Research Article

k-Tuple Total Domination in Complementary Prisms

Adel P. Kazemi
Department of Mathematics, University of Mohaghegh Ardabili, P.O. Box 5619911367, Ardabil, Iran
Correspondence should be addressed to Adel P. Kazemi, adelpkazemi@yahoo.com

Received 29 September 2011; Accepted 30 October 2011
Academic Editor: W. Wang
Copyright © 2011 Adel P. Kazemi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let k be a positive integer, and let G be a graph with minimum degree at least k. In their study (2010), Henning and Kazemi defined the k-tuple total domination number $\gamma_{\times k, t}(G)$ of G as the minimum cardinality of a k-tuple total dominating set of G, which is a vertex set such that every vertex of G is adjacent to at least k vertices in it. If \bar{G} is the complement of G, the complementary prism $G \bar{G}$ of G is the graph formed from the disjoint union of G and \bar{G} by adding the edges of a perfect matching between the corresponding vertices of G and \bar{G}. In this paper, we extend some of the results of Haynes et al. (2009) for the k-tuple total domination number and also obtain some other new results. Also we find the k-tuple total domination number of the complementary prism of a cycle, a path, or a complete multipartite graph.

1. Introduction

In this paper, $G=(V, E)$ is a simple graph with the vertex set V and the edge set E. The order $|V|$ of G is denoted by $n=n(G)$. The open neighborhood and the closed neighborhood of a vertex $v \in V$ are $N_{G}(v)=\{u \in V(G) \mid u v \in E(G)\}$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$, respectively. Also the degree of v is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. Similarly, the open neighborhood and the closed neighborhood of a set $S \subseteq V$ are $N_{G}(S)=\bigcup_{v \in S} N(v)$ and $N_{G}[S]=N_{G}(S) \cup S$, respectively. The complement of G is the graph \bar{G} with the vertex set $V(\bar{G})=V(G)$ and the edge set $E(\bar{G})=\{u v \mid u v \notin E(G)\}$. The minimum and maximum degree of G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. We also write K_{n}, C_{n}, and P_{n} for the complete graph, cycle, and path of order n, respectively, while $G[S]$ and $K_{n_{1}, n_{2}, \ldots, n_{p}}$ denote the subgraph induced on G by a vertex set S, and the complete p-partite graph, respectively.

Haynes et al. in [1] have defined complementary product of two graphs that generalizes the Cartesian product of two graphs. Let G and H be two graphs. For each
$R \subseteq V(G)$ and $S \subseteq V(H)$, the complementary product $G(R) \square H(S)$ is a graph with the vertex set $\left\{\left(u_{i}, v_{j}\right) \mid u_{i} \in V(G), v_{i} \in V(H)\right\}$ and $\left(u_{i}, v_{j}\right)\left(u_{h}, v_{k}\right)$ is an edge in $E(G(R) \square H(S))$
(1) if $i=h, u_{i} \in R$, and $v_{j} v_{k} \in E(H)$ or if $i=h, u_{i} \notin R$, and $v_{j} v_{k} \notin E(H)$, or
(2) if $j=k, v_{j} \in S$, and $u_{i} u_{h} \in E(G)$ or if $j=k, v_{j} \notin S$, and $u_{i} u_{h} \notin E(G)$.

In other words, for each $u_{i} \in V(G)$, we replace u_{i} by a copy of H if u_{i} is in R and by a copy of its complement \bar{H} if u_{i} is not in R, and for each $v_{j} \in V(H)$, we replace each v_{j} by a copy of G if $v_{j} \in S$ and by a copy of \bar{G} if $v_{j} \notin S$. If $R=V(G)$ (resp., $S=V(H)$), we write simply $G \square H(S)$ (resp., $G(R) \square H$). Thus, $G \square H(S)$ is the graph obtained by replacing each vertex v of H by a copy of G if $v \in S$ and by a copy of \bar{G} if $v \notin S$ and replacing each vertex u of G by a copy of H. We recall that the Cartesian product $G \square H$ of two graphs G and H is the complementary product $G(V(G)) \square H(V(H))$. The special complementary product $G \square K_{2}(S)$, where $|S|=1$, is called the complementary prism of G and denoted by $G \bar{G}$. For example, the graph $C_{5} \overline{C_{5}}$ is the Petersen graph. Also, if $G=K_{n}$, the graph $K_{n} \overline{K_{n}}$ is the corona $K_{n} \circ K_{1}$, where the corona $G \circ K_{1}$ of a graph G is the graph obtained from G by attaching a pendant edge to each vertex of G. We notice that $\delta(G \bar{G})=\min \{\delta(G), \delta(\bar{G})\}+1$.

In [2], Henning and Kazemi introduced the k-tuple total domination number of graphs. Let k be a positive integer. A subset S of V is a k-tuple total dominating set of G, abbreviated kTDS, if for every vertex $v \in V,|N(v) \cap S| \geq k$, that is, S is a kTDS of G if every vertex of V has at least k neighbors in S. The k-tuple total domination number $\gamma_{\times k, t}(G)$ of G is the minimum cardinality of a kTDS of G. We remark that a 1-tuple total domination is the well-studied total domination number. Thus, $\gamma_{t}(G)=\gamma_{\times 1, t}(G)$. For a graph to have a k-tuple total dominating set, its minimum degree is at least k. Since every $(k+1)$-tuple total dominating set is also a k-tuple total dominating set, we note that $\gamma_{\times k, t}(G) \leq \gamma_{\times(k+1), t}(G)$ for all graphs with minimum degree at least $k+1$. A kTDS of cardinality $\gamma_{\times k, t}(G)$ is called a $\gamma_{\times k, t}(G)$-set. When $k=2$, a 2-tuple total dominating set is called a double total dominating set, abbreviated DTDS, and the 2-tuple total domination number is called the double total domination number. The redundancy involved in k-tuple total domination makes it useful in many applications. The paper in [3] gives more information about the k-tuple total domination number of a graph.

In [4], Haynes et al. discussed the domination and total domination number of complementary prisms. In this paper, we extend some of their results for the k-tuple total domination number and obtain some other results. More exactly, we find some useful lower and upper bounds for the k-tuple total domination number of the complementary prism $G \bar{G}$ in terms on the order of $G, \gamma_{\times k, t}(G), \gamma_{\times k, t}(\bar{G}), \gamma_{\times(k-1), t}(G)$, and $\gamma_{\times(k-1), t}(\bar{G})$, in which some of the bounds are sharp. Also we find this number for $G \bar{G}$, when G is a cycle, a path, or a complete multipartite graph.

