s) = 0, s < 0. It is not
difficult to check that u3 satisfies u3(x, 0) = h(x), u3,t(x, 0) = c2h

′(x), u3(0−, t) = u3(0+, t) and
u3,x(0−, t) = u3,x(0 + t).

In this manner, the forms of outgoing waves through the interfaces x = 0 and x = σ
and the ones bouncing back and forth between the two are determined. In order to write the
solution to the problem

utt − c2(x)uxx = 0, (x, t) ∈ (x, t) ∈ R × (0,∞), (2.34)

where,

c(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1, x ≤ 0,

c2, 0 < x ≤ σ,

c3, x > σ,

(2.35)

subject to

u(0−, t) = u(0+, t), t ≥ 0,

u(x, 0) = f(x), f(s) ≡ 0, s > 0,

ut(x, 0) = −c1f ′(x), x ∈ R,

ux(0−, t) = ux(0+, t), t ≥ 0,

u(σ−, t) = u(σ+, t), t ≥ 0,

ux(σ−, t) = ux(σ+, t), t ≥ 0,

(2.36)

for σ, c1, c2, c3 positive constants, and the incoming wave f(x − c1t) for some f ∈ C2(R), we
need sums of the waves in each interval (−∞, 0), (0, σ), and (σ,∞). One way to write such
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solution is through the use of composition of the arguments of the scattered waves. For this
purpose we introduce the following functions:

L
(
η
)
=

c3 − c2
c3

σ +
c2
c3
η,

R
(
η
)
=

c2
c1
η,

M
(
η
)
= 2σ − η,

S
(
η
)
= −η.

(2.37)

Let us write the functions g and h introduced in (2.3) and (2.32), respectively, in terms of the
variable η:

g
(
η
)
=

2c2
c1 + c2

f

(
c1
c2
η

)

, (2.38)

h
(
η
)
=

c3 − c2
c3 + c2

g
(
2σ − η

)
. (2.39)

From M in (2.37) and (2.38)-(2.39), h can be written in terms of f as follows:

h
(
η
)
=

c3 − c2
c3 + c2

· 2c2
c1 + c2

f

(
c1
c2
M

(
η
)
)

. (2.40)

In terms of the functions in (2.37), (2.38) and (2.40), (2.4) and (2.33) in the time intervals
[0, 2σ/c2) and [2σ/c2, 3σ/c2) will, respectively, become

u2(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2c2
c1 + c2

f

(
c1
c2
(x − c2t)

)

+
c3−c2
c3+c2

· 2c2
c1 + c2

f

(
c1
c2
M(x+c2t)

)

, 0<x<σ,

2c3
c2 + c3

· 2c2
c1 + c2

f

(
c1
c2
L(x − c3t)

)

, x > σ,

(2.41)

u3(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2c1
c1 + c2

· c3 − c2
c3 + c2

· 2c2
c1 + c2

f

(
c1
c2
M ◦ R(x + c1t)

)

, x < 0,

c3 − c2
c3 + c2

2c2
c1 + c2

f

(
c1
c2
M(x + c2t)

)

+
c1 − c2
c1 + c2

· c3 − c2
c3 + c2

· 2c2
c1 + c2

·f
(
c1
c2
M ◦ S(x − c2t)

)

, 0 < x < σ.

(2.42)

Now, we begin to write the solution of the wave problem (2.34)-(2.36) in each interval
(−∞, 0), (0, σ), and (σ,∞) using (2.2), (2.41), and (2.42). Consider the following interpre-
tations of (2.2), (2.41), and (2.42). First we have the following wave on the interval (−∞, 0):

f(x − c1t). (2.43)



ISRN Mathematical Analysis 9

When this wave hits the join at 0 from the left, by (2.2) the reflected wave gets a coefficient of
the form (c2 − c1)/(c2 + c1) and an argument change to S(x + c1t), that is, the reflected wave
corresponding to (2.43) is

c2 − c1
c2 + c1

f(S(x + c1t)), x < 0, (2.44)

S is as given in (2.37). The transmitted wave due to (2.43) on the other hand gets a coefficient
of 2c2/(c1+c2) and argument change to (c1/c2)(x−c2t), that is, the transmitted wave traveling
to the right at 0 is

