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Let k be a positive integer, and let G be a graph with minimum degree at least k. In their study
(2010), Henning and Kazemi defined the k-tuple total domination number γ×k,t(G) of G as the
minimum cardinality of a k-tuple total dominating set of G, which is a vertex set such that every
vertex of G is adjacent to at least k vertices in it. If G is the complement of G, the complementary
prism GG of G is the graph formed from the disjoint union of G and G by adding the edges of a
perfect matching between the corresponding vertices of G and G. In this paper, we extend some of
the results of Haynes et al. (2009) for the k-tuple total domination number and also obtain some
other new results. Also we find the k-tuple total domination number of the complementary prism
of a cycle, a path, or a complete multipartite graph.

1. Introduction

In this paper, G = (V, E) is a simple graph with the vertex set V and the edge set E. The order
|V | of G is denoted by n = n(G). The open neighborhood and the closed neighborhood of a vertex
v ∈ V are NG(v) = {u ∈ V (G) | uv ∈ E(G)} and NG[v] = NG(v) ∪ {v}, respectively. Also the
degree of v is degG(v) = |NG(v)|. Similarly, the open neighborhood and the closed neighborhood of
a set S ⊆ V are NG(S) =

⋃
v∈S N(v) and NG[S] = NG(S) ∪ S, respectively. The complement of

G is the graph G with the vertex set V (G) = V (G) and the edge set E(G) = {uv | uv /∈ E(G)}.
The minimum and maximum degree of G are denoted by δ = δ(G) and Δ = Δ(G), respectively.
We also write Kn, Cn, and Pn for the complete graph, cycle, and path of order n, respectively,
whileG[S] andKn1,n2,...,np denote the subgraph induced onG by a vertex set S, and the complete
p-partite graph, respectively.

Haynes et al. in [1] have defined complementary product of two graphs that
generalizes the Cartesian product of two graphs. Let G and H be two graphs. For each
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R ⊆ V (G) and S ⊆ V (H), the complementary product G(R)�H(S) is a graph with the vertex
set {(ui, vj) | ui ∈ V (G), vi ∈ V (H)} and (ui, vj)(uh, vk) is an edge in E(G(R)�H(S))

(1) if i = h, ui ∈ R, and vjvk ∈ E(H) or if i = h, ui /∈ R, and vjvk /∈ E(H), or

(2) if j = k, vj ∈ S, and uiuh ∈ E(G) or if j = k, vj /∈ S, and uiuh /∈ E(G).

In other words, for each ui ∈ V (G), we replace ui by a copy ofH if ui is in R and by a copy of
its complementH if ui is not inR, and for each vj ∈ V (H), we replace each vj by a copy ofG if
vj ∈ S and by a copy of G if vj /∈ S. If R = V (G) (resp., S = V (H)), we write simply G�H(S)
(resp., G(R)�H). Thus, G�H(S) is the graph obtained by replacing each vertex v of H by a
copy of G if v ∈ S and by a copy of G if v /∈ S and replacing each vertex u of G by a copy
ofH. We recall that the Cartesian product G�H of two graphs G andH is the complementary
product G(V (G))�H(V (H)). The special complementary product G�K2(S), where |S| = 1,
is called the complementary prism of G and denoted by GG. For example, the graph C5C5 is
the Petersen graph. Also, if G = Kn, the graph KnKn is the corona Kn ◦K1, where the corona
G ◦K1 of a graph G is the graph obtained from G by attaching a pendant edge to each vertex
of G. We notice that δ(GG) = min{δ(G), δ(G)} + 1.

In [2], Henning and Kazemi introduced the k-tuple total domination number of
graphs. Let k be a positive integer. A subset S of V is a k-tuple total dominating set of G,
abbreviated kTDS, if for every vertex v ∈ V , |N(v) ∩ S| ≥ k, that is, S is a kTDS of G if every
vertex of V has at least k neighbors in S. The k-tuple total domination number γ×k,t(G) of G
is the minimum cardinality of a kTDS of G. We remark that a 1-tuple total domination is the
well-studied total domination number. Thus, γt(G) = γ×1,t(G). For a graph to have a k-tuple total
dominating set, its minimum degree is at least k. Since every (k + 1)-tuple total dominating
set is also a k-tuple total dominating set, we note that γ×k,t(G) ≤ γ×(k+1),t(G) for all graphs
with minimum degree at least k + 1. A kTDS of cardinality γ×k,t(G) is called a γ×k,t(G)-set.
When k = 2, a 2-tuple total dominating set is called a double total dominating set, abbreviated
DTDS, and the 2-tuple total domination number is called the double total domination number.
The redundancy involved in k-tuple total domination makes it useful in many applications.
The paper in [3] gives more information about the k-tuple total domination number of a
graph.