Through of this paper, k is a positive integer, and for simplicity, we assume that $V(G \bar{G})$ is the disjoint union $V(G) \cup V(\bar{G})$ with $V(\bar{G})=\{\bar{v} \mid v \in V(G)\}$ and $E(G \bar{G})=E(G) \cup E(\bar{G}) \cup$ $\{v \bar{v} \mid v \in V(G)\}$ such that $E(\bar{G})=\{\bar{u} \bar{v} \mid u v \notin E(G)\}$. The vertices v and \bar{v} are called the corresponding vertices. Also for a subset $X \subseteq V(G)$, we show its corresponding subset in \bar{G} with \bar{X}. The next known results are useful for our investigations.

Proposition A (Haynes et al. [2]). If G is a path or a cycle of order $n \geq 5$ such that $n \equiv 2(\bmod 4)$ or is the corona graph $K_{n} \circ K_{1}$, where $n \geq 3$, then $\gamma_{t}(G \bar{G})=\gamma_{t}(G)$.

Proposition B (Henning and Kazemi [4]). Let $p \geq 2$ be an integer, and let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph, where $n_{1} \leq n_{2} \leq \cdots \leq n_{p}$.
(i) If $k<p$, then $\gamma_{\times k, t}(G)=k+1$,
(ii) if $k=p$ and $\sum_{i=1}^{k-1} n_{i} \geq k$, then $\gamma_{\times k, t}(G)=k+2$,
(iii) if $2 \leq p<k$ and $\lceil k /(p-1)\rceil \leq n_{1} \leq n_{2} \leq \cdots \leq n_{p}$, then $\gamma_{\times k, t}(G)=\lceil k p /(p-1)\rceil$.

Proposition C (Henning and Kazemi [5]). Let G be a graph of order n with $\delta(G) \geq k$. Then

$$
\begin{equation*}
r_{\times k, t}(G) \geq \max \left\{k+1,\left\lceil\frac{k n}{\Delta(G)}\right\rceil\right\} \tag{1.1}
\end{equation*}
$$

Proposition D (Henning and Kazemi [5]). Let G be a graph of order n with $\delta(G) \geq k$, and let S be a $k T D S$ of G. Then for every vertex v of degree k in $G, N_{G}(v) \subseteq S$.

2. Some Bounds

The next two theorems state some lower and upper bounds for $\gamma_{\times k, t}(G \bar{G})$.
Theorem 2.1. If G is a graph of order n with $2 \leq k \leq \min \{\delta(G), \delta(\bar{G})\}$, then

$$
\begin{equation*}
\gamma_{\times(k-1), t}(G)+\gamma_{\times(k-1), t}(\bar{G}) \leq \gamma_{\times k, t}(G \bar{G}) \leq \min \left\{\gamma_{\times(k-1), t}(G), \gamma_{\times(k-1), t}(\bar{G})\right\}+n \tag{2.1}
\end{equation*}
$$

Proof. Since for every $\gamma_{\times(k-1), t}(G)$-set D the set $D \cup V(\bar{G})$ is a kTDS of $G \bar{G}$, we get $\gamma_{\times k, t}(G \bar{G}) \leq$ $\gamma_{\times(k-1), t}(G)+n$. Similarly, we have $\gamma_{\times k, t}(G \bar{G}) \leq \gamma_{\times(k-1), t}(\bar{G})+n$. Therefore

$$
\begin{equation*}
\gamma_{\times k, t}(G \bar{G}) \leq \min \left\{\gamma_{\times(k-1), t}(G), \gamma_{\times(k-1), t}(\bar{G})\right\}+n \tag{2.2}
\end{equation*}
$$

For proving $\gamma_{\times(k-1), t}(G)+\gamma_{\times(k-1), t}(\bar{G}) \leq \gamma_{\times k, t}(G \bar{G})$, let D be a kTDS of $G \bar{G}$. Then $D \cap V(G)$ is a $(k-1)$ TDS of G and $D \cap V(\bar{G})$ is a $(k-1)$ TDS of \bar{G}. Since every vertex of $V(G)$ (resp., $V(\bar{G})$) is adjacent to only one vertex of $V(\bar{G})$ (resp., $V(G)$). Therefore

$$
\begin{equation*}
\gamma_{\times(k-1), t}(G)+\gamma_{\times(k-1), t}(\bar{G}) \leq|D \cap V(G)|+|D \cap V(\bar{G})|=|D|=\gamma_{\times k, t}(G \bar{G}) . \tag{2.3}
\end{equation*}
$$

The given bounds in Theorem 2.1 are sharp. Let G be a $(k-1)$-regular graph of odd order $n=2 k-1$. Then \bar{G} and $G \bar{G}$ are $(k-1)$ - and k-regular, respectively, and Proposition D implies $\gamma_{\times k, t}(G \bar{G})=2 n$ and $\gamma_{\times(k-1), t}(G)=\gamma_{\times(k-1), t}(\bar{G})=n$. Therefore

$$
\begin{equation*}
\gamma_{\times(k-1), t}(G)+\gamma_{\times(k-1), t}(\bar{G})=\gamma_{\times k, t}(G \bar{G})=\min \left\{\gamma_{\times(k-1), t}(G), \gamma_{\times(k-1), t}(\bar{G})\right\}+n \tag{2.4}
\end{equation*}
$$

The Harary graphs $H_{2 m, 4 m+1}$ [6] are a family of this kind of graphs. We recall that the Harary graph $H_{2 m, n}$ is a $2 m$-regular graph with the vertex set $\{i \mid 1 \leq i \leq n\}$ and every vertex i is adjacent to the $2 m$ vertices in the set

$$
\begin{equation*}
\left\{\sigma_{j}^{i} \mid \sigma_{j}^{i} \equiv i+j(\bmod n) \text { or } \sigma_{j}^{i} \equiv i-j(\bmod n), \text { for } 1 \leq j \leq m\right\} \tag{2.5}
\end{equation*}
$$

Theorem 2.2. If G is a graph of order n with $1 \leq k \leq \min \{\delta(G), \delta(\bar{G})\}$, then

$$
\begin{equation*}
\max \left\{\gamma_{\times k, t}(G), \gamma_{\times k, t}(\bar{G})\right\} \leq \gamma_{\times k, t}(G \bar{G}) \leq \gamma_{\times k, t}(G)+\gamma_{\times k, t}(\bar{G}) \tag{2.6}
\end{equation*}
$$

and the lower bound is sharp for $k=1$.
Proof. Trivially $\max \left\{\gamma_{\times k, t}(G), \gamma_{\times k, t}(\bar{G})\right\} \leq \gamma_{\times k, t}(G \bar{G})$. Let S be a kTDS of G, and let S^{\prime} be a kTDS of \bar{G}. Then $S \cup S^{\prime}$ is a kTDS of $G \bar{G}$, and so

$$
\begin{equation*}
\gamma_{\times k, t}(G \bar{G}) \leq \gamma_{\times k, t}(G)+\gamma_{\times k, t}(\bar{G}) \tag{2.7}
\end{equation*}
$$

Proposition A implies that, if $k=1$, then the lower bound is sharp for all paths and cycles of order $n \geq 5$, where $n \equiv 2(\bmod 4)$, and for the corona graph $K_{n} \circ K_{1}$, where $n \geq 3$.

