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A model for the effect of pollution on an animal population partially dependent on a plant
resource is examined. Using a system of ordinary differential equations, the model tracks and
relates changes in an animal population and its internal pollution levels, a plant population and
its internal pollution levels, and the overall environmental pollution level. The model system is
analysed using standard mathematical techniques, including the direct Lyapunov method and
numerical simulations. Criteria for the stability of the system are found and numerically tested.
Three inequalities are sufficient to establish global stability, and a parameter range exists in which
these criteria are satisfied. The stability criteria dictate that the system will be globally stable
provided that the removal rate of the pollution from the environment, the intrinsic growth rate
of the plant population, and the rate the animal population relieves itself of its pollution are all
sufficiently large.

1. Introduction

Industrial production does not currently occur without emitting waste and byproducts. The
industrial emissions enter the environment surrounding the industrial site and affect the local
ecosystem. It has been shown that industrial wastes can decrease the birth rates, increase the
death rates, and reduce the carrying capacity of flora and fauna proximal to the source of the
industrialization [1]. Moreover, the local species can also affect the concentration of pollution
in the environment; the species may absorb, digest, and eventually metabolize the pollution.

Modeling how pollution emitted into an ecosystem travels through that environment
as well as modeling the subsequent effects of the pollution on the surrounding populations
is an important step toward the conservation and preservation of populations living near in-
dustrial sites. Accurate simulation of the pollution-population system is crucial to mitigating
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the potential loss of biodiversity. The majority of previous research endeavours that have
mathematically modelled the effects of industrial pollution on species surrounding the indus-
trial site have used the rate of uptake of pollution by the species as one of the variables in the
model [2–9]. In these instances, the rate of uptake has beenmodeled as a linear process. While
this approach simplifies some of the mathematical analysis, it does not track the movement
of pollution through the ecosystem.

Recently, research modelling the movement of pollution through an ecosystem using
a mass-balance approach for the pollution level was published [10]. This paper only deals
with a single species living in a polluted environment; however, a similar approach can be
used for a multi species model.

This paper draws on themulti species models previously developed byDubey, Shukla,
and their collaborators, while implementing a mass-balance approach for the pollution levels
in the system presented byHe andWang to produce a newpopulation-pollutionmodel which
is analysed using classical stability techniques.

We begin by proposing a new model to study the effects of a pollutant on local animal
and plant biomass. We conduct local and global stability analysis on the nontrivial equi-
librium solution of the model using the direct Lyapunov method. And finally, we conduct
numerical simulations in order to compare the analytical results with numerical computa-
tions, in order to confirm that there is a parameter range for which the results are relevant.

2. Mathematical Model

Consider an ecosystem in which there are two principal biological species—a plant species
and an animal species. The animal species consumes and is partially dependent on the plant
species. Pollution is also being inputted into the ecosystem. We assume that the ecosystem
is a spatially homogeneous environment and also that there is no migration to or emigration
from the ecosystem. Additionally, we assume that all of the individuals within either species
population are identical.

To model this system we will use five state variables—N(t), B(t), CN(t), CB(t), and
CE(t). N(t) represents the animal species density at time t, B(t) represents the plant species
density at time t, CN(t) represents the concentration of the toxicant in an individual animal at
time t, CB(t) represents the concentration of the toxicant in an individual plant at time t, and
CE(t) represents the concentration of the toxicant in the environment at time t.

We assume that the growth dynamics of the animal species and the plant species can
be described using a modified version of the logistic growth equations.

When discussing the dynamics of population growth it can be useful to discuss the
dynamics in terms of the birth rate, b(t), and death rate, d(t), of the populations. In general,
we can think of population growth as

dN

dt
= (b(t) − d(t))N, (2.1)

If we let r0 = b0 − d0 where b0 is the intrinsic birth rate and d0 is the intrinsic death rate of the
population, then we can think of the general birth rate of a population growing according to
a logistic growth model as

b(t) = b0 − r0N

K
. (2.2)
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Similarly, the general death rate can be thought of as

d(t) = d0. (2.3)

In the development of our model, we will first consider the population dynamics.

2.1. Population Dynamics

When developing an equation for the carrying capacity of the plant population, we assume
that the carrying capacity of the plant species decreases due to the presence of pollution in the
environment. Additionally, we assume that this change is proportional to the concentration
of pollution in the environment. Let bB0 denote the intrinsic birth rate of the plant species,
rB0 the intrinsic growth rate of the plant species, KB0 the intrinsic carrying capacity of the
plant species, and KBCE the rate the carrying capacity decreases relative to the concentration
of pollution in the environment. The birth rate of the plant species can be written as

bB(B,CE) = bB0 − rB0B

KB0 −KBCECE
. (2.4)

For the death rate of the plant population, we assume that the death rate increases
proportional to the animal species population and proportional to the concentration of
toxicant present within the plant. These dynamics are akin to the animal population eating
and the pollution poisoning the plant population. If dB0 is the intrinsic death rate of the plant
species, let dBN and dBCB denote the rates the death rate of the plant species increases relative
to biomass of the animal species and the concentration of pollution in the plant species,
respectively. Then, we describe the death rate of the plant population as

dB(N,CB) = dB0 + dBNN + dBCBCB. (2.5)

Using rB0 = bB0 − db0, the equation governing the plant population is

dB

dt
= (bB(B,CE) − dB(N,CB))B, (2.6)

dB

dt
=
(
rB0 − rB0B

KB0 −KBCECE
− dBNN − dBCBCB

)
B. (2.7)

Now, consider the animal population dynamics.
Similar to the plant population, we assume that the animal species carrying capacity

decreases in proportion to the quantity of pollution in the environment. Additionally, for
the animal population, we assume that the carrying capacity increases in proportion to the
population of the plant species. This increase is due to our assumption that the animals are
partially dependent on the plants. Let bN0, rN0, and KB0 represent the intrinsic birth rate,
growth rate, and carrying capacity of the animal species, respectively. Additionally, let KNB

denote the rate the carrying capacity increases relative to the plant biomass andKNCE the rate
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the carrying capacity decreases relative to the concentration of pollution in the environment.
Then, we can write the birth rate of the animal species as

bN(N,B,CE) = bN0 − rN0N

KN0 +KNBB −KNCECE
. (2.8)

To formulate the death rate of the animal species, we assume that the death rate
decreases in proportion to the quantity of plant biomass and increases in proportion to the
concentration of pollution present within the animal itself. We let dN0 represent the intrinsic
death rate of the animal species, dNB the rate the animals death rate decreases relative to
the biomass of the plant, and dNCN the rate the animals death rate increases relative to the
concentration of pollution present within the animal. We can write the animal death rate as

dN(B,CN) = dN0 − dNBB + dNCNCN. (2.9)

Clearly, using rN0 = bN0 − dN0, we can describe the dynamics of the animal population as

dN

dt
= (bN(N,B,CE) − dN(B,CN))N, (2.10)

dN

dt
=
(
rN0 − rN0N

KN0 +KNBB −KNCECE
+ dNBB − dNCNCN

)
N. (2.11)

Continuing the derivation of our model, we next develop the equations for the concentration
of pollution dynamics via balance arguments.

2.2. Pollution Dynamics

The use of balance equations to model movements within a system is based upon the first
law of thermodynamics [11–13].

We use mn and mb to represent the average per capita mass of the animal and plant
populations, respectively, and we use me to represent the mass of the environment. Then
mbBCB represents the total mass of toxicant in the plant population, mnNCN represents the
total mass of toxicant in the animal population, and meCE represents the total quantity of
toxicant free in the environment. me is assumed to be sufficiently large and near constant,
and hence variations in me do not need to be modeled. The flow of pollution in the system
can be visualized in Figure 1 and is described next.

