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Edges in a digital image provide important information about the objects contained within the image since they constitute
boundaries between objects in the image. This paper proposes a new approach based on independent component analysis (ICA)
for edge-detection in noisy images. The proposed approach works in two phases—the training phase and the edge-detection
phase. The training phase is carried out only once to determine parameters for the ICA. Once calculated, these ICA parameters
can be employed for edge-detection in any number of noisy images. The edge-detection phase deals with transitioning in and
out of ICA domain and recovering the original image from a noisy image. Both gray scale as well as colored images corrupted
with Gaussian noise are studied using the proposed approach, and remarkably improved results, compared to the existing edge-
detection techniques, are achieved. Performance evaluation of the proposed approach using both subjective as well as objective

methods is presented.

1. Introduction

In typical images, edges characterize the object boundaries
with sharp changes in intensity levels. Edges are useful for
segmentation, registration, and identification of objects in
a given scene. Most of these operations have edge-detection
as the preprocessing step. Consequently, the success of these
image processing tasks depends strictly on the performance
of edge-detection step. Detection of these edges, therefore,
not only helps in more accurate representation of an
image, but it also significantly simplifies its processing.
The edge detection usually involves calculation of derivative
of the image intensity function at a given pixel location
owing to the fact that image intensity shows sudden
changes at edges. Pixels with relatively higher magnitude
of derivative of the image intensity function are classified
into edge pixels. To this end, Gradient and Laplacian
operators/masks such as Prewitt, Roberts, Sobel, Canny [1-
3] are usually employed for the purpose of edge-detection.
These operators work well for specific cases; however, they

fail for others. For instance, the Prewitt edge detector works
quite well for digital images corrupted with Poisson noise,
whereas its performance decreases sharply for other kinds
of noise [4]. Moreover, these operators/masks are chosen
independent of the image under consideration. As such,
the performance of these operators masks degrades con-
siderably with the increase in noise levels in images [2].
Unfortunately, digital images are inevitably degraded by
noise during acquisition and/or transmission. Furthermore,
most of the edge-detection operators assume that images
contain regions separated by clear boundaries. However,
this assumption is not valid for images corrupted with
noise. Alternatively, better results can be obtained if the
images are denoised employing an appropriate filter (e.g.,
linear/smoothing filter, nonlinear filter) before applying the
operators/masks [2, 4]. However, filters while smoothing out
the noise also remove genuine high-frequency edge features,
degrade localization and detection of low-contrast edges,
and, therefore are incapable of providing satisfactory results
[2-4].



This paper proposes a new approach for edge-detection
in noisy images. Proposed approach employs the indepen-
dent component analysis (ICA) concept [5-7] in conjunction
with the traditional edge-detection methods to obtain much
better results for images corrupted with Gaussian noise.
ICA has been previously applied for the purpose of edge-
detection [8-11]. In the proposed approach, basic edge-
detection method (i.e., Canny) is used along with ICA for
the first time to improve the accuracy of edge-detection in
noisy gray-scale and colored images. ICA provides a linear
representation of non-Gaussian (i.e., super-Gaussian and
sub-Gaussian) data making all the components statistically
independent [12-16]. The proposed approach functions in
two phases. In the first phase, FastICA algorithm which is
a neural network learning algorithm based on a Gradient
approach is used to find the separation matrix. In second
phase, this obtained separation matrix is used for transition-
ing in and out of ICA domain, thereby facilitating denoising
of noisy images. We apply the proposed approach to several
gray-scale and colored images corrupted with high levels
of Gaussian noise. Edge-detection results obtained from the
proposed approach illustrate better performance than those
obtained using Canny along with the nonlocal means filter.

A brief introduction of ICA followed by the information
regarding basis functions, fast ICA algorithm, and edge-
detection are given in Section 2. Section 3 presents the
proposed approach and discusses key points involved in
obtaining the improved results. [llustration of the proposed
approach applied to gray scale as well as colored images is
presented in Section 4, and conclusions with possible future
work are included in Section 5.

2. Independent Component Analysis (ICA)

Typically, ICA is used for blind source separation [14], which
facilitates separation of a set of signals from mixed signals,
with very little information about the source signals or
the mixing process. In contrast to the correlation-based
transformations, like principal component analysis (PCA)
[15], ICA decorrelates the signals (2nd-order statistics) and
also reduces higher-order statistical dependencies, in attempt
to make signals as independent as possible [7]. Since all the
natural images contain similar statistical information, a set of
noise-free images can be used for the training phase of ICA
[12]. The transform obtained from ICA is then employed for
denoising a noisy image.

