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The smooth variable structure filter (SVSF) is a recently proposed predictor-corrector filter for state and parameter estimation.
The SVSF is based on the sliding mode control concept. It defines a hyperplane in terms of the state trajectory and then applies
a discontinuous corrective action that forces the estimate to go back and forth across that hyperplane. The SVSF is robust and
stable to modeling uncertainties making it suitable for fault detection application. The discontinuous action of the SVSF results
in a chattering effect that can be used to correct modeling errors and uncertainties in conjunction with adaptive strategies. In
this paper, the SVSF is complemented with a novel parameter estimation technique referred to as the iterative bi-section/shooting
method (IBSS). This combined strategy is used for estimating model parameters and states for systems in which only the model
structure is known. This combination improves the performance of the SVSF in terms of rate of convergence, robustness, and
stability. The benefits of the proposed estimation method are demonstrated by its application to an electrohydrostatic actuator.

1. Introduction

State and parameter estimation techniques are widely used
in applications such as signal processing, radar tracking,
satellite systems, simultaneous localization and mapping,
weather forecasting, economics, dynamic positioning and
tracking systems, fault detection, control, instrumentation,
and prediction [1, 2]. They extract system states and param-
eters from measurements [2]. Estimating states is important
for control. When used for parameter estimation, filters can
track changes in systems and are useful for monitoring and
fault detection [3–5].

State and parameter estimation techniques have seen
a rapid development since the 1950s. The predominant
methods include the Wiener filter [6–8], the Kalman filter
(KF) [2, 4, 5], the H∞ filter [9, 10], the unscented Kalman
filter [4, 11], the particle filter [11], the sliding mode observer
(SMO), and the smooth variable structure (SVSF) [1, 3, 12–
15]. Some of these methods have been combined with model
adaptation strategies involving fuzzy logic [16] and neural
networks [14, 15] in order to improve their performance,
accuracy, and stability. In this paper the recently proposed

SVSF filtering method is combined with the iterative bi-
section/shooting method (IBSS) to estimate the states and
the parameters of linear systems when only their model
structures are known. The system model considered as
follows (assuming presence of system and measurement
noise):

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1

zk = Hkxk + vk.
(1)

The SVSF is a model-based strategy, and IBSS is an iterative
searching method. Their combination allows adaptation of
the SVSF’s filter model given modeling uncertainties. For
comparison purposes, the IBSS is combined with both the
KF and the SVSF. The IBSS method is discussed in Section 4,
its combination with the KF and the SVSF are described in
Sections 4.4.1 and 4.4.2, respectively. In Section 5, the IBSS
with the KF, and the IBSS with the SVSF are applied to
an uncertain electro-hydrostatic actuator. Conclusions are
presented in Section 6. The nomenclature is presented in
Table 1. Italic upper-case letters are used to denote matrices
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Table 1: Nomenclature.