We assume that pollution first enters the environment at a rate U(t). This pollution
naturally dissipates at a rate relative to the amount of pollution present in the environment
hmeCE. The environmental pollution level decreases due to absorption into both the plant
and animal populations. The loss of environmental pollution due to absorption to the plant
population is given as g1mbCEB. The loss of environmental pollution due to absorption
into the animal population is given as k2mnCEN. Pollution reenters the environment, as
part of the pollution cycle as it is egested by the animal population. The egestion occurs
at the rate k3mnCNN. Pollution also reenters the general environment as it is released
from dead animals and plants. The pollution is released from dead animals at the rate
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Input: U(T) Natural degradation: hmeCE

Pollution in environment

Egested by
animals:

k3mnCNN
Released from
dead animals:
mndNCNNAbsorbed by

animals: k2mnCEN

Absorbed by
plants: g1mbCEB

Pollution in plant population
Consumed by

animals:
k1mbmnCBNB

Natural metabolism: g2mbCBB Natural metabolism: k4mnCNN

Released from
dead plant:
mbdBCBB

Pollution in animal population

Figure 1: Flowchart of the pollution movement through the ecosystem.

mndN(B,CN)CNN and from dead plants at the rate mbdB(N,CB)CBB. Using these rates
pertaining to the amount of pollution in the environment, we get

dmeCE

dt
= U(t) − hmeCE − g1mbCEB − k2mnCEN + k3mnCNN

+mndN(B,CN)CNN +mbdB(N,CB)CBB;
(2.12)

then, dividing byme and using the notation u(t) = U(t)/me, we have

dCE

dt
= u(t) − hCE − g1mb

me
CEB − k2mn

me
CEN

+
k3mn

me
CNN +

mn

me
(dN0 − dNBB + dNCNCN)CNN

+
mb

me

(
bN0 − rN0N

KN0 +KNBB −KNCECE

)
CBB.

(2.13)

Next, we consider the quantity of toxicant in the plant biomass.
We have already established that the plant biomass absorbs pollutant from the

environment, increasing the plant toxicant at a rate g1mbCEB. Pollution inside the plant
biomass is naturally metabolized, leaving the system at a rate g2mbCBB. Pollution returns
to the environment due to dead biomass at a rate dB(N,CB)mbCBB. Finally, pollution from
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the plant population is transferred to the animal population due to ingestion of plant matter
by the animal population at a rate k1mbmnCBBN. So we get

dCBmbB

dt
=g1mbCEB − g2mbCBB − dB(N,CB)mbCBB − k1mbmnCBBN; (2.14)

dividing bymb, we have

dCBB

dt
= g1CEB − g2CBB − k1mnCBBN − dB(N,CB)CBB, (2.15)

but clearly

dCBB

dt
= CB

dB

dt
+ B

dCB

dt
. (2.16)

Substituting in (2.6) and (2.15), using

bB(B,CE) = bB0 +
rB0B

KB0 −KBCECE
, (2.17)

and factoring, we have

dCB

dt
= g1CE − k1mnCBN −

(
g2 + bB0 − rB0B

KB0 −KBCECE

)
CB. (2.18)

We now consider the quantity of toxicant in the animal biomass.
Pollution enters the animal population via two routes—by the absorption of pollution

from the environment at a rate k2mnCEN and by the ingestion of plant biomass containing
pollution at a rate k1mnmbCBBN. Pollution is released from the animal population as a
result of being egested, which occurs at a loss rate of k3mnCNN, metabolized, which occurs
at a loss rate of k4mnCNN, and released from dead animals, which occurs at a rate of
dN(B,CN)mnCNN. Hence, we obtain

dCNmnN

dt
= k1mnmbCBBN + k2mnCEN − k3mnCNN

− k4mnCNN − dN(B,CN)mnCNN.

(2.19)

First, we divide bymn to get

dCNN

dt
= k1mbCBBN + k2CEN − k3CNN

− k4CNN − dN(B,CN)CNN.

(2.20)
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Then, we use the fact that

dCNN

dt
= CN

dN

dt
+N

dCN

dt
. (2.21)

Substituting in (2.10) and (2.20), using bN(N,B,CE) = bN0 + rN0N/(KN0 +KNBB −KNCECE),
and factoring we determine that

dCN

dt
= k1mbCBB + k2CE −

(
k3 + k4 + bN0 − rN0N

KN0 +KNBB −KNCECE

)
CN. (2.22)

After the previous assumptions and derivations we can combine (2.7), (2.11), (2.13), (2.18),
and (2.22) and arrive at our completed model:

dN

dt
=
(
rN0 − rN0N

KN0 +KNBB −KNCECE
+ dNBB − dNCNCN

)
N,

dB

dt
=
(
rB0 − rB0B

KB0 −KBCECE
− dBNN − dBCBCB

)
B,

dCN

dt
= k1mbCBB + k2CE

−
(
k3 + k4 + bN0 − rN0N

KN0 +KNBB −KNCECE

)
CN,

dCB

dt
= g1CE − k1mnCBN −

(
g2 + bB0 − rB0B

KB0 −KBCECE

)
CB,

dCE

dt
= u(t) +

mb

me
(dB0 + dBNN + dBCBCB)CBB

+
mn

me
(k3 + dN0 − dNBB + dNCNCN)CNN

− mb

me
g1CEB − mn

me
k2CEN − hCE.

(2.23)

3. Equilibrium Analysis

Our model has four nonnegative equilibria:

E0 = (0, 0, CN0 , CB0 , CE0),

E1 = (0, B1, CN1 , CB1 , CE1),

E2 = (N2, 0, CN2 , CB2 , CE2),

E∗ =
(
N∗, B∗, C∗

N,C
∗
B, C

∗
E

)
.

(3.1)

Since we derived the equations for dCB/dt and dCN/dt under the assumption that both N
and B are nonzero, then the solution we are chiefly concerned with is E∗.
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3.1. Existence of E∗ = (N∗, B∗, C∗
N,C

∗
B, C

∗
E)

For E∗ = (N∗, B∗, C∗
N,C

∗
B, C

∗
E),N

∗, B∗, C∗
N,C

∗
B, and C

∗
E are the positive solutions of,

0 = rN0 − rN0N
∗

KN0 +KNBB∗ −KNCEC
∗
E

+ dNBB
∗ − dNCNC

∗
N, (3.2)

0 = rB0 − rB0B
∗

KB0 −KBCEC
∗
E

− dBNN∗ − dBCBC
∗
B, (3.3)

0 = k1mbC
∗
BB

∗ + k2C∗
E −
(
k3 + k4 + bN0 − rN0N

∗

KN0 +KNBB∗ −KNCEC
∗
E

)
C∗
N, (3.4)

0 = g1C∗
E − k1mnC

∗
BN

∗ −
(
g2 + bB0 − rB0B

∗

KB0 −KBCEC
∗
E

)
C∗
B − mb

me
g1C

∗
EB

∗, (3.5)

0 = u(t) +
mb

me

(
dB0 + dBNN∗ + dBCBC

∗
B

)
C∗
BB

∗ − mb

me
g1C

∗
EB

∗

+
mn

me

(
k3 + dN0 − dNBB

∗ + dNCNC
∗
N

)
CNN

∗ − mn

me
k2C

∗
EN

∗ − hC∗
E.