In [4], Haynes et al. discussed the domination and total domination number of
complementary prisms. In this paper, we extend some of their results for the k-tuple total
domination number and obtain some other results. More exactly, we find some useful lower
and upper bounds for the k-tuple total domination number of the complementary prism GG

in terms on the order of G, γ×k,t(G), γ×k,t(G), γ×(k−1),t(G), and γ×(k−1),t(G), in which some of the
bounds are sharp. Also we find this number for GG, when G is a cycle, a path, or a complete
multipartite graph.

Through of this paper, k is a positive integer, and for simplicity, we assume that V (GG)
is the disjoint union V (G) ∪ V (G) with V (G) = {v | v ∈ V (G)} and E(GG) = E(G) ∪ E(G) ∪
{vv | v ∈ V (G)} such that E(G) = {u v | uv /∈ E(G)}. The vertices v and v are called the
corresponding vertices. Also for a subset X ⊆ V (G), we show its corresponding subset in G

with X. The next known results are useful for our investigations.

Proposition A (Haynes et al. [2]). If G is a path or a cycle of order n ≥ 5 such that n ≡ 2 (mod 4)
or is the corona graph Kn ◦K1, where n ≥ 3, then γt(GG) = γt(G).
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Proposition B (Henning and Kazemi [4]). Let p ≥ 2 be an integer, and let G = Kn1,n2,...,np be a
complete p-partite graph, where n1 ≤ n2 ≤ · · · ≤ np.

(i) If k < p, then γ×k,t(G) = k + 1,

(ii) if k = p and
∑k−1

i=1 ni ≥ k, then γ×k,t(G) = k + 2,

(iii) if 2 ≤ p < k and 
k/(p − 1)� ≤ n1 ≤ n2 ≤ · · · ≤ np, then γ×k,t(G) = 
kp/(p − 1)�.

Proposition C (Henning and Kazemi [5]). Let G be a graph of order n with δ(G) ≥ k. Then

γ×k,t(G) ≥ max
{

k + 1,
⌈

kn

Δ(G)

⌉}

. (1.1)

Proposition D (Henning and Kazemi [5]). Let G be a graph of order n with δ(G) ≥ k, and let S
be a kTDS of G. Then for every vertex v of degree k in G, NG(v) ⊆ S.

2. Some Bounds

The next two theorems state some lower and upper bounds for γ×k,t(GG).

Theorem 2.1. If G is a graph of order n with 2 ≤ k ≤ min{δ(G), δ(G)}, then

γ×(k−1),t(G) + γ×(k−1),t
(
G
)
≤ γ×k,t

(
GG

)
≤ min

{
γ×(k−1),t(G), γ×(k−1),t

(
G
)}

+ n. (2.1)

Proof. Since for every γ×(k−1),t(G)-set D the set D ∪ V (G) is a kTDS of GG, we get γ×k,t(GG) ≤
γ×(k−1),t(G) + n. Similarly, we have γ×k,t(GG) ≤ γ×(k−1),t(G) + n. Therefore

γ×k,t
(
GG

)
≤ min

{
γ×(k−1),t(G), γ×(k−1),t

(
G
)}

+ n. (2.2)

For proving γ×(k−1),t(G)+γ×(k−1),t(G) ≤ γ×k,t(GG), letD be a kTDS ofGG. ThenD∩V (G)
is a (k − 1)TDS of G and D ∩ V (G) is a (k − 1)TDS of G. Since every vertex of V (G) (resp.,
V (G)) is adjacent to only one vertex of V (G) (resp., V (G)). Therefore

γ×(k−1),t(G) + γ×(k−1),t
(
G
)
≤ |D ∩ V (G)| +

∣
∣
∣D ∩ V

(
G
)∣
∣
∣ = |D| = γ×k,t

(
GG

)
. (2.3)

The given bounds in Theorem 2.1 are sharp. Let G be a (k − 1)-regular graph of odd
order n = 2k − 1. Then G and GG are (k − 1)- and k-regular, respectively, and Proposition D
implies γ×k,t(GG) = 2n and γ×(k−1),t(G) = γ×(k−1),t(G) = n. Therefore

γ×(k−1),t(G) + γ×(k−1),t
(
G
)
= γ×k,t

(
GG

)
= min

{
γ×(k−1),t(G), γ×(k−1),t

(
G
)}

+ n. (2.4)
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The Harary graphs H2m,4m+1 [6] are a family of this kind of graphs. We recall that the Harary
graph H2m,n is a 2m-regular graph with the vertex set {i | 1 ≤ i ≤ n} and every vertex i is
adjacent to the 2m vertices in the set