In special case $k=1$, we get the following result in [1].
Corollary 2.3 (see [1]). If G and \bar{G} have no isolated vertices, then

$$
\begin{equation*}
\max \left\{\gamma_{t}(G), \gamma_{t}(\bar{G})\right\} \leq \gamma_{t}(G \bar{G}) \leq \gamma_{t}(G)+\gamma_{t}(\bar{G}) \tag{2.8}
\end{equation*}
$$

3. The Complementary Prism of Some Graphs

In this section, we calculate the k-tuple total domination number of the complementary prism $G \bar{G}$, when G is a complete multipartite graph, a cycle, or a path. First let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with the vertex partition $V(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{p}$ such that for each $1 \leq i \leq p,\left|X_{i}\right|=n_{i}$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{p}$. Then $V(G \bar{G})=\bigcup_{1 \leq i \leq p}\left(X_{i} \cup \overline{X_{i}}\right)$, where $\overline{X_{i}}$ denotes the corresponding set of X_{i}. Trivially for $G \bar{G}$ to have k-tuple total domination number we should have $k \leq n_{1} \leq n_{2} \leq \cdots \leq n_{p}$. In the next five propositions, we calculate this number for the complementary prism of the complete p-partite graph G. First we state the following key lemma which has an easy proof that is left to the reader.

Lemma 3.1. Let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with $V(G \bar{G})=\bigcup_{1 \leq i \leq p}\left(X_{i} \cup \overline{X_{i}}\right)$. If S is a $k T D S$ of $G \bar{G}$, then for each $1 \leq i \leq p,\left|S \cap \overline{X_{i}}\right| \geq k$. Furthermore, if $\left|S \cap \overline{X_{i}}\right|=k$ for some i, then $\left|S \cap X_{i}\right| \geq k$.

Proposition 3.2. Let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{p}$. Then

$$
\begin{equation*}
r_{t}(G \bar{G})=2 p-\alpha, \tag{3.1}
\end{equation*}
$$

where $\alpha=\mid\left\{i \mid 1 \leq i \leq p\right.$, and $\left.n_{i}=1\right\} \mid$.
Proof. Let S be an arbitrary kTDS of $G \bar{G}$, and let $n_{1}=n_{2}=\cdots=n_{\alpha}=1<n_{\alpha+1} \leq \cdots \leq n_{p}$. Proposition D implies that for every $1 \leq i \leq p,\left|S \cap \overline{X_{i}}\right| \geq 2$ or $\left|S \cap \overline{X_{i}}\right|=1$ and $\left|S \cap X_{i}\right| \geq 1$. Also if $\left|\overline{X_{i}}\right|=1$ and $\left|S \cap \overline{X_{i}}\right|=0$, it implies $\left|S \cap X_{i}\right|=1$. Therefore $|S| \geq \alpha+2(p-\alpha)=2 p-\alpha$, and hence $\gamma_{t}(G \bar{G}) \geq 2 p-\alpha$. Now we set A as a p-set such that $\left|A \cap X_{i}\right|=1$, for each $1 \leq i \leq p$. Since $A \cup\left\{\overline{x_{i}} \mid x_{i} \in A\right.$ and $\left.\alpha+1 \leq i \leq p\right\}$ is a TDS of G of cardinality $2 p-\alpha$, we get $\gamma_{t}(G \bar{G})=2 p-\alpha$.

Corollary 3.3 (see [1]). If $n \geq 2$, then $\gamma_{t}\left(K_{n} \overline{K_{n}}\right)=n$.
Proposition 3.4. If $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ is a complete p-partite graph with $2 \leq k=n_{1}=\cdots=n_{\alpha}<$ $n_{\alpha+1} \leq \cdots \leq n_{p}$, then

$$
\gamma_{\times k, t}(G \bar{G})= \begin{cases}p(k+1)+2 k-2 & \text { if } \alpha=1 \tag{3.2}\\ p(k+1)+\alpha(k-1) & \text { otherwise }\end{cases}
$$

Proof. We discuss α.
Case $1(\alpha \geq 2)$. It follows by $\alpha \geq 2$ and Lemma 3.1 that, for every k-tuple total dominating set S of $G \bar{G},\left|S \cap X_{i}\right| \geq\left|S \cap \overline{X_{i}}\right|=k$ for $1 \leq i \leq \alpha$ and $\left|S \cap \overline{X_{i}}\right| \geq k+1$ for $\alpha+1 \leq i \leq p$. Then

$$
\begin{equation*}
\gamma_{\times k, t}(G \bar{G}) \geq p(k+1)+\alpha(k-1) \tag{3.3}
\end{equation*}
$$

Now we set $D=\left(\bigcup_{1 \leq i \leq \alpha}\left(X_{i} \cup \overline{X_{i}}\right)\right) \cup\left(\bigcup_{\alpha+1 \leq i \leq p} \overline{D_{i}}\right)$ such that $\overline{D_{i}}$ is a $(k+1)$-subset of $\overline{X_{i}}$, for $\alpha+1 \leq i \leq p$. Since D is a kTDS of $G \bar{G}$ of cardinality $p(k+1)+\alpha(k-1)$, we have $\gamma_{\times k, t}(G \bar{G})=$ $p(k+1)+\alpha(k-1)$.