2c2
c1 + c2

f

(
c1
c2
(x − c2t)

)

, 0 < x < σ. (2.45)

Now let us see what changes the signal (2.45) undergo when it hits the join at σ on the left.
From (2.41) part of the signal gets reflected to the left acquiring the coefficient (c3 − c2)/(c3 +
c2) and argument change to M(x + c2t). The transmitted wave traveling right acquires the
coefficient 2c3/(c2 + c3) and the argument change L(x − c3t). Lastly, by (2.42) a signal that
hits the join at 0 on the right its transmitted part acquires the coefficient 2c1/(c1 + c2) and the
change of argument R(x+ c1t). Its reflected part acquires the coefficient (c1 − c2)/(c1 + c2) and
the argument change of S(x − c2t).

Note that the signals inside the interval (0, σ) keep scattering, but the ones that are
transmitted outside this interval continue traveling to the right or left forever. So, now let
us look at a few more wave signals that are produced inside (0, σ). Look at the wave ((c1 −
c2)/(c1 + c2)) · ((c3 − c2)/(c3 + c2)) · ((2c2)/(c1 + c2)) · f((c1/c2)M ◦ S(x − c2t)) in (2.42). As it
travels to the right it reaches the join σ as an incident wave on the left. By the argument above
its reflected component picks up a coefficient of (c3 − c2)/(c3 + c2) and an argument change of
Mx + c2t. The transmitted component picks up a coefficient of 2c3/(c2 + c3) and an argument
change L(x − c3t). These two wave are, respectively,

c3 − c2
c3 + c2

· c1 − c2
c1 + c2

· c3 − c2
c3 + c2

· 2c2
c1 + c2

· f
(
c1
c2
M ◦ S ◦M(x + c2t)

)

, (2.46)

2c3
c2 + c3

· c1 − c2
c1 + c2

· c3 − c2
c3 + c2

· 2c2
c1 + c2

· f
(
c1
c2
M ◦ S ◦ L(x − c3t)

)

. (2.47)

Now the wave (2.46) is incident on the join 0 from the right. The argument above shows that
the transmitted part must pick up the coefficient 2c1/(c1 + c2) and the change of argument
R(x + c1t), and the reflected part picks up the coefficient (c1 − c2)/(c1 + c2) and the argument
change of S(x − c2t). These two new waves are given below, respectively,

2c1
c1 + c2

· c3 − c2
c3 + c2

· c1 − c2
c1 + c2

· c3 − c2
c3 + c2

· 2c2
c1 + c2

· f
(
c1
c2
M ◦ S ◦M ◦ R(x + c1t)

)

, (2.48)

c1 − c2
c1 + c2

· c3 − c2
c3 + c2

· c1 − c2
c1 + c2

· c3 − c2
c3 + c2

· 2c2
c1 + c2

· f
(
c1
c2
M ◦ S ◦M ◦ S(x − c2t)

)

. (2.49)
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The waves (2.47) and (2.48)will be moving to the right and left away from the interval (0, σ)
indefinitely. But the wave (2.49) will be incident on the join σ on the left, and the process of
reflection and transmission repeats as before. It is not too difficult now to decipher the general
pattern of the reflected and transmittedwaves in (0, σ) and the outgoingwaves outside of this
interval. Here they are. The waves outgoing in x < 0 are of the form

c2 − c1
c1 + c2

f(−x − c1t),

4c1c2
(c1+c2)2

·
(
c3−c2
c3+c2

)(k−1)/2
·
(
c1−c2
c1+c2

)(k−3)/2
· f

(
c1
c2
(M◦S)(k−3)/2◦M◦R(x+c1t)

)

,

x<0, 0 < t <
(2i + 1)σ

c2
, k = 3, 5, 7, . . . .

(2.50)

The waves in (0, σ) moving left are

(
c1 − c2
c1 + c2

)(j−2)/2
·
(
c3 − c2
c3 + c2

)j/2

· 2c2
c1 + c2

· f
(
c1
c2
(M ◦ S)(j−2)/2 ◦M(x + c2t)

)

,

0 < x < σ, 0 < t <
2iσ
c2

, j = 2, 4, 6, . . . .