{
σi
j | σi

j ≡ i + j (mod n) or σi
j ≡ i − j (mod n), for 1 ≤ j ≤ m

}
. (2.5)

Theorem 2.2. If G is a graph of order n with 1 ≤ k ≤ min{δ(G), δ(G)}, then

max
{
γ×k,t(G), γ×k,t

(
G
)}

≤ γ×k,t
(
GG

)
≤ γ×k,t(G) + γ×k,t

(
G
)
, (2.6)

and the lower bound is sharp for k = 1.

Proof. Trivially max{γ×k,t(G), γ×k,t(G)} ≤ γ×k,t(GG). Let S be a kTDS of G, and let S′ be a kTDS
of G. Then S ∪ S′ is a kTDS of GG, and so

γ×k,t
(
GG

)
≤ γ×k,t(G) + γ×k,t

(
G
)
. (2.7)

Proposition A implies that, if k = 1, then the lower bound is sharp for all paths and cycles of
order n ≥ 5, where n ≡ 2 (mod 4), and for the corona graph Kn ◦K1, where n ≥ 3.

In special case k = 1, we get the following result in [1].

Corollary 2.3 (see [1]). If G and G have no isolated vertices, then

max
{
γt(G), γt

(
G
)}

≤ γt
(
GG

)
≤ γt(G) + γt

(
G
)
. (2.8)

3. The Complementary Prism of Some Graphs

In this section, we calculate the k-tuple total domination number of the complementary prism
GG, when G is a complete multipartite graph, a cycle, or a path. First let G = Kn1,n2,...,np be a
complete p-partite graph with the vertex partition V (G) = X1∪X2∪ · · ·∪Xp such that for each
1 ≤ i ≤ p, |Xi| = ni and n1 ≤ n2 ≤ · · · ≤ np. Then V (GG) =

⋃
1≤i≤p(Xi ∪ Xi), where Xi denotes

the corresponding set of Xi. Trivially for GG to have k-tuple total domination number we
should have k ≤ n1 ≤ n2 ≤ · · · ≤ np. In the next five propositions, we calculate this number for
the complementary prism of the complete p-partite graph G. First we state the following key
lemma which has an easy proof that is left to the reader.

Lemma 3.1. Let G = Kn1,n2,...,np be a complete p-partite graph with V (GG) =
⋃

1≤i≤p(Xi ∪ Xi). If S

is a kTDS of GG, then for each 1 ≤ i ≤ p, |S ∩ Xi| ≥ k. Furthermore, if |S ∩ Xi| = k for some i, then
|S ∩Xi| ≥ k.
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Proposition 3.2. Let G = Kn1,n2,...,np be a complete p-partite graph with 1 ≤ n1 ≤ n2 ≤ · · · ≤ np.
Then

γt
(
GG

)
= 2p − α, (3.1)

where α = |{i | 1 ≤ i ≤ p, and ni = 1}|.

Proof. Let S be an arbitrary kTDS of GG, and let n1 = n2 = · · · = nα = 1 < nα+1 ≤ · · · ≤ np.
Proposition D implies that for every 1 ≤ i ≤ p, |S ∩Xi| ≥ 2 or |S ∩Xi| = 1 and |S ∩Xi| ≥ 1. Also
if |Xi| = 1 and |S ∩ Xi| = 0, it implies |S ∩ Xi| = 1. Therefore |S| ≥ α + 2(p − α) = 2p − α, and
hence γt(GG) ≥ 2p − α. Now we setA as a p-set such that |A∩Xi| = 1, for each 1 ≤ i ≤ p. Since
A∪{xi | xi ∈ A and α+1 ≤ i ≤ p} is a TDS ofG of cardinality 2p−α, we get γt(GG) = 2p−α.

Corollary 3.3 (see [1]). If n ≥ 2, then γt(KnKn) = n.

Proposition 3.4. If G = Kn1,n2,...,np is a complete p-partite graph with 2 ≤ k = n1 = · · · = nα <
nα+1 ≤ · · · ≤ np, then

γ×k,t
(
GG

)
=

⎧
⎨

⎩

p(k + 1) + 2k − 2 if α = 1,

p(k + 1) + α(k − 1) otherwise.
(3.2)

Proof. We discuss α.