Case $2(\alpha=1)$. It follows by $\alpha=1$ and Lemma 3.1 that, for every kTDS S of $G \bar{G}, X_{1} \cup \overline{X_{1}}$ is a subset of S and also every vertex of $\overline{X_{1}} \cup X_{2} \cup \cdots \cup X_{p}$ is adjacent to at least k vertices of $S \cap\left(\overline{X_{1}} \cup X_{1}\right)$. Thus either $\left|S \cap \overline{X_{i}}\right|=k+1$ for each $2 \leq i \leq p$ and $\sum_{2 \leq i \leq p}\left|S \cap X_{i}\right| \geq k-1$ or

$$
\begin{equation*}
\left|S \cap \overline{X_{2}}\right|=\cdots=\left|S \cap \overline{X_{\beta}}\right|=k, \quad\left|S \cap \overline{X_{\beta+1}}\right|=\cdots=\left|S \cap \overline{X_{p}}\right|=k+1 \tag{3.4}
\end{equation*}
$$

for some $2 \leq \beta \leq p$. Therefore

$$
\begin{align*}
|S| & \geq \min \{2 k+(k-1)+(p-1)(k+1), 2 k+2(\beta-1) k+(p-\beta)(k+1)\} \\
& =p(k+1)+2(k-1) \tag{3.5}
\end{align*}
$$

Now we set $D=\left(X_{1} \cup \overline{X_{1}}\right) \cup\left(\bigcup_{2 \leq i \leq p} \overline{D_{i}}\right) \cup D_{0}$ such that $\overline{D_{i}}$ is a $(k+1)$-subset of $\overline{X_{i}}$ for $2 \leq i \leq p$ and \underline{D}_{0} is a $(k-1)$-subset of $V(G)$ such that $\left|D_{0} \cap X_{2}\right|=\cdots=\left|D_{0} \cap X_{k}\right|=1$. Since D is a kTDS of $G \bar{G}$ of cardinality $p(k+1)+2 k-2$, we get $\gamma_{\times k, t}(G \bar{G})=p(k+1)+2 k-2$.

Now let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with $3 \leq k+1=n_{1}=\cdots=n_{\alpha}<$ $n_{\alpha+1} \leq \cdots \leq n_{p}$, and let S be a minimal kTDS of $G \bar{G}$. Then $\left|S \cap \overline{X_{i}}\right| \geq k$, by Lemma 3.1. We notice that if $\left|S \cap \overline{X_{i}}\right| \geq k+2$, for some i, then we may improve S and obtain another kTDS S^{\prime} of cardinality $|S|$ such that $\left|S^{\prime} \cap \overline{X_{i}}\right|=k+1$ (since every vertex in $\overline{X_{i}}$ (respectively X_{i}) is adjacent to only one vertex in X_{i} (respectively $\left.\overline{X_{i}}\right)$). Therefore, we may assume that for every minimal kTDS S of $G \bar{G}$, we have $k \leq\left|S \cap \overline{X_{i}}\right| \leq k+1$.

Now let S be a minimal kTDS of $G \bar{G}$, and let $B=\left\{i\left|1 \leq i \leq p,\left|S \cap \overline{X_{i}}\right|=k\right\}\right.$ be a set of cardinality β. We consider the following two cases.

Case $1(\beta \neq 0)$. In this case, if $i \in B$, we have $\left|S \cap \overline{X_{i}}\right|=\left|S \cap X_{i}\right|=k$ such that $x \in S \cap X_{i}$ if and only if $\bar{x} \in S \cap \overline{X_{i}}$, and $\left|S \cap \overline{X_{i}}\right|=k+1$ otherwise. If $\beta \geq 2$, then

$$
\begin{equation*}
|S|=p(k+1)+\beta(k-1), \tag{3.6}
\end{equation*}
$$

and if $\beta=1$ and $B=\{i\}$, then we have also $\left|S \cap\left(V(G)-X_{i}\right)\right|=k$. Hence

$$
\begin{equation*}
|S|=p(k+1)+2 k-1 \tag{3.7}
\end{equation*}
$$

Comparing (3.6), (3.7) shows that for $\beta \neq 0$ if S is a set of vertices such that $S \cap X_{i}=\left\{x_{j}^{i} \mid 1 \leq\right.$ $j \leq k\}$ and $S \cap \overline{X_{i}}=\left\{\overline{x_{j}^{i}} \mid x_{j}^{i} \in S \cap X_{i}\right\}$ for $i=1,2$ and $\left|S \cap \overline{X_{i}}\right|=k+1$ for $3 \leq i \leq p$, then S is a minimum kTDS of $G \bar{G}$ and

$$
\begin{equation*}
|S|=p(k+1)+2 k-2 \tag{3.8}
\end{equation*}
$$

Case $2(\beta=0)$. In this case, for each $1 \leq i \leq p$ we have $\left|S \cap \overline{X_{i}}\right|=k+1$. We continue our discussion in the next subcases.

Subcase $1(\alpha \geq k+1$ or $\alpha=k \leq p)$. Then obviously $|S \cap V(G)| \geq k$. If for $1 \leq i \leq k$ we consider $\left|S \cap X_{i}\right|=1$, then S is a minimum kTDS of $G \bar{G}$ and

$$
\begin{equation*}
|S|=p(k+1)+k \tag{3.9}
\end{equation*}
$$

Subcase $2(\alpha<k \leq p)$. Then obviously $|S \cap V(G)| \geq k+1$. If we set S such that $\left|S \cap X_{1}\right|=2$, and $\left|S \cap X_{i}\right|=1$ when $2 \leq i \leq k$, then S is a minimum kTDS of $G \bar{G}$ and

$$
\begin{equation*}
|S|=p(k+1)+k \tag{3.10}
\end{equation*}
$$

Subcase $3(\alpha=p \leq k-1)$. Then obviously $|S \cap V(G)| \geq \gamma_{\times(k-1), t}(G)$. If $S \cap V(G)$ is a $\gamma_{\times(k-1), t}(G)$ set, then S is a minimum kTDS of $G \bar{G}$, and Proposition B implies

$$
|S|= \begin{cases}(p+1)(k+1) & \text { if } \alpha=p=k-1 \tag{3.11}\\ p(k+1)+\left\lceil\frac{(k-1) p}{p-1}\right\rceil & \text { if } \alpha=p<k-1\end{cases}
$$

Subcase $4(\alpha<p<k)$. Then obviously $|S \cap V(G)| \geq \gamma_{\times k, t}(G)$. If $S \cap V(G)$ is a $\gamma_{\times k, t}(G)$-set, then S is a minimum kTDS of $G \bar{G}$, and Proposition B implies

$$
\begin{equation*}
|S|=p(k+1)+\left\lceil\frac{k p}{p-1}\right\rceil \tag{3.12}
\end{equation*}
$$