2.1. Definition of ICA. Let Xpx1 = [X1,X2,%3,...,%y] be a
linear mixture vector with m linear mixtures of n indepen-
dent sources, s,x1 = [s1,52,53,...,5,]. The relation between
mixture vector x and the source vector s can be expressed as

for j=1,2,...,m,
(1)

Xj = ajsi + aj$2 + aj3s3 + -+ AjnSn>

where A is called the mixing matrix of size (m X n), and each
column a; is called basis function. As such, basis functions
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FiGURE 1: Representative block diagram of ICA for the case of two
sources.

project the independent sources to produce linear mixtures.
Thus, (1) can be expressed mathematically as

X = As. (2)

The above model (2) is known as the ICA model. Figure 1
illustrates a block diagram for ICA where s has two elements
— 1 and s,. Mixtures x; and x, obtained from s are fed to ICA
as inputs. Therefore, only mixture vector x is available, from
which A and s are estimated by the ICA.

ICA starts with an assumption that elements of vector s
are statistically independent. The distributions of elements
of s, although unknown, are assumed to be non-Gaussian.
Furthermore, for the sake of simplicity, mixing matrix A is
assumed to be a square matrix. The objective of ICA is to
find a matrix W which, when multiplied with the observed
mixture vector X, gives the source vector s, that is,

s = Wx. (3)

W is referred to as the separation matrix, and its inverse
results in the mixing matrix A. There are numerous ways
of finding matrix W, but we employed “fixed-point FastICA
algorithm” as it is computationally efficient and robust [5-7].

2.2. Implementation of Fixed-Point FastICA. Sample image
data obtained from the noise-free images is whitened, in
order to make W and A unitary and then fed to FastICA
algorithm. The computation steps for matrix W are detailed
below.

Step 1. Random image samples of size 8 X 8 each, from the
database that we have created, are fed to FastICA.

Step 2. Matrix W (size 64X 64) is obtained from FastICA that
performs orthogonalization during each iteration.

Step 3. Each row vector of W corresponds to a basis function,
and kurtosis k is computed, as explained in the next section,
for all the basis functions.

Step 4. Row vectors of W, that is, the basis functions, are then
arranged in descending order of computed k value.
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In this paper, we use m = n = 64. As such, both Wand A
have size of 64 x 64. Obtained matrix W from FastICA is an
orthogonal matrix, and therefore A is simply W', A detailed
explanation of the use of FastICA algorithm and MATLAB
code can be obtained from [17].

2.3. Edge-Detection. Signal mixtures tend to have Gaussian
probability density functions (PDFs), while source signals
have non-Gaussian pdf [18]. Hence, ICA is optimized to
obtain non-Gaussian signals at the output. In practice, there
are two types of non-Gaussian signals, commonly referred
to as Platykurtotic (i.e., super-Gaussian) and Leptokurtotic
(i.e., sub-Gaussian) [18]. The super-Gaussian signals have
most of the values centered at zero, unlike sub-Gaussian
signals. This implies that the former signals have relatively
higher peaks compared to the latter. Peaky nature of the
signals is formally described by what is called kurtosis of the
signal’s PDFE, which is the 4th moment of PDF. The kurtosis
of row vector w of matrix W is computed as [18]

o (Um S wi—w)'
(/m) Spy (w} —wd)?

3, (4)

where wy, is the mean of w. Constant “3” guarantees that the
Gaussian, super-Gaussian (sparse), and sub-Gaussian signals
have, respectively, zero, positive, and negative values of k.
Essentially, kurtosis provides a measure for the 4th central
moment, which takes a given signal’s variance into account.
The proposed algorithm (as explained below) arranges the
rows of W in descending order of their k values. This is to
select the sparse components of an image as they represent
edges of the image.

3. Proposed Approach

As mentioned earlier, the proposed approach works in two
phases—the training phase and the edge-detection phase.
Training phase is carried out only once to find the matrix W,
which is then employed for edge-detection in any number of
noisy images. Both the phases are described below.

3.1. Training Phase. Training phase of the proposed ap-
proach consists of two main steps, that is, database creation
and ICA followed by kurtosis computation.

3.1.1. Database Creation. Selective images are taken from
a website [19] to serve as a database. As can be seen in
Figure 2, natural images are selected, since the ICA filters
have more sparsely distributed (kurtotic) outputs on natural
scenes [20].