Symbol Comments Size

−1, + Notation denoting an inverse and a pseudoinverse, respectively

a(b) The bth derivative of a

|| Absolute value

̂ Estimation value

A ◦ B Schur product between A and B

T Matrix transpose

A System matrix n× n

B Input matrix n× 1

Δa Difference between a’s actual and estimated values

ez Output’s estimation error vectors m× 1

ex State’s estimation error vectors n× 1

E(a) The expectation operator of the element a

γ The SVSF’s coefficient matrix n× n

H Output matrix m× n

In×n The identity matrix with dimensions of n× n n× n

k Time step value 1× 1

k|k A posteriori value

k|k − 1 A priori value

KSVSFk The SVSF’s gain n× 1

m Number of measurements 1× 1

MaxError The maximum absolute error 1× 1

Mk A Lyapunov function n× n

n System’s number of states 1× 1

ωn Natural frequency 1× 1

P Error covariance matrices n× n

Ψ The smoothing boundary layer vector n× 1

Q The process noise covariance matrix n× n

R The measurements noise covariance matrix m×m

RMSE Root mean square error 1× 1

sat(a, b) Saturation function of a using the boundary layer b

sat(a, b) Saturation function of element a using the boundary layer b 1× 1
∑c

i=b ai Summation of vector a from time b to time c

sgn(a) Sign function of the vector a

sgn(a) Sign function of the element a 1× 1

Ts Sampling time 1× 1

u Input value 1× 1

v, Vmax Measurement noise vector and its upper bound, respectively m× 1

w, Wmax System noise vector and its upper bound, respectively n× 1

x State vector n× 1

z Output vector m× 1

0a×b A matrix with dimension a× b and zero elements a× b

ξ Damping ratio 1× 1
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Figure 1: The chattering as an indicator of parametric changes.
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Figure 2: The bi-section’s principle [17].

and vectors while their elements are denoted by italic lower-
case letters with subscripts i and/or j.

2. The Kalman Filter

In 1960, Rudolf Kalman presented the Kalman filter (KF),
as a recursive, optimal, and model-based estimator, that falls
under the predictor-corrector category for linear systems [2,
4]. The KF is an optimal filter for linear Gaussian problems
as it minimizes the mean square error between the actual and
the estimated state (MMSE).

According to [2], the KF process may be divided into two
stages: prediction and correction stages. In the prediction
stage the a priori estimate, x̂k|k−1, is obtained by using a
model of the system under consideration such that

x̂k|k−1 = ̂Ak−1x̂k−1|k−1 + ̂Bk−1uk−1

ẑk|k−1 = ̂Hkx̂k|k−1

Pk|k−1 = ̂Ak−1Pk−1|k−1 ̂AT
k−1 + Qk−1.

(2)

The a priori estimation errors are due to uncertainties as well
as noise effects. The KF then uses the measurements and an
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Figure 3: The bi-section steps [17].

optimal gain to refine the a priori estimates to an a posteriori
form in what is referred to as an update step such

x̂k|k = x̂k|k−1 + Kkalman
(

zk − ẑk|k−1
)

Pk|k =
(

In×n −KkalmanHT
k

)

Pk|k−1,
(3)

where Kkalman is the Kalman filter’s gain and it is defined as

Kkalman = Pk|k−1HT
k

(

HkPk|k−1HT
k + Rk

)−1
. (4)

The Kalman Filter’s limitations are its assumption of
a Gaussian distribution for the noise and a largely known
model. A number of different formulations of the Kalman
Filter have been proposed to improve its performance [2].

3. The Smooth Variable Structure

The variable structure filter (VSF) was first proposed in 2003
as a recursive predictor-corrector filter that is based on the
sliding mode concept [3]. It uses a projection of the true
state trajectory as a switching hyperplane and forces the
estimated state trajectories to stay close to the true states.
The filter reduces the effects of noise and modeling errors
and overcomes some of the limitations of the Kalman filter
in terms of robustness and uncertainties. The solution is
not, however, optimal [1]. The concepts of VSF and its
performance in terms of stability, accuracy, and the rate
of convergence are discussed and quantified in [1, 3, 15].
In 2007, the smooth variable structure filter (SVSF) was
proposed to make the VSF simpler and applicable for
nonlinear systems [13, 14].

The SVSF is a robust filter that can guarantee stability for
bounded uncertainties as shown in [1]. It has a secondary set
of indicators of performance (one per state or parameter that
is estimated) that provides information on the uncertainties
of the filter model. The simplest form of the SVSF is
applicable to linear systems that have full-rank measurement
matrix. Like the KF, the SVSF is a predictor-corrector
method. However, the update stage is defined as

x̂k|k = x̂k|k−1 + KSVSF, (5)
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where KSVSF is the SVSF gain for linear systems with full-rank
measurement matrix, and is defined as:

KSVSF = H−1
(∣

∣

∣ezk|k−1

∣

∣

∣ + γ
∣

∣

∣ezk−1|k−1

∣

∣

∣

)

◦ sgn
(

ezk−1|k−2

)

, (6)

where γ ∈ Rn×n is a diagonal matrix with γii ≤ 1, and
ezk|k−1 and ezk|k are the a priori and the a posteriori output
estimation error vectors and are defined as

ezk|k−1 = zk − ẑk|k−1

ezk|k = zk − ẑk|k.
(7)

The SVSF handles bounded uncertainties, such as:

(i) inaccuracies in the estimation model,

(ii) system and measurement noise,

(iii) unknown initial position.