(2.51)

The waves in (0, σ) moving right are

2c2
c1 + c2

f

(
c1
c2
(x − c2t)

)

,

(
c3 − c2
c3 + c2

)(k−1)/2
·
(
c1 − c2
c1 + c2

)(k−1)/2
· 2c2
c1 + c2

· f
(
c1
c2
(M ◦ S)(k−1)/2(x − c2t)

)

,

0 < x < σ, k = 3, 5, 7, . . . .

(2.52)

Finally the ones moving right for x > σ are

4c2c3
(c1 + c2)(c2 + c3)

(
c1 − c2
c1 + c2

· c3 − c2
c3 + c2

)(j−2)/2
· f

(
c1
c2
(M ◦ S)(j−2)/2 ◦ L(x − c3t)

)

,

x > σ, 0 < t <
2iσ
c2

, j = 2, 4, 6, . . . .

(2.53)
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Now, we recall that u1 given in (2.2) is only good for the time interval (0, σ/c2), and after
t = σ/c2, the transmitted part hits the join at σ and splits. Therefore, in this time interval we
have the wave v1 defined as

v1(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f(x − c1t) +
c2 − c1
c2 + c1

f(−x − c1t), x < 0,

2c2
c1 + c2

f

(
c1
c2
(x − c2t)

)

, 0 < x < σ,

0, x > σ.

(2.54)

We note that v1 is the original incoming signal f(x − c1t) incident on 0 plus the reflected and
transmitted waves. The transmitted wave has not reached the join σ yet, and so there is no
wave beyond the point x = σ. Therefore v1 in (2.54) satisfies the wave problem (2.34)–(2.36)
in this time interval. We now bring in another wave v2 in the interval (σ/c2, 2σ/c2). We define
it by

v2(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0,

c3 − c2
c3 + c2

· 2c2
c1 + c2

f

(
c1
c2
M(x + c2t)

)

, 0 < x < σ,

2c3
c2 + c3

· 2c2
c1 + c2

f

(
c1
c2
L(x − c3t)

)

, x > σ.

(2.55)

The function v2 in (2.55) represents the reflected and transmitted waves at σ, caused by the
incident signal (2c2/(c1+c2))f((c1/c2)(x−c2t)). We see this incident wave in the definition of
v1 in (2.54). We argue that the sum of the wave in (2.54) and (2.55), v1 + v2, over the interval
(0, 2σ/c2) satisfies the wave problem (2.34)–(2.36). The fact that they satisfy the wave (2.34)
over each space interval is clear. The boundary conditions at 0 follow from the fact that v1 is
the solution to the wave problem (1.1)–(1.4) and the function ((c3 − c2)/(c3 + c2)) · (2c2/(c1 +
c2))f((c1/c2)M(x+c2t)) = ((c3 −c2)/(c3 +c2)) · (2c2/(c1 +c2))f((c1/c2)(2σ − (x+c2t))) = 0 for
x = 0, t < 2σ/c2. The boundary conditions at x = σ are satisfied, because the sum of the parts
for 0 < x < σ and x > σ is the the solution of the wave problem (2.5), (2.8)–(2.9), with g given
by (2.3) there. The initial conditions are satisfied because v1 satisfies them, and v2(x, 0) ≡ 0
due to the argument of f staying positive when t = 0.

Now we consider wave v3 over the interval (2σ/c2, 3σ/c2). It is defined by

v3(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4c1c2
(c1 + c2)2

·
(
c3 − c2
c3 + c2

)

· f
(
c1
c2
M ◦ R(x + c1t)

)

, x < 0,

2c2
c1 + c2

c3 − c2
c3 + c2

c1 − c2
c1 + c2

f

(
c1
c2
(M ◦ S)(x − c2t)

)

, 0 < x < σ,

0, x > σ.