(3.6)

Recall that rB0 = bB0 − dB0, and so, by (3.3),

bB0 − rB0B
∗

KB0 −KBCEC
∗
E

= db0 + dBNN∗ + dBCBC
∗
B. (3.7)

Substituting this into (3.5), we have

0 = dBCB

(
C∗
B

)2 + (k1mnN
∗ + g2 + db0 + dBNN∗)C∗

B − g1C∗
E. (3.8)

Hence,

C∗
B =

−β1(N∗) +
√
β1(N∗)2 + 4g1dBCBC

∗
E

2dBCB

, (3.9)

where,

β1(N∗) = k1mnN
∗ + dBNN∗ + g2 + dB0. (3.10)

Let

f1
(
N∗, C∗

E

)
=

−β1(N∗) +
√
β1(N∗)2 + 4g1dBCBC

∗
E

2dBCB

. (3.11)
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Consider (3.3). Since CB = f1(N∗, C∗
E),

B∗ =

(
KB0 −KBCEC

∗
E

)(
rB0 − dBNN∗ − dBCBf1

(
N∗, C∗

E

))
rB0

. (3.12)

Let

f2
(
N∗, C∗

E

)
=

(
KB0 −KBCEC

∗
E

)(
rB0 − dBNN∗ − dBCBf1

(
N∗, C∗

E

))
rB0

. (3.13)

Next, recall that rN0 = bN0 − dN0, and so, by (3.2),

bN0 − rN0N
∗

KN0 +KNBB∗ −KNCEC
∗
E

= dN0 − dNBB
∗ + dNCNC

∗
N. (3.14)

Substituting this into (3.4), we have

0 = dNCN

(
C∗
N

)2 + (k3 + k4 + dN0 − dNBB
∗)C∗

N − (k1mbC
∗
BB

∗ + k2C∗
E

)
. (3.15)

Using C∗
B = f1(N∗, C∗

E) and B
∗ = f1(N∗, C∗

E), we find

C∗
N =

−β2
(
N∗, C∗

E

)
+
√
β2
(
N∗, C∗

E

)2 + β3(N∗, C∗
E

)
2dNCN

, (3.16)

where

β2
(
N∗, C∗

E

)
= k3 + k4 + dN0 − dNBf2(N∗, CE∗),

β3
(
N∗, C∗

E

)
= 4dNCN

(
k1mbf1(N∗, CE∗)f2(N∗, CE∗) + k2C∗

E

)
.

(3.17)

Let

f3
(
N∗, C∗

E

)
=

−β2
(
N∗, C∗

E

)
+
√
β2
(
N∗, C∗

E

)2 + β3(N∗, C∗
E

)
2dNCN

. (3.18)

Next, if we consider (3.2), we have

0 = rN0 − rN0N
∗

KN0 +KNBB∗ −KNCEC
∗
E

+ dNBB
∗ − dNCNC

∗
N. (3.19)

Using B∗ = f2(N∗, C∗
E) and C

∗
N = f3(N∗, C∗

E), we find

N∗ =
β4
(
N∗, C∗

E

)(
rN0 + dNBf2

(
N∗, C∗

E

) − dNCNf3
(
N∗, C∗

E

))
rN0

, (3.20)
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where

β4
(
N∗, C∗

E

)
= KN0 +KNBf2

(
N∗, C∗

E

) −KNCEC
∗
E. (3.21)

Finally, we consider (3.6) and

0 = u(t) +
mb

me

(
dB0 + dBNN∗ + dBCBC

∗
B

)
C∗
BB

∗ − mb

me
g1C

∗
EB

∗

+
mn

me

(
k3 + dN0 − dNBB

∗ + dNCNC
∗
N

)
CNN

∗ − mn

me
k2C

∗
EN

∗ − hC∗
E.

(3.22)

Substituting in C∗
B = f1(N∗, C∗

E), B
∗ = f2(N∗, C∗

E), and C
∗
N = f3(N∗, C∗

E), we find

C∗
E =

meu +mb

(
dB0 + dBNN∗ + dBCBf1

)
f1f2

mbg1f2 +mnk2N∗ +meh

+
mn

(
k3 + dN0 − dNBf2 + dNCNf3

)
f3N

∗

mbg1f2 +mnk2N∗ +meh
.

(3.23)

Thus, the nontrivial solution to the system is given by

N∗ =
β4
(
N∗, C∗

E

)(
rN0 − dNCNf3

(
N∗, C∗

E

)
+ dNBf2

(
N∗, C∗

E

))
rN0

,

B∗ = f2(N∗, CE∗),

C∗
N = f3(N∗, CE∗),

C∗
B = f1

(
N∗, C∗

E

)
,

C∗
E =

meu +mbβ6
(
N∗, C∗

E

)
f1
(
N∗, C∗

E

)
f2
(
N∗, C∗

E

)
β5
(
N∗, C∗

E

)

+
mnβ7

(
N∗, C∗

E

)
f3
(
N∗, C∗

E

)
N∗

β5
(
N∗, C∗

E

) ,

(3.24)

where

f1
(
N∗, C∗

E

)
=

−β1(N∗) +
√
β1(N∗)2 + 4g1dBCBC

∗
E

2dBCB

,

f2(N∗, CE∗) =

(
KB0 −KBCEC

∗
E

)(
rB0 − dBNN∗ + dBCBf1

(
N∗, C∗

E

))
rB0

,

f3(N∗, CE∗) =
−β2
(
N∗, C∗

E

)
+
√
β2
(
N∗, C∗

E

)2 + β3(N∗, C∗
E

)
2dNCN

,

(3.25)
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where

β1(N∗) = k1mnN
∗ + dBNN∗ + g2 + dB0,

β2
(
N∗, C∗

E

)
= k3 + k4 + dN0 − dNBf2(N∗, CE∗),

β3
(
N∗, C∗

E

)
= 4dNCN

(
k1mbf1(N∗, CE∗)f2(N∗, CE∗) + k2C∗

E

)
,

β4
(
N∗, C∗

E

)
= KN0 +KNBf2

(
N∗, C∗

E

) −KNCEC
∗
E,

β5
(
N∗, C∗

E

)
= mbg1f2

(
N∗, C∗

E

)
+mnk2N

∗ +meh,

β6
(
N∗, C∗

E

)
= dB0 + dBNN∗ + dBCBf1

(
N∗, C∗

E

)
,

β7
(
N∗, C∗

E

)
= k3 + dN0 − dNBf2

(
N∗, C∗

E

)
+ dNCNf3

(
N∗, C∗

E

)
.

(3.26)

Provided thatN∗ and C∗
E exist, we can find the corresponding C∗

B, B
∗, and C∗

N .