The SVSF is a robust recursive predictor-corrector esti-
mation method that can effectively deal with uncertainties
associated with initial conditions and modeling errors. It
guarantees bounded-input bounded-output stability and the
convergence of the estimation process by using the Lyapunov
stability condition. The derivation of SVSF’s gain and its
stability conditions can be found in [1] and are summarized
in the following subsections.

3.1. The Lyapunov Stability Theorem. Let Mk be a Lyapunov
function defined in terms of the a posteriori estimation error,
such that

Mk =
∣

∣

∣ezk|k

∣

∣

∣. (8)

The estimation process is stable if

ΔMk < 0, (9)

where ΔMk represents the change in the Lyapunov function
and in this case is defined as follows:

ΔMk =
∣

∣

∣ezk|k

∣

∣

∣−
∣

∣

∣ezk−1|k−1

∣

∣

∣, (10)

By substituting (10) into (9) and then rearranging, the
following is obtained:

∣

∣

∣ezk|k

∣

∣

∣−
∣

∣

∣ezk−1|k−1

∣

∣

∣ < 0. (11)

Equation (11) is equivalent to the following:

∣

∣

∣ezk|k

∣

∣

∣ <
∣

∣

∣ezk−1|k−1

∣

∣

∣. (12)

To remove the absolute operator, | |, both sides are expressed
in the form of diagonal matrices and then they are multiplied
with their transpose as follows:

diag
(

ezk|k

)

diag
(

ezk|k

)T
< diag

(

ezk−1|k−1

)

diag
(

ezk−1|k−1

)T
,

(13)

where diag(ezk|k ) is the diagonal matrix of ezk|k .
The a posteriori output estimation error is obtained as

follows (assuming the output matrix is well known):

ezk|k = Hkexk|k + vk. (14)
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Figure 6: The affection of modeling errors on the extracted parameter, ξ, for a second-order system.
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By substituting (14) into (13), (15) is obtained as
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

diag
(

Hkexk|k

)

diag
(

Hkexk|k

)

+ diag(vk) diag(vk)

+ diag
(

Hkexk|k

)

diag(vk)

+ diag(vk) diag
(

Hkexk|k

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

<

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

diag
(

Hk−1exk−1|k−1

)

diag
(

Hk−1exk−1|k−1

)

+ diag(vk−1) diag(vk−1)

+ diag
(

Hk−1exk−1|k−1

)

diag(vk−1)

+ diag(vk−1) diag
(

Hk−1exk−1|k−1

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(15)

If the measurement noise is stationary white, then by taking
the expectation of both sides, (15) is transformed to (16);

E

⎡

⎣

diag
(

Hkexk|k

)

diag
(

Hkexk|k

)

+ diag(vk) diag(vk)

⎤

⎦

< E

⎡

⎣

diag
(

Hk−1exk−1|k−1

)

diag
(

Hk−1exk−1|k−1

)

+ diag(vk−1) diag(vk−1)

⎤

⎦,

(16)

where E[diag(Hkexk|k ) diag(vk)] and E[diag(vk) diag (Hk

exk|k )] vanish due to the white noise assumption. For a
diagonal, positive, and time-invariant measurement matrix,
(16) is reduced to (17);

E
[

diag
(

exk|k

)

diag
(

exk|k

)]

< E
[

diag
(

exk−1|k−1

)

diag
(

exk−1|k−1

)]

.