3.1.2. ICA and Kurtosis Computation. A detailed flow chart
of the training phase is given in Figure 3(a). Random image
samples, each of size 8 X 8, are selected and fed to FastICA as
input. FastICA algorithm, as explained earlier, computes the
separation matrix W of size 64 X 64. This W is orthogonalized
during each iteration to avail several benefits stated in [20].
Reduced arithmetic operations, and relatively easier matrix

FIGURE 2: Images selected for the training phase [19].

inversion, are a few of the benefits. Orthogonalization of W
is carried out using

W= real((WTW>_1/2)W. (5)

Kurtosis k (i.e., the degree to which a statistical frequency
curve is peaked) is then computed for each row vector w of
matrix W. Positive values of k are required for sparsity of the
elements. Constant “3” in (4) ensures high sparseness of the
elements. The row vectors of W are arranged in descending
order of their corresponding computed k values. This ensures
use of sparse components that represent edges. Separation
matrix W obtained after above-mentioned processing can be
used for edge-detection in any noisy image [20].

3.2. Edge-Detection Phase. The flowchart for edge-detection
in noisy images is given in Figure 3(b). This phase makes
use of the separation matrix W, computed in training phase,
to transition the given noisy image in and out of the ICA
domain. A major advantage of ICA domain is that a set of
adaptive basis functions can be obtained from the image
alone. The sparse code shrinkage is employed for denoising
in the ICA domain.

3.2.1. Transitioning In and Out of the ICA Domain. As de-
scribed above, processing in ICA domain allows stating of
a set of adaptive basis functions from the image alone.
Windowing approach is employed where an image sample
is processed and replaced. An image sample x of size 8 X 8 is
first projected in the ICA domain by multiplying it with W.
We denote the projection of the image in ICA domain as s.
For transitioning out of the ICA domain, s is to be multiplied
by W-1. However, W is orthogonal, that is, W=! = WT;
therefore, s is simply multiplied by W”. For computational
purpose, x is reshaped to 64 X 1 while entering and again
8 x 8 while exiting ICA domain.
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FiGureg 3: Flowchart of the proposed approach with (a) training
phase for estimating the sparse matrix and (b) edge-detection in
the noisy gray-scale image are shown.

3.2.2. Denoising. Recovering the original image from a noisy
image is complex. This work, therefore, aims at estimating an
image, which is significantly better than the noisy image.

Probability densities encountered in image denoising can
be classified as (i) mildly sparse and (ii) strongly sparse [7].
In this work, we employ the strongly sparse density, which,
for any s; in s, is given by [21, 22]

(@ +2)[a(a +1)/2] >
[(ala+1)/2) + |si/d|] "

Here, d is the standard deviation, and « controls the
sparseness. We first estimate p(0) and d, using which, « is
evaluated as

p(si) = (6)

g o 2okt Vk(k+4) Vk(k+4), 7)
2k —1
where
k = d*p(0)?,
(8)

d = \E{si?}.
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Next, the maximum a posteriori (MAP) estimation of the
density model (6) is found using the shrinkage function
given by

g(s)) = i sign(sm', (9)

m = max(O, Isil — ad + %\/(si +ad)* — 402(a + 3)),

2
(10)

a:,/@. (11)

In (10), o represents noise level. Using the above equations,
the value of p(0) is approximated to be 0.707.

3.2.3. Discussion. The edge-detection phase implemented in
this work is based on the sparse code shrinkage algorithm
[8], where a sample is initially transformed into the ICA
domain using W. Thereafter, these components are shrunk
using the shrinkage function given in (9), and the sample is
then taken out of the ICA domain using W, Finally, Canny
edge-detection algorithm [1] is applied to the image.

4. Illustration

The proposed approach is applied to both gray-scale and
colored images, and the results obtained are compared with
those obtained using Canny and mean filters. We have also
studied the effects of step size as well as noise levels on the
performance of our approach.

4.1. Training. For the training phase, a set of images are
chosen from an image database [19] to create a local database
(see Figure 2). Using the algorithm given in Figure 3(a),
orthogonalized matrix W is estimated. Training phase can be
accomplished with any set of noise-free images. Noise-free
images for the image on hand are not required, since matrix
W remains same for all known/unknown images [20].