Case 1 (α ≥ 2). It follows by α ≥ 2 and Lemma 3.1 that, for every k-tuple total dominating set
S of GG, |S ∩Xi| ≥ |S ∩Xi| = k for 1 ≤ i ≤ α and |S ∩Xi| ≥ k + 1 for α + 1 ≤ i ≤ p. Then

γ×k,t
(
GG

)
≥ p(k + 1) + α(k − 1). (3.3)

Now we set D = (
⋃

1≤i≤α(Xi ∪ Xi)) ∪ (
⋃

α+1≤i≤p Di) such that Di is a (k + 1)-subset of Xi, for

α + 1 ≤ i ≤ p. Since D is a kTDS of GG of cardinality p(k + 1) + α(k − 1), we have γ×k,t(GG) =
p(k + 1) + α(k − 1).

Case 2 (α = 1). It follows by α = 1 and Lemma 3.1 that, for every kTDS S of GG, X1 ∪ X1 is
a subset of S and also every vertex of X1 ∪ X2 ∪ · · · ∪ Xp is adjacent to at least k vertices of
S ∩ (X1 ∪X1). Thus either |S ∩Xi| = k + 1 for each 2 ≤ i ≤ p and

∑
2≤i≤p|S ∩Xi| ≥ k − 1 or

∣
∣
∣S ∩X2

∣
∣
∣ = · · · =

∣
∣
∣S ∩Xβ

∣
∣
∣ = k,

∣
∣
∣S ∩Xβ+1

∣
∣
∣ = · · · =

∣
∣
∣S ∩Xp

∣
∣
∣ = k + 1, (3.4)

for some 2 ≤ β ≤ p. Therefore

|S| ≥ min
{
2k + (k − 1) +

(
p − 1

)
(k + 1), 2k + 2

(
β − 1

)
k +

(
p − β

)
(k + 1)

}

= p(k + 1) + 2(k − 1).
(3.5)
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Now we setD = (X1 ∪X1)∪ (
⋃

2≤i≤p Di) ∪D0 such thatDi is a (k + 1)-subset of Xi for 2 ≤ i ≤ p
and D0 is a (k − 1)-subset of V (G) such that |D0 ∩X2| = · · · = |D0 ∩Xk| = 1. Since D is a kTDS
of GG of cardinality p(k + 1) + 2k − 2, we get γ×k,t(GG) = p(k + 1) + 2k − 2.

Now let G = Kn1,n2,...,np be a complete p-partite graph with 3 ≤ k + 1 = n1 = · · · = nα <

nα+1 ≤ · · · ≤ np, and let S be a minimal kTDS of GG. Then |S ∩ Xi| ≥ k, by Lemma 3.1. We
notice that if |S ∩ Xi| ≥ k + 2, for some i, then we may improve S and obtain another kTDS
S′ of cardinality |S| such that |S′ ∩ Xi| = k + 1 (since every vertex in Xi (respectively Xi) is
adjacent to only one vertex in Xi (respectively Xi)). Therefore, we may assume that for every
minimal kTDS S of GG, we have k ≤ |S ∩Xi| ≤ k + 1.

Now let S be a minimal kTDS of GG, and let B = {i|1 ≤ i ≤ p, |S ∩ Xi| = k} be a set of
cardinality β. We consider the following two cases.

Case 1 (β /= 0). In this case, if i ∈ B, we have |S ∩ Xi| = |S ∩ Xi| = k such that x ∈ S ∩ Xi if and
only if x ∈ S ∩Xi, and |S ∩Xi| = k + 1 otherwise. If β ≥ 2, then

|S| = p(k + 1) + β(k − 1), (3.6)

and if β = 1 and B = {i}, then we have also |S ∩ (V (G) −Xi)| = k. Hence

|S| = p(k + 1) + 2k − 1. (3.7)

Comparing (3.6), (3.7) shows that for β /= 0 if S is a set of vertices such that S ∩ Xi = {xi
j | 1 ≤

j ≤ k} and S ∩ Xi = {xi
j | xi

j ∈ S ∩ Xi} for i = 1, 2 and |S ∩ Xi| = k + 1 for 3 ≤ i ≤ p, then S is a

minimum kTDS of GG and

|S| = p(k + 1) + 2k − 2. (3.8)

Case 2 (β = 0). In this case, for each 1 ≤ i ≤ p we have |S ∩ Xi| = k + 1. We continue our
discussion in the next subcases.