(2.56)

This is the wave due to the scattering of ((c3−c2)/(c3+c2))·(2c2/(c1+c2))f((c1/c2)M(x+c2t)),
at the join 0. This incident wave can be seen in the definition of v2 in (2.55). We claim that
the sum v1 + v2 + v3, where v1, v2, v3 are given by (2.54)–(2.56), satisfies the wave problem
(2.34)–(2.36) over the interval (0, 3σ/c2). We note that v3 when added to the incident wave
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((c3−c2)/(c3+c2)) · (2c2/(c1+c2))f((c1/c2)M(x+c2t)) is the wave u3 that was given in (2.33)
except for the notation. This can be seen by noting that h in (2.33) is defined in terms of g in
(2.32) and g is given in terms of f in (2.3). We constructed u3 so that it satisfies the boundary
conditions u(0−, t) = u(0+, t), ux(0−, t), ux(0+, t) in (2.36), as well as the wave equation (2.34)
for x < σ. The sum v1 + v2 + v3 contains u3 for x < σ. In light of the previous argument about
v1 +v2 and the way v3 contributes to the sum, it is not difficult to see why v1 +v2 +v3 satisfies
the boundary conditions in (2.36) and the wave equation in (2.34) in the interval (0, 3σ/c2).
The fact that at time 0 < t < σ/c2 all terms involving f except f(x− c1t) are zero in v1 +v2 +v3

shows that the initial conditions of (2.30) are also satisfied.
If one waits other σ/c2 units of time, another scattering happens at σ from the wave

(2c2/(c1+c2))((c3−c2)/(c3+c2))((c1−c2)/(c1+c2))f((c1/c2)(M◦S)(x−c2t)) and then again at
0 from the reflected wave of (2c2/(c1+c2))((c3−c2)/(c3+c2))((c1−c2)/(c1+c2))f((c1/c2)(M◦
S)(x − c2t)). This process continues forever, and new waves appear every σ/c2 units of time.
The functions v4, v5, . . . can be defined as before such that their sum vi, i = 1, 2, 3 . . . will
satisfy the wave problem (2.34)–(2.36) over longer and longer time intervals. In the statement
below we write the solution in the form of a finite series whose upper limit depends on the
number of σ/c2 elapsed. In doing so we use the general forms of the waves in (2.50)–(2.53).

We summarize these results in the following theorem.

Theorem 2. Let f(x − c1t), f(s) = 0, s > 0, f ∈ C2(R) be an incoming wave. Then the solution to
the problem (2.34)–(2.36) in the time interval 0 ≤ t < iσ/c2, i = 1, 2, 3, . . . is given by

u(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(x − c1t) +
c2 − c1
c2 + c1

f(−x − c1t), x < 0,

2c2
c1 + c2

f

(
c1
c2
(x − c2t)

)

, 0 < x < σ,

0, x > σ

+ Σi
jeven=2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0,

(
c1−c2
c1+c2

)(j−2)/2
·
(
c3−c2
c3+c2

)j/2

· 2c2
c1+c2

·f
(
c1
c2
(M◦S)(j−2)/2◦M(x+c2t)

)

, 0 < x < σ,

4c2c3
(c1+c2)(c2+c3)

(
c1−c2
c1+c2

· c3−c2
c3+c2

)(j−2)/2

·f
(
c1
c2
(M◦S)(j−2)/2◦L(x−c3t)

)

, x > σ

+ Σi
kodd=3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4c1c2
(c1+c2)2

·
(
c3−c2
c3+c2

)(k−1)/2
·
(
c1−c2
c1+c2

)(k−3)/2

·f
(
c1
c2
(M◦S)(k−3)/2◦M◦R(x+c1t)

)

, x < 0,

2c2
c1+c2

·
(
c3−c2
c3+c2

· c1−c2
c1+c2

)(k−1)/2
· f

(
c1
c2
(M◦S)(k−1)/2(x−c2t)

)

, 0 < x < σ,

0, x > σ.

(2.57)
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Furthermore, assume that f and its derivatives of up to the order two are bounded in R. Then, the
solution to (2.34)–(2.36) over the time interval [0,∞) is the limit as i → ∞ of the above finite time
solution.