4. Stability Analysis

Theorem 4.1 (conditions for local stability). Given

c3 <
1
4
rN0
(
g2 + k1mnN

∗ + bB
(
B∗, C∗

E

))
KN

(
B∗, C∗

E

)(
k1mnC

∗
B

)2 ,

c1 = c3
rB0C

∗
B

dBCBKB

(
C∗
E

) ,

c2 <
c3
4
(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))
Ω
(
N∗, B∗, C∗

N,C
∗
B, C

∗
E

)
,

(4.1)

where

Ω
(
N∗, B∗, C∗

N,C
∗
B, C

∗
E

)

= min

⎛
⎝ C∗

B

dBCB

(
rB0

KB

(
C∗
E

)
δ
(
N∗, B∗, C∗

N,C
∗
B, C

∗
E

)
)2

,
k1mnN

∗ + g2 + bB
(
B∗, C∗

E

)
(k1mbB∗)2

⎞
⎠,

(4.2)

where

δ
(
N∗, B∗, C∗

N,C
∗
B, C

∗
E

)
= k1mbC

∗
B − KNBrN0N

∗C∗
N

KN

(
B∗, C∗

E

)2 . (4.3)
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if the following inequalities hold:

(1)

(
dNCN − c2rN0C

∗
N

KN

(
B∗, C∗

E

)
)2

<
c2
4
rN0
(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))
KN

(
B∗, C∗

E

) , (4.4)

(2)

3c1
4

rB0

KB

(
C∗
E

)

>

(
dNB +KNBrN0N

∗/KN

(
B∗, C∗

E

)2 − c1dBN
)2

rN0/KN

(
B∗, C∗

E

)

+

(
c1meKBCErB0B

∗/KB

(
C∗
E

)2 −mbdB
(
N∗, C∗

B

)
C∗
B +mndNBC

∗
NN

∗ +mbg1C
∗
E

)2
me

(
mbg1B∗ +mnk2N∗ + hme

) ,

(4.5)

(3)

3me

4
(
mbg1B

∗ +mnk2N
∗ +meh

)

>

(
meKNCErN0N

∗/KN

(
B∗, C∗

E

)2−mbdBNC
∗
BB

∗−mn

(
k3 + dN

(
B∗, C∗

N

))
C∗
N+mnk2C

∗
E

)2
rN0/KN

(
B∗, C∗

E

)

+

(
c2me

(
k2+KNCErN0N

∗C∗
N/KN

(
B∗, C∗

E

)2)+mnN
∗(k3+dN(B∗, C∗

N

)
+dNCNC

∗
N

))2
c2
(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))

+

(
c3me

(
g1 +KBCErB0B

∗C∗
B/KB

(
C∗
E

)2) +mbB
∗(dB(N∗, C∗

B

)
+ dBCBC

∗
B

))2
c3
(
k1mnN∗ + g2 + bB

(
B∗, C∗

E

)) ,

(4.6)

then E∗ is a locally stable equilibrium of system (2.23).

Theorem 4.2 (conditions for global stability). Using the notation

KN(B,CE) = KN0 +KNBB −KNCECE,

KB(CE) = KB0 −KBCECE,

DN(B,CN) = dN0 − dNBB + dNCNCN,

DB(N,CB) = dB0 + dBNN + dBCBCB,

(4.7)
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let KN(B,CE), KB(CE), DN(B,CN), and DB(N,CB) be such that

KN = KN0 −KNCE ≤ KN(B,CE) ≤ KN0 +KNBKB0 = KN,

KB = KB0 −KBCE ≤ KB(CE) ≤ KB0 = KB,

|DN(B,CN)| ≤ dN0 + dNCN = DN,

|DB(N,CB)| ≤ dB0 + dBNNM + dBCB = DB.

(4.8)

Then, given

0 < c2 <
rN0
(
g2 + k1mnN

∗)
4(k1mn)

2KN

,

0 < c1 <
k3 + k4

4
max

(
rB0

KB

(
k1mb + rN0N∗C∗

Nη1
)2
c2
(
g2 + k1mnN

∗)
(k1mbB∗)2

)
,

(4.9)

where

η1 =
KNB

(KN0 + B∗KNB −KNCE)
2
,

η2 =
KNCE(

KN0 + B∗KNB −KNCEC
∗
E

)2 ,

μ =
KBCE(

KB0 −KBCEC
∗
E

)2 ,

(4.10)

if the following inequalities hold:

(1)

c1
4
rN0(k3 + k4)

KN

>

(
dNCN +

c1rN0

KN

)2

, (4.11)

(2)

3
4
rb0

KB

>

(
dNB +N∗rN0η1 + dBN

)2
KN

rN0
+

(
dBCB + c2rB0/KB

)2
c2
(
g2 + k1mnN∗)

+

(
B∗rB0μme +mbg1 +mbDB +mnN

∗C∗
NdNB

)2
me

(
meh +mbg1B∗ +mnk2N∗) ,

(4.12)
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Table 1

Population parameters

bn0 = 3 dn0 = 2 kn0 = .5
bb0 = 80 db0 = 3 kb0 = .5
knb = 1 knce = 0.1667 dnb = 0
dncn = 0.01 kbce = 0.0125 dbn = 1
dbcb = 1

Mass parameters
mn = 1 mb = 1 me = 1

Pollution parameters
k1 = 3.01 k2 = 1 k3 = 1
k4 = 52.01 g1 = 5.5 g2 = 100
U = 1 h = 100

(3)

3me

4
(
meh +mbg1B

∗ +mnk2N
∗)

>
KN

(
meN

∗rN0η2 +mnk3 +mnk2 +mnDN +mbB
∗C∗

BdBN
)2

rN0

+

(
c1me

(
k2 + rN0N

∗C∗
Nη2
)
+N∗mn

(
k3 +DN + C∗

NdNCN

))2
c1(k3 + k4)

+

(
c2me(g1 + rB0B∗C∗

Bμ) +mbB
∗(DB + C∗

BdBCB)
)2

c2
(
g2 + k1mnN∗) ,

(4.13)

then E∗ is a globally stable equilibrium of system (2.23).

5. Numerical Simulation

To study the applicability of the model we need to test a range of parameter values for which
E∗ exists and is stable.

Example 5.1. Consider the set of parameter values for our numerical calculations in Table 1.
With these parameter values, the nontrivial equilibrium, E∗, of the model exists and is

N∗ ≈ .9919, B∗ ≈ 0.4934, C∗
N ≈ 0.0007, C∗

B ≈ 0.0003, C∗
E ≈ 0.0095. (5.1)

Using c1 = 0.0751, c2 = 1, and c3 = 1, it can be verified that the conditions given by
(4.4)–(4.6) for Theorem 4.1 are satisfied. Hence, E∗ is locally asymptotically stable.

Moreover, using c1 = 1 and c2 = 1, it can also be verified that the conditions given by
(4.11)–(4.13) for Theorem 4.2 are satisfied. Hence, E∗ is globally asymptotically stable.
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Figure 2: Numerical approximation to the time series solutions for the system of differential equations
(2.23). The parameter values used were bn0 = db0 = 3, dn0 = 2, kn0 = kb0 = .5, bb0 = 80, dncn = 0.01,
k1 = g2 = h = 100, knce = 0.1667, kbce = 0.0125, k2 = 3.01, dnb = 0, k4 = 52.01, g1 = 5.5, and knb = dbn = dbcb =
mn = mb = me = k3 = U = 1. The initial condition used was (N0, B0, CN0, CB0, CE0) = (0.5, 0.25, 0, 0, 0).

Figure 2(a) depicts the numerical approximation to the time series for the populations,
and Figure 2(b) depicts the numerical approximation to the time series for the pollution
levels. An initial condition of (N0, B0, CN0, CB0, CE0) = (0.5, 0.25, 0, 0, 0) was used for the
simulation. Both time series were achieved using the MATLAB solver ode15s.
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Table 2

Population parameters

bn0 = 3 dn0 = 2 kn0 = .5
bb0 = 9 db0 = 3 kb0 = .5
knb = 1 knce = 0.1667 dnb = 0
dncn = 0.01 kbce = 0.0125 dbn = 1
dbcb = 1

Mass parameters
mn = 1 mb = 1 me = 1

Pollution parameters
k1 = 3.01 k2 = 1 k3 = 1
k4 = 52.01 g1 = 5.5 g2 = 100
U = 100 h = 100

Example 5.2. If we increase the amount of pollution being input to the system, reduce the
birthrate of the plant population, and rerun the simulations using the set of parameter values
in Table 2.