Subcase 1 (α ≥ k + 1 or α = k ≤ p). Then obviously |S ∩ V (G)| ≥ k. If for 1 ≤ i ≤ k we consider
|S ∩Xi| = 1, then S is a minimum kTDS of GG and

|S| = p(k + 1) + k. (3.9)

Subcase 2 (α < k ≤ p). Then obviously |S ∩ V (G)| ≥ k + 1. If we set S such that |S ∩ X1| = 2,
and |S ∩Xi| = 1 when 2 ≤ i ≤ k, then S is a minimum kTDS of GG and

|S| = p(k + 1) + k. (3.10)
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Subcase 3 (α = p ≤ k − 1). Then obviously |S ∩V (G)| ≥ γ×(k−1),t(G). If S ∩V (G) is a γ×(k−1),t(G)-
set, then S is a minimum kTDS of GG, and Proposition B implies

|S| =

⎧
⎪⎨

⎪⎩

(
p + 1

)
(k + 1) if α = p = k − 1,

p(k + 1) +
⌈
(k − 1)p
p − 1

⌉

if α = p < k − 1.
(3.11)

Subcase 4 (α < p < k). Then obviously |S ∩ V (G)| ≥ γ×k,t(G). If S ∩ V (G) is a γ×k,t(G)-set, then
S is a minimum kTDS of GG, and Proposition B implies

|S| = p(k + 1) +
⌈

kp

p − 1

⌉

. (3.12)

Now letG = Kn1,n2,...,np be a complete p-partite graph with 4 ≤ k+2 ≤ n1 ≤ n2 ≤ · · · ≤ np,
and let S is a minimal kTDS of GG. In this case, we may similarly assume that k ≤ |S ∩ Xi| ≤
k + 1. Also it can be easily seen that if |S ∩ Xi| = k for some i, then equality (3.8) holds. Thus
let {i | 1 ≤ i ≤ p, |S ∩ Xi| = k} = ∅. Then obviously |S ∩ V (G)| ≥ γ×k,t(G). If we choose a set
S such that S ∩ V (G) is a γ×k,t(G)-set and |S ∩ Xi| = k + 1 for 1 ≤ i ≤ p, then S is a minimum
kTDS of GG, and Proposition B implies

|S| =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
p + 1

)
(k + 1) if p ≥ k + 1,

(
p + 1

)
(k + 1) + 1 if p = k,

p(k + 1) +
⌈

kp

p − 1

⌉

if p < k.

(3.13)

Comparing (3.9), (3.10), (3.11), (3.12), and (3.13) with (3.8) shows that we have proved the
following propositions.

Proposition 3.5. Let G = Kn1,n2,...,np be a complete p-partite graph with 3 ≤ n1 ≤ n2 ≤ · · · ≤ np.
Then γ×2,t(GG) = 3p + 2.

Proposition 3.6. Let G = Kn1,n2,...,np be a complete p-partite graph with 4 ≤ k + 1 = n1 = · · · = nα <
nα+1 ≤ · · · ≤ np. Then

γ×k,t
(
GG

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(k + 1) + k if α = k ≤ p or α ≥ k + 1
(
p + 1

)
(k + 1) if α < k ≤ p or α = p = k − 1,

p(k + 1) +min
{

2k − 2,
⌈
(k − 1)p
p − 1

⌉}

if α = p < k − 1,

p(k + 1) +min
{

2k − 2,
⌈

kp

p − 1

⌉}

if α < p < k.

(3.14)
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Proposition 3.7. Let G = Kn1,n2,...,np be a complete p-partite graph with 5 ≤ k + 2 ≤ n1 ≤ · · · ≤ np.
Then

γ×k,t
(
GG

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
p + 1

)
(k + 1) if p ≥ k + 1

(
p + 1

)
(k + 1) + 1 if p = k ≥ 4,

16 if p = k = 3,

p(k + 1) +min
{

2k − 2,
⌈

kp

p − 1

⌉}

if p < k.

(3.15)

We now determine the k-tuple total domination number of the complementary prism
CnCn, where 1 ≤ k ≤ 3 = δ(CnCn). Here we assume that V (CnCn) = V (Cn) ∪ V (Cn), V (Cn) =
{i | 1 ≤ i ≤ n}, and E(Cn) = {(i, i + 1) | 1 ≤ i ≤ n}. Proposition D implies that γ×3,t(CnCn) = 2n.
In many references, for example, in [1], it can be seen that, for n ≥ 3,

γt(Cn) =

⎧
⎪⎨

⎪⎩

2
⌈n

4

⌉
if n/≡ 1 (mod 4),

2
⌈n

4

⌉
− 1 if n ≡ 1 (mod 4),

(3.16)

and trivially we can prove

γt
(
Cn

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4 if n = 4,

3 if n = 5,

2 if n ≥ 6.