(17)

Note that the assumptions pertaining to the measurement
matrix are realistic since most applications use linear sensors
as feedback in their operations. Moreover, these sensors are
well calibrated and their structures are well known, [1].
Equation (17) is equivalent to the following:

E
(∣

∣

∣exk|k

∣

∣

∣

)

< E
(∣

∣

∣exk−1|k−1

∣

∣

∣

)

. (18)

From (17), the expectation of the a posteriori estimation
error is reduced in time (it converges towards the origin)
which means that the filter is stable.

3.2. The Derivation of the SVSF’s Gain. The SVSF’s gain
is derived to guarantee the stability condition of (18).
Moreover, the gain must be larger than the uncertain
dynamics of the estimation process, yet it should be bounded
for bounded-input bounded-output stability.

Let γ be a diagonal positive matrix with dimensions γ ∈
Rn×n and with elements less than unity, that is, 0 < γii < 1,
then:

γ
∣

∣

∣ezk−1|k−1

∣

∣

∣ <
∣

∣

∣ezk−1|k−1

∣

∣

∣. (19)

Adding the term |ezk|k−1| to both sides leads to the following:

γ
∣

∣

∣ezk−1|k−1

∣

∣

∣ +
∣

∣

∣ezk|k−1

∣

∣

∣ <
∣

∣

∣ezk−1|k−1

∣

∣

∣ +
∣

∣

∣ezk|k−1

∣

∣

∣. (20)



6 ISRN Signal Processing

Bisection method

Initials B1 and B5

Calculate B1 . . . B5

B1 B5· · ·

· · ·

· · ·

· · ·

· · ·· · ·

· · · · · ·

· · ·

· · ·
· · ·

· · ·

Initial ω11 and ω15
Initial ω51 and ω55

Calculate ω11 . . . ω15 Calculate ω51 . . . ω55

ω11 ω15 ω15ω11

ξ11 ξ15 ξ51 ξ55

Define new ω11 and ω15 Define new ω51 and ω55

T1 = ω15 − ω11 T5 = ω55 − ω51

T1 < ε? T5 < ε?

Define new B1 and B5

T = B5 − B1

No

No

No

Yes

Yes

B and ω are the best combination

Shooting method

Extract ξ

Ti, i = 1, . . . , 5 is the width of
the natural frequency’s
resulting subinterval in loop
i, and ρ is its threshold.

T is the width of the gain’s
resulting subinterval, and B

is it threshold
T < B?

Figure 8: The IBSS algorithm for second-order system.

No

Yes

Use IBSS to find ωn, ξ and B

Estimates the states of the segment using the KF

Done all
segments?

Break
Take segment i

i = 1

i = i + 1

Figure 9: The IBSS/KF algorithm for second order systems.

The absolute value of the SVSF gain multiplied by the
measurement matrix is set to be equal to the left-hand side
of (20) as follows:

∣

∣

∣
̂HkKSVSFk

∣

∣

∣ = γ
∣

∣

∣ezk−1|k−1

∣

∣

∣ +
∣

∣

∣ezk|k−1

∣

∣

∣. (21)

The sign of the gain is made equal to the sign of the a
priori estimation error, ezk|k−1 . This leads to (6). Note that the
proposed gain satisfies the conditions of being larger than the
a priori estimation error. By applying the gain to the a priori

estimate, the a posteriori estimated measurement is obtained
as follows:

ẑk|k = ẑk|k−1 +
(

γ
∣

∣

∣ezk−1|k−1

∣

∣

∣ +
∣

∣

∣ezk|k−1

∣

∣

∣

)

◦ sgn
(

ezk|k−1

)

. (22)

Subtracting (22) from the measurement zk leads to the
following:

ezk|k = ezk|k−1 −
(

γ
∣

∣

∣ezk−1|k−1

∣

∣

∣ +
∣

∣

∣ezk|k−1

∣

∣

∣

)