The nontrivial equilibrium, E∗, of the model exists and is

N∗ ≈ .7634, B∗ ≈ 0.4236, C∗
N ≈ 0.0749, C∗

B ≈ 0.02925, C∗
E ≈ 0.9795. (5.2)

Using c1 = 0.6104, c2 = 1, and c3 = 1, the conditions given by (4.4)–(4.6) for Theorem
4.1 are satisfied, and therefore E∗ is proven to be locally asymptotically stable.

Similarly, using c1 = 1 and c2 = 1, the conditions given by (4.11)–(4.13) for Theorem 4.2
are satisfied and E∗ is globally asymptotically stable.

Figure 3(a) depicts the numerical approximation to the time series for the populations,
and Figure 3(b) depicts the numerical approximation to the time series for the pollution
levels. An initial condition of (N0, B0, CN0, CB0, CE0) = (0.5, 0.25, 0, 0, 0) was used for the
simulation. Both time series were achieved using the MATLAB solver ode15s. Notice that
the plant population approaches the equilibrium much slower in Example 5.2 than in
Example 5.1. Also, it appears as though with the parameter settings used in Example 5.2 that
the pollution has a greater impact on the animal population than the plant population; the
magnitude of the decrease in size of the animal population at the equilibrium between the
two examples is greater than the decrease seen in the plant population. It is also interesting to
note that the pollution values are two degrees of magnitude larger in the second example than
in the first example. The increase in the concentration of the pollution levels is of the same
level of magnitude as the increase in the rate of pollution input into the system. It was found
that if the simulation is rerun with bB0 = 8, then the second global stability criterion given
in (4.12) fails; however, numerical solution remains similar to that computed in Example 5.2.
This implies that the stability criteria are sufficient but not necessary.

6. Conclusions

In this paper a new system of differential equations designed to study the effects of pollution
on two species—one plant and one animal—in a closed environment was developed.
The model was analysed using standard methods for nonlinear systems of differential
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Figure 3: Numerical approximation to the time series solutions for the system of differential equations
(2.23). The parameter values used were bn0 = db0 = 3, dn0 = 2, kn0 = kb0 = .5, bb0 = 9, dncn = 0.01,
k1 = g2 = h = U = 100, knce = 0.1667, kbce = 0.0125, k2 = 3.01, dnb = 0, k4 = 52.01, g1 = 5.5, and knb = dbn =
dbcb = mn = mb = me = k3 = 1. The initial condition used was (N0, B0, CN0, CB0, CE0) = (0.5, 0.25, 0, 0, 0).

equations. The problem was chosen as much work in the field has been done in the past;
however, simplifications have always been introduced in order to help make the problem
mathematically tractable. Our work strives to incorporate another level of biological realism
to the model by fully accounting for the movement of pollution in the system using a mass-
balance approach. In addition, the work was designed to include practical parameters that
would be measurable in a real-world context.
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It is clear from Examples 5.1 and 5.2 that the nontrivial solution for our system is stable
for at least some range of parameter values and there is also a parameter range in which
the stability criteria are satisfied. By analysing the model using the Lyapunov direct method
we were able to derive criteria for the stability of the system. For both the local and global
stability, three sufficient conditions for stability were determined. For local stability, these are
given in (4.4), (4.5), and (4.6). The three criteria sufficient for establishing global stability are
given in (4.11), (4.12), and (4.13). We can interpret the biological meaning of these criteria to
gain further insight into our model.

Upon analysing the parameters included in stability criteria it was found that the
system is locally stable provided that

(1) pollution degrades or is removed from the environment at a fast enough rate,

(2) the plant population experiences net growth at a fast enough rate,

(3) (a) the animal population relieves itself of pollution at a fast enough rate
(b) the animal carrying capacity is large enough,
(c) the animal population births at a fast enough rate.

The system is globally stable provided that

(1) pollution degrades or is removed from the environment at a fast enough rate,

(2) the plant population experiences net growth at a fast enough rate,

(3) the animal population is able to relieve itself of its pollution burden at a great
enough.

Further work that could be done with the model includes parameterizing the model
using parameters for a known situation and comparing the predictions of the model to the
real-world phenomena.

Further extension that could be made based upon the model includes incorporating
features such as age structure, delay, or diffusion.

Appendices

A. Proof of Theorem 4.1

We will work with the linearized form of the model, which can be written as

dN̂

dt
= −j11N̂ + j12B̂ − j13ĈN − j15ĈE,

dB̂

dt
= −j21N̂ − j22B̂ − j24B∗ĈB − j25ĈE,

dĈN

dt
= j31N̂ + j32B̂ − j33ĈN + j34ĈB + j35ĈE,

dĈB

dt
= −j41N̂ + j42B̂ − j44ĈB + j45ĈE,

dĈE

dt
= j51N̂ + j52B̂ + j53ĈN + j54ĈB − j55ĈE,

(A.1)
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where jij represents the absolute value from the ith row and jth column of the Jacobianmatrix
evaluated at E∗ = (N∗, B∗, C∗

N,C
∗
B, C

∗
E).

Consider the positive definite function

V
(
N̂, B̂, ĈN, ĈB, ĈE

)
=

1
2

[
1
N∗
(
N̂ −N∗

)2
+
c1
B∗
(
B̂ − B∗

)2
+ c2
(
ĈN − C∗

N

)2

+c3
(
ĈB − C∗

B

)2
+
(
ĈE − C∗

E

)2]
.

(A.2)

Differentiating V with respect to t, we get

dV

dt
=

1
N∗
(
N̂ −N∗

)dN̂
dt

+
c1
B∗
(
B̂ − B∗

)dB̂
dt

+ c2
(
ĈN − C∗

N

)dĈN

dt

+ c3
(
ĈB − C∗

B

)dĈB

dt
+
(
ĈE − C∗

E

)dĈE

dt
.

(A.3)

Using the notation

2a11 = j11 =
rN0

KN

(
B∗, C∗

E

) ,

2a22 = c1j22 = c1
rB0

KB

(
C∗
E

) ,

2a33 = c2j33 = c2
(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))
,

2a44 = c3j44 = c3
(
k1mnN

∗ + g2 + bB
(
B∗, C∗

E

))
,

2a55 = j55 =
mb

me
g1B

∗ +
mn

me
k2N

∗ + h,

a12 =
j12
N∗ − c1

j21
B∗ = dNB +

KNBrN0N
∗

KN

(
B∗, C∗

E

)2 − c1dBN,

a13 =
j13
N∗ − c2j31 = dNCN − c2

rN0C
∗
N

KN

(
B∗, C∗

E

) ,

a14 = c3j14 = c3k1C∗
B,

a15 =
j15
N∗ − j51 =

KNCErN0N
∗

KN

(
B∗, C∗

E

)2 − mb

me
dBNC

∗
BB

∗

− mn

me

(
k3 + dN

(
B∗, C∗

N

))
C∗
N +

mn

me
k2C

∗
E,

a23 = c2j32 = c2

(
k1mbC

∗
B − KNBrN0N

∗C∗
N

KN

(
B∗, C∗

E

)2
)
,
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a24 = c1
j24
B∗ − c3j42 = c1dBCB − c3

rB0C
∗
B

KB

(
C∗
E

) ,

a25 = c1
j25
B∗ − j52 = c1

KBCErB0B
∗

KB

(
C∗
E

)2

− mb

me
dB
(
N∗, C∗

B

)
C∗
B +

mn

me
dNBC

∗
NN

∗ +
mb

me
g1C

∗
E,

a34 = c2j34 = c2k1mbB
∗,

a35 = c2j35 + j53 = c2

(
k2 +

KNCErN0N
∗C∗

N

KN

(
B∗, C∗

E

)2
)
,

+
mn

me
N∗(k3 + dN(B∗, C∗

N

)
+ dNCNC

∗
N

)
,

a45 = c3j45 + j54 = c3

(
g1 +

KBCErB0B
∗C∗

B

KB

(
C∗
E

)2
)
,

+
mb

me
B∗(dB(N∗, C∗

B

)
+ dBCBC

∗
B

)
.