Now let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with $4 \leq k+2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{p}$, and let S is a minimal kTDS of $G \bar{G}$. In this case, we may similarly assume that $k \leq\left|S \cap \overline{X_{i}}\right| \leq$ $k+1$. Also it can be easily seen that if $\left|S \cap \overline{X_{i}}\right|=k$ for some i, then equality (3.8) holds. Thus let $\left\{i\left|1 \leq i \leq p,\left|S \cap \overline{X_{i}}\right|=k\right\}=\emptyset\right.$. Then obviously $|S \cap V(G)| \geq \gamma_{\times k, t}(G)$. If we choose a set S such that $S \cap V(G)$ is a $\gamma_{\times k, t}(G)$-set and $\left|S \cap \overline{X_{i}}\right|=k+1$ for $1 \leq i \leq p$, then S is a minimum kTDS of $G \bar{G}$, and Proposition B implies

$$
|S|= \begin{cases}(p+1)(k+1) & \text { if } p \geq k+1 \tag{3.13}\\ (p+1)(k+1)+1 & \text { if } p=k \\ p(k+1)+\left\lceil\frac{k p}{p-1}\right\rceil & \text { if } p<k\end{cases}
$$

Comparing (3.9), (3.10), (3.11), (3.12), and (3.13) with (3.8) shows that we have proved the following propositions.

Proposition 3.5. Let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with $3 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{p}$. Then $\gamma_{\times 2, t}(G \bar{G})=3 p+2$.

Proposition 3.6. Let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with $4 \leq k+1=n_{1}=\cdots=n_{\alpha}<$ $n_{\alpha+1} \leq \cdots \leq n_{p}$. Then

$$
\gamma_{\times k, t}(G \bar{G})= \begin{cases}p(k+1)+k & \text { if } \alpha=k \leq p \text { or } \alpha \geq k+1 \tag{3.14}\\ (p+1)(k+1) & \text { if } \alpha<k \leq p \text { or } \alpha=p=k-1 \\ p(k+1)+\min \left\{2 k-2,\left\lceil\frac{(k-1) p}{p-1}\right\rceil\right\} & \text { if } \alpha=p<k-1 \\ p(k+1)+\min \left\{2 k-2,\left\lceil\frac{k p}{p-1}\right\rceil\right\} & \text { if } \alpha<p<k\end{cases}
$$

Proposition 3.7. Let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with $5 \leq k+2 \leq n_{1} \leq \cdots \leq n_{p}$. Then

$$
r_{\times k, t}(G \bar{G})= \begin{cases}(p+1)(k+1) & \text { if } p \geq k+1 \tag{3.15}\\ (p+1)(k+1)+1 & \text { if } p=k \geq 4 \\ 16 & \text { if } p=k=3 \\ p(k+1)+\min \left\{2 k-2,\left\lceil\frac{k p}{p-1}\right\rceil\right\} & \text { if } p<k\end{cases}
$$

We now determine the k-tuple total domination number of the complementary prism $C_{n} \overline{C_{n}}$, where $1 \leq k \leq 3=\delta\left(C_{n} \overline{C_{n}}\right)$. Here we assume that $V\left(C_{n} \overline{C_{n}}\right)=V\left(C_{n}\right) \cup V\left(\overline{C_{n}}\right), V\left(C_{n}\right)=$ $\{i \mid 1 \leq i \leq n\}$, and $E\left(C_{n}\right)=\{(i, i+1) \mid 1 \leq i \leq n\}$. Proposition D implies that $\gamma_{\times 3, t}\left(C_{n} \overline{C_{n}}\right)=2 n$. In many references, for example, in [1], it can be seen that, for $n \geq 3$,

$$
\gamma_{t}\left(C_{n}\right)= \begin{cases}2\left\lceil\frac{n}{4}\right\rceil & \text { if } n \not \equiv 1(\bmod 4) \tag{3.16}\\ 2\left\lceil\frac{n}{4}\right\rceil-1 & \text { if } n \equiv 1(\bmod 4)\end{cases}
$$

and trivially we can prove

$$
r_{t}\left(\overline{C_{n}}\right)= \begin{cases}4 & \text { if } n=4 \tag{3.17}\\ 3 & \text { if } n=5 \\ 2 & \text { if } n \geq 6\end{cases}
$$

Hence Theorem 2.1 implies that

$$
\begin{equation*}
\gamma_{t}\left(C_{n}\right)+2 \leq \gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right) \leq n+2 \tag{3.18}
\end{equation*}
$$

where $n \geq 6$, and also Theorem 2.2 implies that

$$
\begin{equation*}
n \leq \gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right) \leq n+\gamma_{\times 2, t}\left(\overline{C_{n}}\right) \tag{3.19}
\end{equation*}
$$

where $n \geq 5$. In chain (3.19) we need to calculate $\gamma_{\times 2, t}\left(\overline{C_{n}}\right)$, which is done by the next proposition.

Proposition 3.8. If C_{n} is a cycle of order $n \geq 5$, then

$$
\gamma_{\times 2, t}\left(\overline{C_{n}}\right)= \begin{cases}5 & \text { if } n=5 \tag{3.20}\\ 4 & \text { if } 6 \leq n \leq 8 \\ 3 & \text { if } n \geq 9\end{cases}
$$

Proof. Proposition C implies that $\gamma_{\times 2, t}\left(\overline{C_{n}}\right) \geq 3$. If $n \geq 9$, then, for each $1 \leq i \leq n$, the set $\{\bar{i}, \overline{i+3}, \overline{i+6}\}$ is a DTDS of $\overline{C_{n}}$ and so $\gamma_{\times 2, t}\left(\overline{C_{n}}\right)=3$. If $6 \leq n \leq 8$, then it can be easily verified that $\gamma_{\times 2, t}\left(\overline{C_{n}}\right) \geq 4$. Now since $\{\overline{1}, \overline{3}, \overline{4}, \overline{6}\}$ and $\{\overline{1}, \overline{2}, \overline{4}, \overline{6}\}$ are double total dominating sets of $\overline{C_{n}}$, where $n=6$ and $n=7,8$, respectively, we get $\gamma_{\times 2, t}\left(\overline{C_{n}}\right)=4$. Finally if $n=5$, then $\overline{C_{5}}$ is 2-regular and Proposition D implies $\gamma_{\times 2, t}\left(\overline{C_{5}}\right)=5$.