◦ sgn
(

ezk|k−1

)

. (23)

Equation (23) can be rewritten in a simpler form by
substituting |ezk|k−1 | ◦ sgn(ezk|k−1 ) by ezk|k−1 as follows:

ezk|k =ezk|k−1 − γ
∣

∣

∣ezk−1|k−1

∣

∣

∣ ◦ sgn
(

ezk|k−1

)

− ezk|k−1

= −γ
∣

∣

∣ezk−1|k−1

∣

∣

∣ ◦ sgn
(

ezk|k−1

)

.
(24)

By taking the absolute of both sides of (24), (25) is obtained
as follows:

{∣

∣

∣ezk|k

∣

∣

∣ = γ
∣

∣

∣ezk−1|k−1

∣

∣

∣

}

<
∣

∣

∣ezk−1|k−1

∣

∣

∣. (25)

The error decays in time, which means that (12) and (18) are
satisfied and the filter is stable.
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3.3. The Smoothing Boundary Layer. The essential idea
behind the SVSF is that the estimated state would switch
back and forth across the actual state trajectory. This
switching effect results in chattering that can be eliminated
by replacing the sign function in (6) with a saturation
function with a known boundary layer referred to as the
smoothing boundary layer. Inside the smoothing boundary
layer, the corrective action is interpolated based on the ratio
between the amplitude of the output’s a priori estimation
error and the smoothing boundary layer’s width. Outside
the smoothing boundary layer, the discontinuous corrective
action with its full amplitude is applied. The SVSF assigns
and requires one smoothing boundary layer per estimate.
The SVSF gain becomes as

KSVSF = H−1
(∣

∣

∣ezk|k−1

∣

∣

∣ + γ
∣

∣

∣ezk−1|k−1

∣

∣

∣

)

◦ sat
(

ezk|k−1 ,Ψ
)

,

(26)

and sat(ezk|k−1 ,Ψ) is a saturation vector and is defined as

sat
(

ezk|k−1 ,Ψ
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sat
(

ez1k|k−1 ,Ψ1

)

,
...
sat
(

eznk|k−1 ,Ψn

)

,
(27)
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where sat(ezik|k−1
,Ψik ), i = 1, . . . ,n is the saturation function

and is defined as follows:

sat
(

ezik|k−1
,Ψik

)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ezik|k−1

Ψik
ezik|k−1

≤ Ψik ,

sgn
(

ezik|k−1

)

ezik|k−1
> Ψik .

(28)

The boundary layer width Ψik is calculated by using the
upper bound of uncertainties [11]. If due to changes in
the system, additional uncertainties are added such that the
amplitude of ezik|k−1 grows larger than Ψik , then chattering
will be observed [1]. For example, the a priori chattering
signal has been tracked for a second-order system that is
made to have parametric changes at time steps t1 = 4000 and
t2 = 7000. These changes last for 1000 and 2500 time steps,
respectively. The smoothing boundary layer was designed
to enclose the existence subspace for the system before the
parametric changes (t < 4000 time steps). Figure 1 shows
chattering when uncertainties are injected into the model at
time t1 = 4000 and t2 = 7000 time steps. Moreover, the
figure shows the lasting period of each uncertainty injection.
The SVSF is very sensitive to added uncertainties and exhibits
chattering that can be used for detecting the inception of a
change in the system. This capability is very useful for certain
applications such as fault detection.

4. Iterative Bi-Section/Shooting Method

The iterative bisection/shooting method consists of two
elements discussed in the following subsections.
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Figure 15: (a) x3’s actual and estimated values, (b) estimation error
of x3 obtained by using the IBSS/KF.

4.1. The Bi-Section Method. The bisection method is a well-
known numerical root-finder for f (x) = 0, and it is based on
the following.

If f (x) is continuous over (ai, ae), and f (ai) f (ae) < 0
then there is at least one point (a) in the interval where
f (a) = 0 as shown in Figure 2 [17, 19].