Proof. Note that for i = 1, u(x, t) = v1(x, t) as described in (2.54), for i = 2, u(x, t) = v1 + v2,
where v2 is given in (2.55), and for i = 3, u(x, t) = v1 + v2 + v3, where v3 is defined in (2.56).
We showed that in all these cases these sums satisfy the wave problem (2.34)–(2.36). For
i > 3, we will be adding reflected and transmitted waves at each interface 0 or σ which, when
added to their corresponding incident waves, satisfy the boundary conditions in (2.36). We
also argued that the initial conditions are satisfied because for t close to 0 all terms involving
f except f(x − ct) will be zero. So u solves the wave problem in (0, iσ/c2).

It remains to show the limiting case when i → ∞. For that, let us just focus on one
piece of the function u in the interval (−∞, 0):

u(x, t) = f(x − c1t) +
c2 − c1
c2 + c1

f(−x − c1t) +
∞∑

kodd=3

4c1c2
(c1 + c2)2

·
(
c3 − c2
c3 + c2

)(k−1)/2
·
(
c1 − c2
c1 + c2

)(k−3)/2

· f
(
c1
c2
(M ◦ S)(k−3)/2 ◦M ◦ R(x + c1t)

)

.

(2.58)

First notice that by definitions in (2.37) the argument of f in the summation (2.58) can be
simplified to

4c1c2
(c1 + c2)2

·
(
c3 − c2
c3 + c2

)(k−1)/2
·
(
c1 − c2
c1 + c2

)(k−3)/2
· f

(
c1
c2
(M ◦ S)(k−3)/2 ◦M ◦ R(x + c1t)

)

=
4c1c2

(c1 + c2)2
·
(
c3 − c2
c3 + c2

)(k−1)/2
·
(
c1 − c2
c1 + c2

)(k−3)/2
· f

(
c1
c2

(

(k − 1)σ − c2
c1
(x + c1t)

))

.

(2.59)

The coefficients of f satisfy |(c3 − c2)/(c3 + c2)| < 1, |(c1 − c2)/(c1 + c2)| < 1. Let

r = max
{∣
∣
∣
∣
c3 − c2
c3 + c2

∣
∣
∣
∣,

∣
∣
∣
∣
c1 − c2
c1 + c2

∣
∣
∣
∣

}

, (2.60)

then r < 1. Now with f being bounded, the partial sums of the series (2.58) are bounded
above by the partial sums of a convergent geometric series in powers of r. Therefore it is
absolutely and uniformly convergent. On the other hand, the term-by-term differentiation
of (2.58) in terms of t results in an extra coefficient c1 and no extra coefficient in terms
of x, as can be seen by (2.59). Since f ′ and f ′′ are also bounded, the resulting series also
converge absolutely and uniformly to the derivatives of the limit of the series (2.58). A similar
argument can be applied to the series for u in the intervals (0, σ) and (σ,∞).

We have shown the form of the scattering of an incident wave on the right- and left-
hand side of the join 0. But we have only shown the scattering of an incident wave on the
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left of σ. If one wanted to study a higher number of interfaces, then it would be necessary to
know what happens when an incoming wave hits an interface at an arbitrary point σ /= 0 on
the right. Here, and for the completeness of the argument, we point out that the transmitted
and reflected waves at x = σ from an incoming wave k(x + c3) from the right would be as
follows:

u4(x, t) =

⎧
⎪⎨

⎪⎩

2c2
c2 + c3

k

(
c2 − c3
c2

σ +
c3
c2
(x + c2t)

)

, 0 < x < σ,

k(x + c3t) +
c2 − c3
c2 + c3

k(2σ − (x − c3t)), x > σ.
(2.61)

Theoretically, this should enable us to extend the result of Theorem 2 to a higher number of
discontinuities in the density of the string. The difficulty would be the ability to keep track of
all incoming and outgoing waves as well as the ones that bounce back and forth between the
interfaces. Since there are so many such waves, with even three interfaces, a general solution
for more than two interfaces is impossible to write down. However, for a specific, relatively
short length of time the solution can be found, when the discontinuities are few, say three. In
this case the form of the solution will also depend on the distance between the discontinuities.
Then, one can ask up to how many joins or for what length of time will the scattered waves
be tractable. Another interesting question would lie in the area of inverse scattering. Since
by our experience the solution contains the location σ of a discontinuity, in the absence of
such knowledge will it be possible to find the coordinate of the interface from the form of the
scattered waves.
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