Proposition 3.9. If $n \geq 5$, then $\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right)=n+2$.
Proof. Let $n \geq 5$. equalities (3.18), (3.19) and Propositions C and 3.8 imply

$$
\begin{equation*}
\max \left\{n,\left\lceil\frac{4 n}{n-2}\right\rceil\right\} \leq \gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right) \leq n+2 \tag{3.21}
\end{equation*}
$$

If $n=5$, then $\max \{n,\lceil 4 n /(n-2)\rceil\}=\lceil 4 n /(n-2)\rceil=7=n+2$, and so $\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right)=n+2$. Thus we assume $n \geq 6$. Then $\max \{n,\lceil 4 n /(n-2)\rceil\}=n$ and hence $n \leq \gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right) \leq n+2$. Now let S be a $\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right)$-set. If $V\left(C_{n}\right) \subseteq S$, then $S=V\left(C_{n}\right) \cup\{\bar{x}, \bar{y}\}$, for some two adjacent vertices $\bar{x}, \bar{y} \in V\left(\overline{C_{n}}\right)$, and so $\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right)=n+2$. Thus we assume $V\left(C_{n}\right) \nsubseteq S$. Without loss of generality, let $3 \notin S$. Since $|S \cap\{2,4, \overline{3}\}| \geq 2$, we continue our proof in the following two cases.

Case $1(\{2,4\} \subseteq S)$. Then $1,5, \overline{2}, \overline{4} \in S$. We note that, for every $5 \leq i \leq n-1, S \cap\{\bar{i}, i+1\} \neq \emptyset$. This implies $|S| \geq(n-1-4)+6=n+1$, and since $\overline{3}$ must be dominated by $S \cap V\left(\overline{C_{n}}\right)$, we have $\left|S \cap V\left(\overline{C_{n}}\right)\right| \geq 4$. If $n \notin S$, then $\overline{1} \in S$ and so $|S| \geq n+1+|\{\overline{1}\}|=n+2$. Let $n \in S$. If $\bar{n} \in S$, again $|S| \geq n+1+|\{\bar{n}\}|=n+2$. But $\bar{n} \notin S$ implies $n-1 \in S$. Let $ß=\{i \in S \mid 5 \leq i \leq n-1$ and $\bar{i} \in S\}$. The condition $\left|S \cap V\left(\overline{C_{n}}\right)\right| \geq 4$ implies $|B| \geq 2$. Therefore for at least one vertex $5 \leq x \leq n-1$, $\{\bar{x}, x+1\} \subseteq S$ and hence $|S| \geq n+|\{\bar{x}, x+1\}|=n+2$.

Case $2(\{4, \overline{3}\} \subseteq S($ similarly $\{2, \overline{3}\} \subseteq S))$. Case 1 implies $2 \notin S$. Then $\overline{1}, \overline{2}, \overline{4}, 1,4,5 \in S$. Again we see that, for every $5 \leq i \leq n-2, S \cap\{\bar{i}, i+1\} \neq \emptyset$ and so $|S| \geq(n-2-4)+8=n+2$.

Therefore, in the previous all cases, we proved that $\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right) \geq n+2$ and chain (3.21) implies $\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right)=n+2$.

Corollary 3.10. If $n \geq 5$, then

$$
\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right)= \begin{cases}\gamma_{\times 2, t}\left(C_{n}\right)+\gamma_{\times 2, t}\left(\overline{C_{n}}\right)-1 & \text { if } n \geq 9 \tag{3.22}\\ \gamma_{\times 2, t}\left(C_{n}\right)+\gamma_{\times 2, t}\left(\overline{C_{n}}\right)-2 & \text { if } 6 \leq n \leq 8, \\ \gamma_{\times 2, t}\left(C_{n}\right)+\gamma_{\times 2, t}\left(\overline{C_{n}}\right)-3 & \text { if } n=5\end{cases}
$$

Now we determine the exact amount of $\gamma_{t}\left(C_{n} \overline{C_{n}}\right)$ for $n \geq 3$. Obviously $\gamma_{t}\left(C_{3} \overline{C_{3}}\right)=$ $\left|V\left(C_{3}\right)\right|=3$. In the next proposition we calculate it when $n \geq 4$.

Proposition 3.11. Let $n \geq 4$. Then

$$
r_{t}\left(C_{n} \overline{C_{n}}\right)= \begin{cases}2\left\lceil\frac{n}{4}\right\rceil+2 & \text { if } n \equiv 0(\bmod 4) \tag{3.23}\\ 2\left\lceil\frac{n}{4}\right\rceil+1 & \text { if } n \equiv 3(\bmod 4) \\ 2\left\lceil\frac{n}{4}\right\rceil & \text { otherwise }\end{cases}
$$

Proof. Theorem 2.2 with equalities (3.16) and (3.17) implies

$$
\begin{equation*}
4 \leq \gamma_{t}\left(C_{4} \overline{C_{4}}\right) \leq 6, \quad 4 \leq \gamma_{t}\left(C_{5} \overline{C_{5}}\right) \leq 8 \tag{3.24}
\end{equation*}
$$

and if $n \geq 6$ and $n \not \equiv 1(\bmod 4)$, then

$$
\begin{equation*}
2\left\lceil\frac{n}{4}\right\rceil \leq \gamma_{t}\left(C_{n} \overline{C_{n}}\right) \leq 2\left\lceil\frac{n}{4}\right\rceil+2 \tag{3.25}
\end{equation*}
$$

and if $n \geq 6$ and $n \equiv 1(\bmod 4)$, then

$$
\begin{equation*}
2\left\lceil\frac{n}{4}\right\rceil-1 \leq \gamma_{t}\left(C_{n} \overline{C_{n}}\right) \leq 2\left\lceil\frac{n}{4}\right\rceil+1 \tag{3.26}
\end{equation*}
$$