The bisection method starts by defining an interval that
contains the root a:

a ∈ (ai, ae) (29)

where ai and ae are the interval boundaries and they are
chosen to satisfy the following:

f (ai) f (ae) < 0. (30)

By taking the interval’s middle point, am, the interval is
divided into two subintervals. Based on am’s function sign,
one of these subintervals is chosen to be a new interval for
the next iteration as

If f (ai) f (am) < 0

then the new interval is defined as (ai, am),

Else the new interval is defined as (am, ae).

(31)

The interval is then divided in half iteratively until the
width of the interval becomes smaller than a threshold and
the root is considered to be the half of the final interval.
This algorithm is summarized in Figure 3. If multiple zeros
exist inside the interval, then only one of the zeros will be
obtained depending on the interval size and its boundary
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Figure 16: (a) ξ’s actual and estimated values, (b) estimation error
of ξ obtained by using the IBSS/KF.

values as shown in Figure 4. Therefore, this method is stable
as it always converges to one of the zeros. Moreover, the
level of accuracy is controllable which has a maximum
absolute value equal to half of the last interval (threshold).
However, its disadvantages are its slow rate of convergence
and its sensitivity to the size of the interval [17]. Due to its
stability and simplicity, this method has been used in many
applications; that is, computing the H∞ norm of transfer
functions in [19], and in system identification as in [20].

4.2. The Shooting Method. According to [17], the shooting
method is a numerical technique used to solve a differential
equation with boundary conditions (at time t f ) defined as
follows:

n
∑

i=0

x(i)(t) = x(n)(t) + x(n−1)(t) + · · · + x(t) = xp(t)

For the boundaries
[

x
(

t f
)

· · · x(n−1)
(

t f
)]T = x f ,

(32)

and convert it to an initial condition problem (at time t0) as
follows:

n
∑

i=0

x(i)(t) = x(n)(t) + x(n−1)(t) + · · · + x(t) = xp(t)

For initial condition
[

x(t0) · · · x(n−1)(t0)
]T = x0,

(33)

where xp is the input.
The shooting method has the same idea of hitting a target

by a cannon projectile. If a cannon is used to hit a target,
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Figure 17: (a) ωn’s actual and estimated values, (b) estimation error
of ωn obtained by using the IBSS/KF.

the muzzle angle must be adjusted properly; otherwise the
projectile does not hit its target. If the adjustment process
is done manually, then several trials will be done to achieve
the proper angle as shown in Figure 5. The first trial is
done by adjusting the muzzle by an initial angle, and then
shooting the projectile. According to the projectile’s final
destination and its difference from the target location, the
muzzle angle is adjusted, and another trial is done. The
angle is adjusted several times (the trial is repeated) until the
projectile hits its target. Similarly, the shooting method starts
by guessing initial conditions, x̂0, for the system, then finding
the solutions of the system’s equation for the entire domain
up to the final values, x̂ f . By comparing the resultant final
values with their actual values, x f , the initial guess is then
refined and the process is repeated iteratively to minimize
the error in the final (boundary) values. Once the error
becomes smaller than a threshold value, iteration stops and
the solution is adapted.

4.3. The Iterative Bi-Section/Shooting Method. The Bi-sec-
tion/shooting method is a combination used to iteratively
extract model parameters from the measurements for sys-
tems in which only the model structure is known. The
maximum number of parameters that could be estimated for
an nth order system using this method is n + 1. The system’s
parameters are assumed to be constant during the operation
and they are divided into two groups; the first group is of
size n and is obtained by the shooting/bisection method.
The second group is extracted based on measurements and
the parameters from the first group. Therefore, they are
stochastic variables with variances that are functions of noise
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Figure 18: (a) gain’s actual and estimated values, (b) estimation
error of gain obtained by using the IBSS/KF.