(3.17)

Hence Theorem 2.1 implies that

γt(Cn) + 2 ≤ γ×2,t
(
CnCn

)
≤ n + 2, (3.18)

where n ≥ 6, and also Theorem 2.2 implies that

n ≤ γ×2,t
(
CnCn

)
≤ n + γ×2,t

(
Cn

)
, (3.19)

where n ≥ 5. In chain (3.19) we need to calculate γ×2,t(Cn), which is done by the next
proposition.

Proposition 3.8. If Cn is a cycle of order n ≥ 5, then

γ×2,t
(
Cn

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5 if n = 5,

4 if 6 ≤ n ≤ 8,

3 if n ≥ 9.

(3.20)
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Proof. Proposition C implies that γ×2,t(Cn) ≥ 3. If n ≥ 9, then, for each 1 ≤ i ≤ n, the set
{i, i + 3, i + 6} is a DTDS of Cn and so γ×2,t(Cn) = 3. If 6 ≤ n ≤ 8, then it can be easily verified
that γ×2,t(Cn) ≥ 4. Now since {1, 3, 4, 6} and {1, 2, 4, 6} are double total dominating sets of Cn,
where n = 6 and n = 7, 8, respectively, we get γ×2,t(Cn) = 4. Finally if n = 5, thenC5 is 2-regular
and Proposition D implies γ×2,t(C5) = 5.

Proposition 3.9. If n ≥ 5, then γ×2,t(CnCn) = n + 2.

Proof. Let n ≥ 5. equalities (3.18), (3.19) and Propositions C and 3.8 imply

max
{

n,

⌈
4n

n − 2

⌉}

≤ γ×2,t
(
CnCn

)
≤ n + 2. (3.21)

If n = 5, then max{n, 
4n/(n − 2)�} = 
4n/(n − 2)� = 7 = n + 2, and so γ×2,t(CnCn) = n + 2.
Thus we assume n ≥ 6. Then max{n, 
4n/(n − 2)�} = n and hence n ≤ γ×2,t(CnCn) ≤ n + 2.
Now let S be a γ×2,t(CnCn)-set. If V (Cn) ⊆ S, then S = V (Cn) ∪ {x, y}, for some two adjacent
vertices x, y ∈ V (Cn), and so γ×2,t(CnCn) = n + 2. Thus we assume V (Cn)/⊆S. Without loss of
generality, let 3 /∈ S. Since |S∩ {2, 4, 3}| ≥ 2, we continue our proof in the following two cases.

Case 1 ({2, 4} ⊆ S). Then 1, 5, 2, 4 ∈ S. We note that, for every 5 ≤ i ≤ n − 1, S ∩ {i, i + 1}/= ∅.
This implies |S| ≥ (n−1−4)+6 = n+1, and since 3 must be dominated by S∩V (Cn), we have
|S ∩ V (Cn)| ≥ 4. If n /∈ S, then 1 ∈ S and so |S| ≥ n + 1 + |{1}| = n + 2. Let n ∈ S. If n ∈ S, again
|S| ≥ n + 1 + |{n}| = n + 2. But n /∈ S implies n − 1 ∈ S. Let ß = {i ∈ S | 5 ≤ i ≤ n − 1 and i ∈ S}.
The condition |S ∩ V (Cn)| ≥ 4 implies |ß| ≥ 2. Therefore for at least one vertex 5 ≤ x ≤ n − 1,
{x, x + 1} ⊆ S and hence |S| ≥ n + |{x, x + 1}| = n + 2.

Case 2 ({4, 3} ⊆ S (similarly {2, 3} ⊆ S)). Case 1 implies 2 /∈ S. Then 1, 2, 4, 1, 4, 5 ∈ S. Again
we see that, for every 5 ≤ i ≤ n − 2, S ∩ {i, i + 1}/= ∅ and so |S| ≥ (n − 2 − 4) + 8 = n + 2.

Therefore, in the previous all cases, we proved that γ×2,t(CnCn) ≥ n+2 and chain (3.21)
implies γ×2,t(CnCn) = n + 2.

Corollary 3.10. If n ≥ 5, then

γ×2,t
(
CnCn

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ×2,t(Cn) + γ×2,t
(
Cn

)
− 1 if n ≥ 9,

γ×2,t(Cn) + γ×2,t
(
Cn

)
− 2 if 6 ≤ n ≤ 8,

γ×2,t(Cn) + γ×2,t
(
Cn

)
− 3 if n = 5.