(A.4)

and some algebraic manipulation, we can rewrite the system as

dV

dt
= −a11

2

(
N̂ −N∗

)2
+ a12

(
N̂ −N∗

)(
B̂ − B∗

)
− a22

2

(
B̂ − B∗

)2

− a11
2

(
N̂ −N∗

)2 − a13
(
N̂ −N∗

)(
ĈN − C∗

N

)
− a33

2

(
ĈN − C∗

N

)2

− a11
2

(
N̂ −N∗

)2 − a14
(
N̂ −N∗

)(
ĈB − C∗

B

)
− a44

2

(
ĈB − C∗

B

)2

− a11
2

(
N̂ −N∗

)2 − a15
(
N̂ −N∗

)(
ĈE − C∗

E

)
− a55

2

(
ĈE − C∗

E

)2

− a22
2

(
B̂ − B∗

)2
+ a23

(
B̂ − B∗

)(
ĈN − C∗

N

)
− a33

2

(
ĈN − C∗

N

)2

− a22
2

(
B̂ − B∗

)2 − a24
(
B̂ − B∗

)(
ĈB − C∗

B

)
− a44

2

(
ĈB − C∗

B

)2

− a22
2

(
B̂ − B∗

)2 − a25
(
B̂ − B∗

)(
ĈE − C∗

E

)
− a55

2

(
ĈE − C∗

E

)2

− a33
2

(
ĈN − C∗

N

)2
+ a34

(
ĈN − C∗

N

)(
ĈB − C∗

B

)
− a44

2

(
ĈB − C∗

B

)2

− a33
2

(
ĈN − C∗

N

)2
+ a35

(
ĈN − C∗

N

)(
ĈE − C∗

E

)
− a55

2

(
ĈE − C∗

E

)2

− a44
2

(
ĈB − C∗

B

)2
+ a45

(
ĈB − C∗

B

)(
ĈE − C∗

E

)
− a55

2

(
ĈE − C∗

E

)2
.

(A.5)
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Then, factoring the equations, we obtain

dV

dt
= −1

2
a11

((
N̂ −N∗

)
− a12
a11

(
B̂ − B∗

))2

− 1
2

(
a22 −

a212
a11

)(
B̂ − B∗

)2

− 1
2
a11

(
(N̂ −N∗) +

a13
a11

(
ĈN − C∗

N

))2

− 1
2

(
a33 −

a213
a11

)(
ĈN − C∗

N

)2

− 1
2
a11

((
N̂ −N∗

)
+
a14
a11

(
ĈB − C∗

B

))2

− 1
2

(
a44 −

a214
a11

)(
ĈB − C∗

B

)2

− 1
2
a11

((
N̂ −N∗

)
+
a15
a11

(
ĈE − C∗

E

))2

− 1
2

(
a55 −

a215
a11

)(
ĈE − C∗

E

)2

− 1
2
a22

((
B̂ − B∗

)
− a23
a22

(
ĈN − C∗

N

))2

− 1
2

(
a33 −

a223
a22

)(
ĈN − C∗

N

)2

− 1
2
a44

((
ĈB − C∗

B

)
+
a24
a44

(
B̂ − B∗

))2

− 1
2

(
a22 −

a224
a44

)(
B̂ − B∗

)2

− 1
2
a55

((
ĈE − C∗

E

)
+
a25
a55

(
B̂ − B∗

))2

− 1
2

(
a22 −

a225
a55

)(
B̂ − B∗

)2

− 1
2
a33

((
ĈN − C∗

N

)
− a34
a33

(
ĈB − C∗

B

))2

− 1
2

(
a44 −

a234
a33

)(
ĈB − C∗

B

)2

− 1
2
a33

((
ĈN − C∗

N

)
− a35
a33

(
ĈE − C∗

E

))2

− 1
2

(
a55 −

a235
a33

)(
ĈE − C∗

E

)2

− 1
2
a44

((
ĈB − C∗

B

)
− a45
a44

(
ĈE − C∗

E

))2

− 1
2

(
a55 −

a245
a44

)(
ĈE − C∗

E

)2
.

(A.6)

Sufficient conditions for dV/dt to be negative definite are

a214 < a11a44, (A.7)

a223 < a22a33, (A.8)

a234 < a33a44, (A.9)

a213 < a11a33, (A.10)

a212
a11

+
a224
a44

+
a225
a55

< 3a22, (A.11)

a215
a11

+
a235
a33

+
a245
a44

< 3a55. (A.12)
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Examining (A.7), we find

a214 < a11a44,

c3 <
1
4
rN0
(
g2 + k1N∗ + bB

(
B∗, C∗

E

))
KN

(
B∗, C∗

E

)(
k1mnC

∗
B

)2 .
(A.13)

Considering (A.8), we find:

a223 < a22a33,

c2 <
c1
4

rB0
(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))
KB

(
C∗
E

)(
k1mbC

∗
B −KNBrN0N∗C∗

N/KN

(
B∗, C∗

E

)2)2 .
(A.14)

Considering (A.9), we find an additional condition for choosing our coefficient c2:

a234 < a33a44,

c2 <
c3
4

(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))(
k1mnN

∗ + g2 + bB
(
B∗, C∗

E

))
(k1mbB∗)2

.
(A.15)

Note that, if both of the conditions relating to c2 are satisfied, then

c2 < min

⎛
⎜⎝c3

4

(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))(
k1mnN

∗ + g2 + bB
(
B∗, C∗

E

))
(k1mbB∗)2

,

c1
4

rB0
(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))
KB

(
C∗
E

)(
k1mbC

∗
B −
(
KNBrN0N∗C∗

N/KN

(
B∗, C∗

E

)2))2
⎞
⎟⎠.

(A.16)

Looking at (A.10), we find the first general condition for local stability:

a213 < a11a33,

(
dNCN − c2

rN0C
∗
N

KN

(
B∗, C∗

E

)
)2

<
c2
4
rN0
(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))
KN

(
B∗, C∗

E

) .
(A.17)
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Equation (A.11) gives the second condition for stability:

3a22 >
a212
a11

+
a224
a44

+
a225
a55

,

3c1
4

rB0

KB

(
C∗
E

)

>

(
dNB +

(
KNBrN0N

∗/KN

(
B∗, C∗

E

)2) − c1dBN
)2

rN0/KN

(
B∗, C∗

E

)

+

(
c1dBCB − c3

(
rB0C

∗
B/KB

(
C∗
E

)))2
c3
(
k1mnN∗ + g2 + bB

(
B∗, C∗

E

))

+

(
c1me

(
KBCErB0B

∗/KB

(
C∗
E

)2)−mbdB
(
N∗, C∗

B

)
C∗
B+mndNBC

∗
NN

∗+mbg1C
∗
E

)2
me

(
mbg1B∗ +mnk2N∗ + hme

) .