If $n=4$ and $n=5$, then the sets $\{1,2, \overline{1}, \overline{2}\}$ and $\{1, \overline{1}, 4, \overline{4}\}$ are total dominating sets of $C_{n} \overline{C_{n}}$, respectively. Hence chain (3.24) implies $\gamma_{t}\left(C_{n} \overline{C_{n}}\right)=4$ for $n=4,5$. Now we assume $n \geq 6$. For $n \equiv 2(\bmod 4)$, since the sets $\{1, \overline{1}, 4, \overline{4}\}$ and $\{1, \overline{1}, 4, \overline{4}\} \cup\{7+4 i, 8+4 i \mid 0 \leq i \leq\lceil n / 4\rceil-3\}$ are two total dominating sets of $C_{n} \overline{C_{n}}$ of cardinality $2[n / 4]$, where $n=6$ and $n>6$, respectively, we have $\gamma_{t}\left(C_{n} \overline{C_{n}}\right)=2\lceil n / 4\rceil$, by chain (3.25). Now let $n \not \equiv 2(\bmod 4)$. We assume that S is a TDS of $C_{n} \overline{C_{n}}$. Obviously $S \cap V\left(\overline{C_{n}}\right) \neq \emptyset$. If $\left|S \cap V\left(\overline{C_{n}}\right)\right|=1$ and $S \cap V\left(\overline{C_{n}}\right)=\{\overline{1}\}$, then $1,2, n \in S$, and hence $|S \cap X| \geq 2\lceil|X| / 4\rceil=2\lceil(n-5) / 4\rceil$, where $X=V\left(C_{n}\right)-\{1,2,3, n-1, n\}$. This implies

$$
|S|=|S \cap X|+4 \geq \begin{cases}2\left\lceil\frac{n}{4}\right\rceil+2 & \text { if } n \equiv 0(\bmod 4) \tag{3.27}\\ 2\left\lceil\frac{n}{4}\right\rceil+1 & \text { if } n \equiv 3(\bmod 4) \\ 2\left\lceil\frac{n}{4}\right\rceil & \text { if } n \equiv 1(\bmod 4)\end{cases}
$$

Now let $\left|S \cap V\left(\overline{C_{n}}\right)\right|=\alpha \geq 2$. If $n \equiv 0,1(\bmod 4)$, then

$$
\left|S \cap V\left(C_{n}\right)\right| \geq \begin{cases}2\left\lfloor\frac{n-\alpha}{4}\right\rfloor & \text { if } n \equiv \alpha(\bmod 4) \tag{3.28}\\ 2\left\lfloor\frac{n-\alpha}{4}\right\rfloor+1 & \text { otherwise }\end{cases}
$$

and if $n \equiv 3(\bmod 4)$, then

$$
\left|S \cap V\left(C_{n}\right)\right| \geq \begin{cases}2\left\lceil\frac{n-\alpha}{4}\right\rceil-1 & \text { if } n \equiv \alpha+1(\bmod 4) \tag{3.29}\\ 2\left\lceil\frac{n-\alpha}{4}\right\rceil & \text { otherwise }\end{cases}
$$

It can be calculated that

$$
|S|=\left|S \cap V\left(C_{n}\right)\right|+\alpha \geq \begin{cases}2\left\lceil\frac{n}{4}\right\rceil+2 & \text { if } n \equiv 0(\bmod 4) \tag{3.30}\\ 2\left\lceil\frac{n}{4}\right\rceil+1 & \text { if } n \equiv 3(\bmod 4) \\ 2\left\lceil\frac{n}{4}\right\rceil & \text { if } n \equiv 1(\bmod 4)\end{cases}
$$

Then by chains (3.25) and (3.26) we have

$$
\begin{gather*}
r_{t}\left(C_{n} \overline{C_{n}}\right)=2\left\lceil\frac{n}{4}\right\rceil+2 \quad \text { if } n \equiv 0(\bmod 4) \tag{3.31}\\
2\left\lceil\frac{n}{4}\right\rceil \leq \gamma_{t}\left(C_{n} \overline{C_{n}}\right) \leq 2\left\lceil\frac{n}{4}\right\rceil+1 \quad \text { if } n \equiv 1(\bmod 4) \tag{3.32}\\
2\left\lceil\frac{n}{4}\right\rceil+1 \leq \gamma_{t}\left(C_{n} \overline{C_{n}}\right) \leq 2\left\lceil\frac{n}{4}\right\rceil+2 \quad \text { if } n \equiv 3(\bmod 4) \tag{3.33}
\end{gather*}
$$

If $n \equiv 1(\bmod 4)$, then the sets $\{1, \overline{1}, 4, \overline{4}, 7, \overline{7}\}$ and $\{1, \overline{1}, 4, \overline{4}, 7, \overline{7}\} \cup\{10+4 i, 11+4 i \mid 0 \leq$ $i \leq\lceil n / 4\rceil-4\}$ are total dominating sets of $C_{n} \overline{C_{n}}$ of cardinality $2\lceil n / 4\rceil$ when $n=9$ and $n>9$, respectively. Hence $\gamma_{t}\left(C_{n} \overline{C_{n}}\right)=2\lceil n / 4\rceil$, by chain (3.32). If also $n \equiv 3(\bmod 4)$, the sets $\{1, \overline{1}, 4, \overline{4}, \overline{n-1}\}$ and $\{1, \overline{1}, 4, \overline{4}, \overline{n-1}\} \cup\{7+4 i, 8+4 i \mid 0 \leq i \leq\lceil n / 4\rceil-3\}$ are total dominating sets of $C_{n} \overline{C_{n}}$ of cardinality $2\lceil n / 4\rceil+1$ when $n=7$ and $n>7$, respectively. Hence $\gamma_{t}\left(C_{n} \overline{C_{n}}\right)=2\lceil n / 4\rceil+1$, by chain (3.33).

Finally we determine the k-tuple total domination number of the complementary prism $P_{n} \overline{P_{n}}$, where $1 \leq k<2=\delta\left(P_{n} \overline{P_{n}}\right)$. We recall that $V\left(P_{n} \overline{P_{n}}\right)=V\left(P_{n}\right) \cup V\left(\overline{P_{n}}\right)$, $V\left(P_{n}\right)=\{i \mid 1 \leq i \leq n\}$, and $E\left(P_{n}\right)=\{i j \mid 1 \leq i \leq n-1, j=i+1\}$. In many references, for example, in [1], it can be seen that, for $n \geq 2$,

$$
\gamma_{t}\left(P_{n}\right)= \begin{cases}2\left\lceil\frac{n}{4}\right\rceil & \text { if } n \not \equiv 1(\bmod 4) \tag{3.34}\\ 2\left\lceil\frac{n}{4}\right\rceil-1 & \text { if } n \equiv 1(\bmod 4)\end{cases}
$$

and trivially $\gamma_{t}\left(\overline{P_{n}}\right)=|\{\overline{1}, \bar{n}\}|=2$, where $n \geq 4$. Therefore, by Theorems 2.1 and 2.2, for $n \geq 4$, we have the following chain:

$$
\begin{equation*}
\gamma_{t}\left(P_{n}\right) \leq \gamma_{t}\left(P_{n} \overline{P_{n}}\right) \leq \gamma_{t}\left(P_{n}\right)+2 \leq \gamma_{\times 2, t}\left(P_{n} \overline{P_{n}}\right) \leq n+2 \tag{3.35}
\end{equation*}
$$

It can be easily proved that $\gamma_{t}\left(P_{n} \overline{P_{n}}\right)=n$, where $n=2,3$. Next proposition calculates $\gamma_{t}\left(P_{n} \overline{P_{n}}\right)$ when $n \geq 4$.