(3.22)

Now we determine the exact amount of γt(CnCn) for n ≥ 3. Obviously γt(C3C3) =
|V (C3)| = 3. In the next proposition we calculate it when n ≥ 4.
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Proposition 3.11. Let n ≥ 4. Then

γt
(
CnCn

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
⌈n

4

⌉
+ 2 if n ≡ 0 (mod 4),

2
⌈n

4

⌉
+ 1 if n ≡ 3 (mod 4),

2
⌈n

4

⌉
otherwise.

(3.23)

Proof. Theorem 2.2 with equalities (3.16) and (3.17) implies

4 ≤ γt
(
C4C4

)
≤ 6, 4 ≤ γt

(
C5C5

)
≤ 8, (3.24)

and if n ≥ 6 and n/≡ 1 (mod 4), then

2
⌈n

4

⌉
≤ γt

(
CnCn

)
≤ 2

⌈n

4

⌉
+ 2, (3.25)

and if n ≥ 6 and n ≡ 1 (mod 4), then

2
⌈n

4

⌉
− 1 ≤ γt

(
CnCn

)
≤ 2

⌈n

4

⌉
+ 1. (3.26)

If n = 4 and n = 5, then the sets {1, 2, 1, 2} and {1, 1, 4, 4} are total dominating sets of CnCn,
respectively. Hence chain (3.24) implies γt(CnCn) = 4 for n = 4, 5. Now we assume n ≥ 6. For
n ≡ 2 (mod 4), since the sets {1, 1, 4, 4} and {1, 1, 4, 4}∪{7+4i, 8+4i | 0 ≤ i ≤ 
n/4�−3} are two
total dominating sets of CnCn of cardinality 2
n/4�, where n = 6 and n > 6, respectively, we
have γt(CnCn) = 2
n/4�, by chain (3.25). Now let n/≡ 2 (mod 4). We assume that S is a TDS of
CnCn. Obviously S ∩ V (Cn)/= ∅. If |S ∩ V (Cn)| = 1 and S ∩ V (Cn) = {1}, then 1, 2, n ∈ S, and
hence |S ∩X| ≥ 2
|X|/4� = 2
(n − 5)/4�, where X = V (Cn) − {1, 2, 3, n − 1, n}. This implies

|S| = |S ∩X| + 4 ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
⌈n

4

⌉
+ 2 if n ≡ 0 (mod 4),

2
⌈n

4

⌉
+ 1 if n ≡ 3 (mod 4),

2
⌈n

4

⌉
if n ≡ 1 (mod 4).

(3.27)

Now let |S ∩ V (Cn)| = α ≥ 2. If n ≡ 0, 1 (mod 4), then

|S ∩ V (Cn)| ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
⌊
n − α

4

⌋

if n ≡ α (mod 4),

2
⌊
n − α

4

⌋

+ 1 otherwise,

(3.28)
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and if n ≡ 3 (mod 4), then

|S ∩ V (Cn)| ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
⌈
n − α

4

⌉

− 1 if n ≡ α + 1 (mod 4),

2
⌈
n − α

4

⌉

otherwise.

(3.29)

It can be calculated that

|S| = |S ∩ V (Cn)| + α ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
⌈n

4

⌉
+ 2 if n ≡ 0 (mod 4),

2
⌈n

4

⌉
+ 1 if n ≡ 3 (mod 4),

2
⌈n

4

⌉
if n ≡ 1 (mod 4).

(3.30)

Then by chains (3.25) and (3.26) we have

γt
(
CnCn

)
= 2

⌈n

4

⌉
+ 2 if n ≡ 0 (mod 4), (3.31)

2
⌈n

4

⌉
≤ γt

(
CnCn

)
≤ 2

⌈n

4

⌉
+ 1 if n ≡ 1 (mod 4), (3.32)

2
⌈n

4

⌉
+ 1 ≤ γt

(
CnCn

)
≤ 2

⌈n

4

⌉
+ 2 if n ≡ 3 (mod 4). (3.33)

If n ≡ 1 (mod4), then the sets {1, 1, 4, 4, 7, 7} and {1, 1, 4, 4, 7, 7} ∪ {10 + 4i, 11 + 4i | 0 ≤
i ≤ 
n/4� − 4} are total dominating sets of CnCn of cardinality 2
n/4� when n = 9 and
n > 9, respectively. Hence γt(CnCn) = 2
n/4�, by chain (3.32). If also n ≡ 3 (mod4), the
sets {1, 1, 4, 4, n − 1} and {1, 1, 4, 4, n − 1} ∪ {7 + 4i, 8 + 4i | 0 ≤ i ≤ 
n/4� − 3} are total
dominating sets of CnCn of cardinality 2
n/4� + 1 when n = 7 and n > 7, respectively. Hence
γt(CnCn) = 2
n/4� + 1, by chain (3.33).