(A.18)

If we let c1 = c3(rB0C∗
B/dBCBKB(C∗

E)), this reduces to

3c1
4

rB0

KB

(
C∗
E

)

>

(
dNB +

(
KNBrN0N

∗/KN

(
B∗, C∗

E

)2) − c1dBN
)2

rN0/KN

(
B∗, C∗

E

)

+

(
c1me

(
KBCErB0B

∗/KB

(
C∗
E

)2)−mbdB
(
N∗, C∗

B

)
C∗
B+mndNBC

∗
NN

∗+mbg1C
∗
E

)2
me

(
mbg1B∗ +mnk2N∗ + hme

) .

(A.19)

Finally, (A.12) gives the third and final condition for local stability:

3a55 >
a215
a11

+
a235
a33

+
a245
a44

,

3me

4
(
mbg1B

∗ +mnk2N
∗ +meh

)

>

(
meKNCErN0N

∗/KN

(
B∗, C∗

E

)2 −mbdBNC
∗
BB

∗ −mn

(
k3 + dN

(
B∗, C∗

N

))
C∗
N +mnk2C

∗
E

)2
rN0/

(
KN

(
B∗, C∗

E

))
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+

(
c2me

(
k2+KNCErN0N

∗C∗
N/KN

(
B∗, C∗

E

)2)+mnN
∗(k3 + dN(B∗, C∗

N)+dNCNC
∗
N

))2
c2
(
k3 + k4 + bN

(
N∗, B∗, C∗

E

))

+

(
c3me

(
g1 +KBCErB0B

∗C∗
B/KB

(
C∗
E

)2) +mbB
∗(dB(N∗, C∗

B) + dBCBC
∗
B

))2
c3
(
k1mnN∗ + g2 + bB

(
B∗, C∗

E

)) .

(A.20)

These conditions are equivalent to those given in (4.1)–(4.6).

B. Proof of Theorem 4.2

Consider the positive definite function

V1(N,B,CN,CB, CE) =N −N∗ −N∗ ln
(
N

N∗

)
+ B − B∗ − B∗ ln

(
B

B∗

)

+
c1
2
(
CN − C∗

N

)2 + c2
2
(
CB − C∗

B

)2 + 1
2
(
CE − C∗

E

)2
.

(B.1)

Then, differentiating V1 with respect to t, we get

dV1

dt
=

(N −N∗)
N

dN

dt
+
(B − B∗)

B

dB

dt
+ c1
(
CN − C∗

N

)dCN

dt

+ c2
(
CB − C∗

B

)dCB

dt
+
(
CE − C∗

E

)dCE

dt
.

(B.2)

Using (2.23), we find

dV1

dt
= (N −N∗)

(
bN0 − rN0N

KN(B,CE)
−DN(B,CN)

)

+ (B − B∗)
(
bB0 − rB0B

KB(CE)
−DB(N,CB)

)

+ c1
(
CN − C∗

N

)(
k1mbCBB + k2CE − (k3 + k4 + bN0)CN +

rN0NCN

KN(B,CE)

)

+ c2
(
CB − C∗

B

)(
g1CE − k1mNCBN − (g2 + bB0)CB +

rB0BCB

KB(CE)

)

+
(
CE − C∗

E

)(
u +

mb

me
DB(N,CB)CBB

+
mn

me
(k3 +DN(B,CN))CNN − mb

me
g1CEB − mn

me
k2CEN − hCE

)
.

(B.3)
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Using the notation

η1(B,CE) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

KN(B,CE)
− 1
KN(B∗, CE)

)
/(B − B∗), B /=B∗,

−1
K2
N(B∗, CE)

∂KN(B∗, CE)
∂B

, B = B∗,

η2(B∗, CE) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

KN(B∗, CE)
− 1
KN

(
B∗, C∗

E

)
)
/
(
CE − C∗

E

)
, CE /=C∗

E,

−1
K2
N

(
B∗, C∗

E

) ∂KN

(
B∗, C∗

E

)
∂CE

, CE = C∗
E,

μ(CE) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

KB(CE)
− 1
KB

(
C∗
E

)
)
/
(
CE − C∗

E

)
, CE /=C∗

E,

−1
K2
B

(
C∗
E

) ∂KB

(
C∗
E

)
∂CE

, CE = C∗
E,

ψ1(B,CN) =

⎧⎪⎪⎨
⎪⎪⎩

DN(B,CN) −DN(B∗, CN)
B − B∗ , B /=B∗,

∂DN(B,CN)
∂B

, B = B∗,

ψ2(B∗, CN) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DN(B∗, CN) −DN

(
B∗, C∗

N

)
CN − C∗

N

, CN /=C∗
N,

∂DN(B∗, CN)
∂CN

, CN = C∗
N,

ζ1(N,CB) =

⎧⎪⎪⎨
⎪⎪⎩

DB(N,CB) −DB(N∗, CB)
N −N∗ , N /=N∗,

∂DB(N,CB)
∂N

, N =N∗,

ζ2(N∗, CB) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DB(N∗, CB) −DB

(
N∗, C∗

B

)
CB − C∗

B

, CB /=C∗
B,

∂DB(N∗, CB)
∂CB

, CB = C∗
B

(B.4)

and some algebraic manipulation, we can rewite the systems as

dV1

dt
= −1

2
a11(N −N∗)2 + a12(N −N∗)(B − B∗) − 1

2
a22(B − B∗)2

− 1
2
a11(N −N∗)2 + a13(N −N∗)

(
CN − C∗

N

) − 1
2
a33
(
CN − C∗

N

)2

− 1
2
a11(N −N∗)2 + a14(N −N∗)

(
CB − C∗

B

) − 1
2
a44
(
CB − C∗

B

)2
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− 1
2
a11(N −N∗)2 + a15(N −N∗)

(
CE − C∗

E

) − 1
2
a55
(
CE − C∗

E

)2

− 1
2
a22(B − B∗)2 + a23(B − B∗)

(
CN − C∗

N

) − 1
2
a33
(
CN − C∗

N

)2

− 1
2
a22(B − B∗)2 + a24(B − B∗)

(
CB − C∗

B

) − 1
2
a44
(
CB − C∗

B

)2

− 1
2
a22(B − B∗)2 + a25(B − B∗)

(
CE − C∗

E

) − 1
2
a55
(
CE − C∗

E

)2

− 1
2
a33
(
CN − C∗

N

)2 + a34(CN − C∗
N

)(
CB − C∗

B

) − 1
2
a44
(
CB − C∗

B

)2

− 1
2
a33
(
CN − C∗

N

)2 + a35(CN − C∗
N

)(
CE − C∗

E

) − 1
2
a55
(
CE − C∗

E

)2

− 1
2
a44
(
CB − C∗

B

)2 + a45(CB − C∗
B

)(
CE − C∗

E

) − 1
2
a55
(
CE − C∗

E

)2
,

(B.5)

where

a11 =
rN0

2KN(B,CE)
,

a22 =
rB0

2KB(CE)
,

a33 =
c1
2

(
k3 + k4 + bN0 − rN0N

∗

KN(B,CE)

)
,

a44 =
c2
2

(
g2 + k1mnN

∗ + bB0 − rB0B
∗

KB(CE)

)
,

a55 =
1
2

(
h +

mb

me
g1B

∗ +
mn

me
k2N

∗
)
,

a12 = −ψ1(B,CN) −N∗rN0η1(B,CE) − ζ1(N,CB),

a13 = −ψ2(B∗, CN) +
c1rN0CN

KN(B,CE)
,

a14 = −c2k1mnCB,

a15 = −N∗rN0η2(B∗, CE) +
(
mn

me
(k3 +DN(B,CN))CN

−mn
me

k2CE +
mb

me
B∗C∗

Bζ1(N,CB)
)
,

a23 = c1
(
k1mbCB + rN0N

∗C∗
Nη1(B,CE)

)
,

a24 = −ζ2(N∗, CB) +
c2rB0CB

KB(CE)
,
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a25 = −B∗rB0μ(CE) +
(
mb

me
DB(N,CB)CB

−mb

me
g1CE +

mn

me
N∗C∗

Nψ1(B,CN)
)
,

a34 = c1k1mbB
∗,

a35 = c1
(
k2 + rN0N

∗C∗
Nη2(B

∗, CE)
)

+
mn

me
N∗(k3 +DN(B,CN) + C∗

Nψ2(B∗, CN)
)
,

a45 = c2
(
g1 + rb0B∗C∗

Bμ(CE)
)

+
mb

me
B∗(DB(N,CN) + C∗

Bζ2(N
∗, CB)

)
.