Proposition 3.12. Let $n \geq 4$. Then

$$
r_{t}\left(P_{n} \overline{P_{n}}\right)= \begin{cases}2\left\lceil\frac{n-2}{4}\right\rceil+1 & \text { if } n \equiv 3(\bmod 4) \tag{3.36}\\ 2\left\lceil\frac{n-2}{4}\right\rceil+2 & \text { otherwise }\end{cases}
$$

Proof. Let D be a γ_{t}-set of the induced path $P_{n}\left[V\left(P_{n}\right)-\{1, n\}\right]$ of P_{n}. Since $D \cup\{\overline{1}, \bar{n}\}$ is a TDS of $P_{n} \overline{P_{n}}$, we have

$$
\gamma_{t}\left(P_{n} \overline{P_{n}}\right) \leq|D \cup\{\overline{1}, \bar{n}\}|= \begin{cases}2\left\lceil\frac{n-2}{4}\right\rceil+1 & \text { if } n \equiv 3(\bmod 4) \tag{3.37}\\ 2\left\lceil\frac{n-2}{4}\right\rceil+2 & \text { otherwise }\end{cases}
$$

Let $n \equiv 2(\bmod 4)$. Then chains (3.34), (3.35), (3.37) imply $\gamma_{t}\left(P_{n} \overline{P_{n}}\right)=2\lceil(n-2) / 4\rceil+2$. Since $2[n / 4\rceil=2\lceil(n-2) / 4\rceil+2$. Now let $n \not \equiv 2(\bmod 4)$, and let S be a TDS of $P_{n} \overline{P_{n}}$. Obviously $S \cap V\left(\overline{P_{n}}\right) \neq \emptyset$. In all cases, (i) $\left|S \cap V\left(\overline{P_{n}}\right)\right|=1$ and $S \cap\{\overline{1}, \bar{n}\} \neq \emptyset$, (ii) $\left|S \cap V\left(\overline{P_{n}}\right)\right|=1$ and $S \cap\{\overline{1}, \bar{n}\}=\emptyset$, and (iii) $\left|S \cap V\left(\overline{P_{n}}\right)\right| \geq 2$, then similar to the proof of Proposition 3.11, it can be verified that

$$
|S| \geq \begin{cases}2\left\lceil\frac{n-2}{4}\right\rceil+1 & \text { if } n \equiv 3(\bmod 4) \tag{3.38}\\ 2\left\lceil\frac{n-2}{4}\right\rceil+2 & \text { otherwise }\end{cases}
$$

Hence chain (3.37) completes the proof of our proposition.
Propositions 3.11 and 3.12 imply the next result in [1].
Corollary 3.13 (see [1]). If $G \in\left\{P_{n}, C_{n}\right\}$ with order $n \geq 5$, then

$$
r_{t}(G \bar{G})= \begin{cases}r_{t}(G) & \text { if } n \equiv 2(\bmod 4) \tag{3.39}\\ r_{t}(G)+2 & \text { if } n \equiv 0(\bmod 4) \\ r_{t}(G)+1 & \text { otherwise }\end{cases}
$$

4. Problems

If we look carefully at the propositions of Section 3, we obtain the following result.

Proposition 4.1. (i) Let G be a cycle or a path of order $n \geq 4$. Then $\max \left\{\gamma_{t}(G), \gamma_{t}(\bar{G})\right\}=\gamma_{t}(G \bar{G})$ if and only if $n \equiv 2(\bmod 4)$.
(ii) Let G be a cycle of order $n \geq 5$ or a path of order $n \geq 4$. Then $\gamma_{t}(G \bar{G})=\gamma_{t}(G)+\gamma_{t}(\bar{G})$ if and only if $n \equiv 0(\bmod 4)$.
(iii) Let C_{n} be a cycle of order $n \geq 5$. Then

$$
\begin{equation*}
\max \left\{\gamma_{\times 2, t}\left(C_{n}\right), \gamma_{\times 2, t}\left(\overline{C_{n}}\right)\right\}<\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right)<\gamma_{\times 2, t}\left(C_{n}\right)+\gamma_{\times 2, t}\left(\overline{C_{n}}\right) \tag{4.1}
\end{equation*}
$$

(iv) Let C_{n} be a cycle of order $n \geq 5$. Then

$$
\begin{equation*}
r_{t}\left(C_{n}\right)+\gamma_{t}\left(\overline{C_{n}}\right)<\gamma_{\times 2, t}\left(C_{n} \overline{C_{n}}\right)=n+\min \left\{\gamma_{t}\left(C_{n}\right), r_{t}\left(\overline{C_{n}}\right)\right\} \tag{4.2}
\end{equation*}
$$

Therefore it is natural that we state the following problem.
Problem 1. Characterize graphs G with
(1) $\gamma_{\times k, t}(G \bar{G})=\gamma_{\times k, t}(G)+\gamma_{\times k, t}(\bar{G})$,
(2) $\gamma_{\times k, t}(\bar{G})=\max \left\{\gamma_{\times k, t}(G), \gamma_{\times k, t}(\bar{G})\right\}$.

References

[1] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, vol. 208 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1998.
[2] T. W. Haynes, M. A. Henning, and L. C. van der Merwe, "Domination and total domination in complementary prisms," Journal of Combinatorial Optimization, vol. 18, no. 1, pp. 23-37, 2009.
[3] T. W. Haynes, M. A. Henning, P. J. Slater, and L. C. van der Merwe, "The complementary product of two graphs," Bulletin of the Institute of Combinatorics and its Applications, vol. 51, pp. 21-30, 2007.
[4] M. A. Henning and A. P. Kazemi, " k-tuple total domination in graphs," Discrete Applied Mathematics, vol. 158, no. 9, pp. 1006-1011, 2010.
[5] M. A. Henning and A. P. Kazemi, " k-tuple total domination in cross products of graphs," Journal of Combinatorial Optimization.
[6] A. Khodkar, D. A. Mojdeh, and A. P. Kazemi, "Domination in Harary graphs," Bulletin of the Institute of Combinatorics and its Applications, vol. 49, pp. 61-78, 2007.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