Finally we determine the k-tuple total domination number of the complementary
prism PnPn, where 1 ≤ k < 2 = δ(PnPn). We recall that V (PnPn) = V (Pn) ∪ V (Pn),
V (Pn) = {i | 1 ≤ i ≤ n}, and E(Pn) = {ij | 1 ≤ i ≤ n − 1, j = i + 1}. In many references,
for example, in [1], it can be seen that, for n ≥ 2,

γt(Pn) =

⎧
⎪⎨

⎪⎩

2
⌈n

4

⌉
if n/≡ 1 (mod 4),

2
⌈n

4

⌉
− 1 if n ≡ 1 (mod 4),

(3.34)

and trivially γt(Pn) = |{1, n}| = 2, where n ≥ 4. Therefore, by Theorems 2.1 and 2.2, for n ≥ 4,
we have the following chain:

γt(Pn) ≤ γt
(
PnPn

)
≤ γt(Pn) + 2 ≤ γ×2,t

(
PnPn

)
≤ n + 2. (3.35)
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It can be easily proved that γt(PnPn) = n, where n = 2, 3. Next proposition calculates γt(PnPn)
when n ≥ 4.

Proposition 3.12. Let n ≥ 4. Then

γt
(
PnPn

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
⌈
n − 2
4

⌉

+ 1 if n ≡ 3 (mod 4),

2
⌈
n − 2
4

⌉

+ 2 otherwise.

(3.36)

Proof. Let D be a γt-set of the induced path Pn[V (Pn) − {1, n}] of Pn. Since D ∪ {1, n} is a TDS
of PnPn, we have

γt
(
PnPn

)
≤
∣
∣
∣D ∪

{
1, n

}∣
∣
∣ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
⌈
n − 2
4

⌉

+ 1 if n ≡ 3 (mod 4),

2
⌈
n − 2
4

⌉

+ 2 otherwise.

(3.37)

Let n ≡ 2 (mod 4). Then chains (3.34), (3.35), (3.37) imply γt(PnPn) = 2
(n − 2)/4� + 2. Since
2
n/4� = 2
(n − 2)/4� + 2. Now let n/≡ 2 (mod4), and let S be a TDS of PnPn. Obviously
S ∩ V (Pn)/= ∅. In all cases, (i) |S ∩ V (Pn)| = 1 and S ∩ {1, n}/= ∅, (ii) |S ∩ V (Pn)| = 1 and
S ∩ {1, n} = ∅, and (iii) |S ∩ V (Pn)| ≥ 2, then similar to the proof of Proposition 3.11, it can be
verified that

|S| ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
⌈
n − 2
4

⌉

+ 1 if n ≡ 3 (mod 4),

2
⌈
n − 2
4

⌉

+ 2 otherwise.

(3.38)

Hence chain (3.37) completes the proof of our proposition.

Propositions 3.11 and 3.12 imply the next result in [1].

Corollary 3.13 (see [1]). If G ∈ {Pn, Cn} with order n ≥ 5, then

γt
(
GG

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γt(G) if n ≡ 2 (mod 4),

γt(G) + 2 if n ≡ 0 (mod 4),

γt(G) + 1 otherwise.

(3.39)

4. Problems

If we look carefully at the propositions of Section 3, we obtain the following result.
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Proposition 4.1. (i) Let G be a cycle or a path of order n ≥ 4. Then max{γt(G), γt(G)} = γt(GG) if
and only if n ≡ 2 (mod 4).

(ii) Let G be a cycle of order n ≥ 5 or a path of order n ≥ 4. Then γt(GG) = γt(G) + γt(G) if
and only if n ≡ 0 (mod 4).

(iii) Let Cn be a cycle of order n ≥ 5. Then

max
{
γ×2,t(Cn), γ×2,t

(
Cn

)}
< γ×2,t

(
CnCn

)
< γ×2,t(Cn) + γ×2,t

(
Cn

)
. (4.1)

(iv) Let Cn be a cycle of order n ≥ 5. Then

γt(Cn) + γt
(
Cn

)
< γ×2,t

(
CnCn

)
= n +min

{
γt(Cn), γt

(
Cn

)}
. (4.2)

Therefore it is natural that we state the following problem.

Problem 1. Characterize graphs G with

(1) γ×k,t(GG) = γ×k,t(G) + γ×k,t(G),

(2) γ×k,t(G) = max{γ×k,t(G), γ×k,t(G)}.
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