(B.6)

Note that

∣∣∣∣∂KN(B,CE)
∂B

∣∣∣∣ = KNB,

∣∣∣∣∂KN(B,CE)
∂CE

∣∣∣∣ = KNCE,

∣∣∣∣∂KB(CE)
∂CE

∣∣∣∣ = KBCE ,

∣∣∣∣∂DN(B,CN)
∂B

∣∣∣∣ = dNB,

∣∣∣∣∂DN(B,CN)
∂CN

∣∣∣∣ = dNCN ,

∣∣∣∣∂DB(N,CB)
∂N

∣∣∣∣ = dBN,
∣∣∣∣∂DB(N,CB)

∂CB

∣∣∣∣ = dBCB .

(B.7)

Additionally, note that, by mean value theorem and the previous definitions,

∣∣η1∣∣ ≤ KNB

(KN0 + B∗KNB −KNCE)
2
= η1,

∣∣η2∣∣ ≤ KNCE(
KN0 + B∗KNB −KNCEC

∗
E

)2 = η2,

∣∣μ∣∣ ≤ KBCE(
KB0 −KBCEC

∗
E

)2 = μ,

∣∣ψ1
∣∣ ≤ dNB,∣∣ψ2
∣∣ ≤ dNCN ,

|ζ1| ≤ dBN,
|ζ2| ≤ dBCB .

(B.8)
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Factoring dV1/dt as

dV1

dt
= −1

2
a11

(
(N −N∗) − a12

a11
(B − B∗)

)2

− 1
2

(
a22 −

a212
a11

)
(B − B∗)2

− 1
2
a11

(
(N −N∗) − a13

a11

(
CN − C∗

N

))2

− 1
2

(
a33 −

a213
a11

)(
CN − C∗

N

)2

− 1
2
a11

(
(N −N∗) − a14

a11

(
CB − C∗

B

))2

− 1
2

(
a44 −

a214
a11

)(
CB − C∗

B

)2

− 1
2
a11

(
(N −N∗) − a15

a11

(
CE − C∗

E

))2

− 1
2

(
a55 −

a215
a11

)(
CE − C∗

E

)2

− 1
2
a22

(
(B − B∗) − a23

a22

(
CN − C∗

N

))2

− 1
2

(
a33 −

a223
a22

)(
CN − C∗

N

)2

− 1
2
a44

((
CB − C∗

B

) − a24
a44

(B − B∗)
)2

− 1
2

(
a22 −

a224
a44

)
(B − B∗)2

− 1
2
a55

((
CE − C∗

E

) − a25
a55

(B − B∗)
)2

− 1
2

(
a22 −

a225
a55

)
(B − B∗)2

− 1
2
a33

(
(CN − C∗

N) − a34
a33

(CB − C∗
B)
)2

− 1
2

(
a44 −

a234
a33

)(
CB − C∗

B

)2

− 1
2
a33

((
CN − C∗

N

) − a35
a33

(
CE − C∗

E

))2

− 1
2

(
a55 −

a235
a33

)(
CE − C∗

E

)2

− 1
2
a44

((
CB − C∗

B

) − a45
a44

(
CE − C∗

E

))2

− 1
2

(
a55 −

a245
a44

)(
CE − C∗

E

)2
,

(B.9)

we see that sufficient conditions for dV1/dt to be negative definite are:

a214 < a11a44, (B.10)

a223 < a22a33, (B.11)

a234 < a33a44, (B.12)

a213 < a11a33, (B.13)

a212
a11

+
a224
a44

+
a225
a55

< 3a22, (B.14)

a215
a11

+
a235
a33

+
a245
a44

< 3a55. (B.15)
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To simplify the conditions, we can find an upper bound for the left-hand sides of the inequal-
ities and lower bounds for the right-hand sides of the inequalities.

First consider (B.10). This can be used to place a restriction on c2:

a214 < a11a44,

c2 <
rN0
(
g2 + k1mnN

∗)
4KN(k1mn)

2
.

(B.16)

Equation (B.11) can be used to place a restriction on c1:

a223 < a22a33,

c1 <
rB0(k3 + k4)

4KB

(
k1mb + rN0N∗C∗

Nη1
)2 .

(B.17)

Considering (B.12), an additional restriction can be placed on c1:

a234 < a33a44,

c1 <
c2(k3 + k4)

(
g2 + k1mnN

∗)
4(k1mbB∗)2

.
(B.18)

Since we have established

c1 <
rB0(k3 + k4)

4KB

(
k1mb + rN0N∗C∗

Nη1
)2 ,

c1 <
c2(k3 + k4)

(
g2 + k1mnN

∗)
4(k1mbB∗)2

,

(B.19)

both conditions will be satisfied if

c1 < min

(
rB0(k3 + k4)

4KB

(
k1mb + rN0N∗C∗

Nη1
)2 ,

c2(k3 + k4)
(
g2 + k1mnN

∗)
4(k1mbB∗)2

)
. (B.20)

Next consider (B.13) to establish the first condition for global stability:

a213 < a11a33,

(
dNCN +

c1rN0

KN

)2

<
c1rN0(k3 + k4)

4KN

.
(B.21)
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Considering (B.14), we develop the second sufficient condition for global stability:

3a22 >
a212
a11

+
a224
a44

+
a225
a55

3
4
rB0

KB

>
KN

(
dNB +N∗rN0η1 + dBN

)2
rN0

+

(
dBCB + c2rB0/KB

)2
c2
(
g2 + k1mnN∗)

+

(
meB

∗rB0μ +mbDB +mbg1 +mnN
∗C∗

NdNB

)2
me

(
meh +mbg1B∗ +mnk2N∗) .

(B.22)

Finally, considering (B.15),

3a55 >
a215
a11

+
a235
a33

+
a245
a44

,

3me

4
(
meh +mbg1B

∗ +mnk2N
∗)

>
KN

(
meN

∗rN0η2+mnk3+mnDN+mnk2+mbdBNB
∗C∗

B

)2
rN0

+

(
c1me

(
k2 + rN0N

∗C∗
Nη2
)
+mnN

∗
(
k3 +DN + dNCNC

∗
N

))2
c1(k3 + k4)

+

(
c2me

(
g1 + rb0B∗C∗

Bμ
)
+mbB

∗
(
DB + dBCBC

∗
B

))2
c2
(
g2 + k1mnN∗) .

(B.23)

These conditions are equivalent to the conditions for global stability given in Theorem 4.2.
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