4.2. Effects of Noise and Step Size. Before proceeding to appli-
cation of the proposed approach to gray-scale and colored
images, we consider the effects of step size and noise levels
on edge-detection. Step size is the distance between two
successive image samples (i.e., sample windows). To study
the effects of step size, the proposed approach is applied to
an image with various step sizes (see Figure 4). As expected,
the test image becomes increasingly susceptible to noise
with increase in step size. However, increasing the step size
improves the computational speed. As such, it is crucial to
select a step size, which offers a compromise between the
speed and immunity to noise of the proposed approach. For
instance, for the image in Figure 4, a maximum step size
of 4 can be used (for a step size of 8, the edges become
indistinguishable). Processing of image is 16 times faster with
step size 4 compared to that of step size 1.
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FIGURE 4: Proposed approach applied to the standard Barbara image with 3 dB Gaussian noise. The step sizes chosen are (a) 1, (b) 2, (c) 4,

and (d) 8, respectively.

(b) 2dB

(a) 1dB

(c) 5dB

FIGURE 5: Proposed approach applied to the Barbara image with various noise levels and step size 1.

Figure 5 illustrates the results of the proposed approach
on an image corrupted with different levels of white Gaussian
noise. From the results obtained, it appears that the proposed
approach gives satisfactory results for noise levels as high as
6 dB. It would be of interest to test the proposed approach
with real data, that is, data for which noise-free images are
unavailable. However, such results are difficult to obtain and
comment upon. As such, performance of the algorithm for
images artificially corrupted with noise is shown. Images
not used during training are tested with the proposed
approach.

4.3. Application to Gray-Scale Images. The proposed ap-
proach is applied to a number of gray-scale images, with
step size of 1. For illustration, consider Figure 6. Here, three
gray-scale images shown in Figures 6(a), 6(e), and 6(i) are

tested with the proposed approach. Figures 6(b), 6(f), and
6(j) show the respective gray-scale images with artificially
added 3dB white Gaussian noise. nonlocal means filter
[23] is used for denoising followed by Canny method for
edge-detection, and the results obtained using this approach
(NLMCanny) are depicted in Figures 6(c), 6(g), and 6(k).
Finally, Figures 6(d), 6(h), and 6(1) show the results of
the proposed approach. As can be seen from the images,
due to high level of Gaussian noise (i.e., 3dB) in the
images, Canny method fails to provide satisfactory results.
However, the proposed approach offers considerably better
results.

4.4. Application to Colored Images. The proposed approach
is extended to colored images. Matrix W, computed for gray
scale images, is employed for the colored images as well.



ISRN Signal Processing

(a) Original image (b) Image with 3 dB Gaussian noise

(e) Original image (f) Image with 3 dB Gaussian noise

(d) Edge-detection using the pro-
posed approach

(c) Edge-detection using NLM-
Canny

(g) Edge-detection using NLM-
Canny

(h) Edge-detection using the pro-
posed approach

N

(i) Original image (j) Image with 3 dB Gaussian noise

(1) Edge-detection using the pro-
posed approach

(k) Edge-detection using NLM-
Canny

FIGURE 6: Application of the proposed approach to gray-scale images with step size of 1.

White Gaussian noise is added separately and edge-detection
phase is repeated individually for all three components R,
G, and B. The results are given in Figure 7. Three colored
images 7(a), 7(e), and 7(i) are tested with the proposed
approach. Figures 7(b), 7(f), and 7(j) show the respective
images with 3 dB white Gaussian noise added. Figures 7(c),
7(g), and 7(k) illustrate the results of NLMCanny applied to
the respective noisy images, and the results of the proposed
approach are shown in Figures 7(d), 7(h) and 7(1). Canny
fails to provide satisfactory results because of the high noise
level. However, our approach offers noticeably improved
results.

4.5. Objective Evaluation of the Proposed Approach. Three
important criterions must be fulfilled for the better per-
formance of the edge-detection technique. (1) The edge
detector should find all the real edges and not find any false
edges. (2) The edges should be found in the correct place.
(3) There should not be multiple edges found for a single
edge [24]. Detailed subjective comparison for gray-scale

as well as colored images is depicted in Figures 8(a), 8(c),
and 8(e) in Figure 8 depict the NLMCanny results for
gray-sale images. The respective proposed approach results
are depicted in (b), (d), and (f) in Figure 8. Similarly.
Figures 8(g), 8(i), and 8(k) depict the NLMCanny results for
colored images, and the respective proposed approach results
are depicted in Figures 8(h), 8(j), and 8(1). Apart from these
subjective methods, there are objective methods which are
used for the evaluation of edge detectors. However, these do
not necessarily correlate with the human perception of the
image quality. For example, an image with relatively lower
error might look much worse than an image with relatively
higher error. These objective measures are root-mean-square
error (erms), peak signal-to-noise ratio (SNRpeu), signal-
to-noise ratio (SNRrums), and Pratt’s figure of merit (FOM)
(refer to (12), (13), (14), and (15), resp.) [4, 24].

M~-1IN-1

evs = |22 > > [Bre) - O, o,

r=0 c=0

(12)
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(b) Image with 3 dB Gaussian noise

(f) Image with 3 dB Gaussian noise

(i) Original image

(j) Image with 3 dB Gaussian noise

(c) Edge-detection using NLM-
Canny

(d) Edge-detection using the pro-
posed approach

(g) Edge-detection using NLM-
Canny

(h) Edge-detection using the pro-
posed approach

(k) Edge-detection using NLM-
Canny

(1) Edge-detection using the pro-
posed approach

FiGure 7: Application of the proposed approach to colored images with step size of 1.

) (L-1)°
SNRPeak = 1Ologlo (I/MN) Z.Irviz)l Z.?I:_Ol [E(r; C) - O(T, C)]z,
(13)
_ | SIS E o 14
SNRpus = J SY S E( o) - O(r, o "

where O(r,¢) is the original image (one with added noise),
E(r,c) is the final image of size M X N, and L is the number
of gray levels, that is, 256. For colored images, objective
measures are calculated for each channel and average is
computed. Pratt’s figure of merit is defined by [4]

Iy

1 1
FOM = —>» ——,
INizzl 1+ ad?

(15)

Iy = max(I4,I;), where I; and I4 represent the number of
ideal and actual edge map points, « is a scaling constant, and
d is the separation distance between actual and ideal edges.
FOM is normalized such that FOM = 1 represents a perfectly
detected edge. The value of « is set to 1/9. Table 1 shows the
performance comparison between NLMCanny and proposed

approach using the objective methods. It can be seen that the
proposed approach outperforms NLMCanny since values for
SNRrms, SNRpeak, erms, and FOM for the proposed approach
are higher.

5. Conclusion

A new approach based on ICA has been proposed for edge-
detection in noisy images and has been applied to both
gray-scale and colored images. Compared to the NLMCanny
method, that is, Canny coupled with a state-of-the-art
nonlocal means filter, the proposed approach has yielded
considerably improved results. Several step sizes have been
examined, and the results for the same have been presented.
Moreover, the proposed approach exhibits higher immunity
to noise levels. Since all the natural images contain same
type of statistics, shrinkage algorithm parameters can be
computed from any set of noise-free images for denoising
an image. As such, the proposed approach is very robust in
the noisy environment. Results for noise levels of 1 dB, 2 dB,
5dB, 6dB, and so forth have been depicted. The proposed
approach allows step sizes as high as 4 to be employed,



(a)

(g) (i)

ISRN Signal Processing

G)

FIGURE 8: Detailed edge comparison for gray-scale and colored images, where (a), (¢), (e), (), (i), and (k) are NLM Canny results and (b),

(d), (f), (h), (j), and (1) are the proposed approach results.

TaBLE 1: Objective evaluation of the proposed approach.

SNRRMS SNRPeak
Image

€RMS FOM

NLMCanny  Proposed = NLMCanny Proposed = NLMCanny  Proposed = NLMCanny  Proposed

Gray-scale images

Barbara 0.240 0.792 54.719 56.481 0.4084 0.4491 0.5256 0.6164

House 0.553 0.806 53.272 56.568 0.4185 0.4594 0.4820 0.7830

Bird 0.172 0.567 54.363 56.205 0.3880 0.3947 0.6714 0.6926
Colored images

Lena 0.226 0.635 54.213 56.032 0.4010 0.4691 0.7142 0.7470

Zebra 0.290 0.564 55.094 55.379 0.4488 0.4582 0.7322 0.7511

Butterfly 0.299 0.640 55.814 56.375 0.3649 0.3981 0.6750 0.6840
thereby speedingup its execution on the computer. Change ~ References

in step size from 1 to 4 increases the speed 16 times. Step
size of 4 has been shown to produce acceptable results. On
a 2.47 GHz PC equipped with 4 GB of RAM, NLMCanny
took 238.1 seconds to process gray-scale Barbara image. The
same image took 448 seconds using the proposed approach
with the step size of 1 and 32.4 seconds with the step size of
4. Superiority of the proposed approach has been validated
using both subjective as well as objective measures. As a
continuation of this work, we plan to test the approach with
images in other research areas (e.g., medical images). We also
plan to test it on the images corrupted with other types of
noises.
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