and modeling errors pertaining to the parameters in the first
group. For example, in second-order systems, the gain and
the natural frequency are the first group parameters, and the
damping ratio is the second group parameter. The damping
ratio may be extracted from measurements if the gain and the
natural frequency are known. The estimate of the damping
ratio becomes a stochastic variable with variance that is a
function of the noise and the variance in the latter two
parameters as shown in Figure 6. The figure shows that if
modeling errors are reduced, then the estimated parameter’s
variance is reduced, and its value is obtained once the mod-
eling errors become zero. Assuming that a curve connects
the minimum variance points in Figure 6, then the smallest
variance point has a (graphical) derivative with a zero value
and the sign of the derivative changes across this point. By
studying the sign of the derivative function, the minimum
variance could be obtained using the bi-section method.

Parameter estimation is performed by defining a search
interval (for each range of group-one parameters), esti-
mating group-two parameters, and then obtaining their
variances. Based on the variance of group two parameters,
the intervals of group one parameters are reduced using the
bi-section method until a threshold is reached. For example,
to implement this method for a first-order system with two
model parameters; that is, X and Y , the following process is
used.

One of the two parameters is chosen first; that is, X .
An interval is specified for this parameter and five different
values are arbitrarily chosen; that is, X1 to X5. These values
are uniformly distributed along the interval and they are
assumed to be the shooting method’s initial guesses.
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Figure 19: (a) x1’s actual and estimated values, (b) estimation error
of x1 obtained by using the IBSS/SVSF.

For each of these values, and using data segments of
measurements and input, the second parameter, Yi, may be
extracted using inverse system model. Note that the extracted
parameter Yi is not constant and is a temporal function.
Thus, five variance values of the second parameter Yi are
obtained one for each X1 to X5 from the shooting method.
As discussed earlier, each variance is a function of the noise
as well as error in the first parameter estimate Xi.

The variance values are distributed as shown in Figure 7.
Note that these points have a parabolic shape. Taking
the derivative of the shape function (to obtain the root
of the derivative that represent the minimum variance)
and using the bi-section method, a new subinterval is
obtained.

The algorithm is iteratively repeated until the width of
the subinterval becomes smaller than a threshold. At each
iteration, the first parameter is assumed to be half of the
resultant interval, and the second parameter is chosen to be
the mean of the corresponding extracted vector.

The algorithm of IBSS is demonstrated by the following
example.

Example 1. This example demonstrates the application of the
IBSS algorithm to a second-order system. The parameters
are divided into two groups as previously discussed. The first
group consists of the gain (B) and the natural frequency (ωn),
and their estimation is performed by an outer loop and five
inner loops. The second group consists of the damping ratio
(ξ). Assuming the outer loop is related to B and the inner
loops are related to ωn. The computation loops are illustrated
in Figure 8 and are as follows.



ISRN Signal Processing 11

Table 2: The new interval boundaries using the bi-section method.

Case no.
Sign

σ
̂ξi5
− σ

̂ξi4

Sign
σ
̂ξi4
− σ

̂ξi3

Sign
σ
̂ξi3
− σ

̂ξi2

Sign
σ
̂ξi2
− σ

̂ξi1

New ωi1 New ωi5

1 + + + + Old ωi1 Old ωi2

New interval

Old interval

ωi1 ωi2 ωi3 ωi4 ωi5

σ
ξ i

j

+ +
+

+

· · ·
·

·

2 + + + − Old ωi1 Old ωi3

New interval

Old interval

ωi1 ωi2 ωi3 ωi4 ωi5

σ
ξ i

j

−

+
+

+··
·

·
·

3 + + − − Old ωi2 Old ωi4

New interval

Old interval

ωi1 ωi2 ωi3 ωi4 ωi5

σ
ξ i

j

− −
+

+··
·

·
·

4 + − − − Old ωi3 Old ωi5

New interval

Old interval

ωi1 ωi2 ωi3 ωi4 ωi5

σ
ξ i

j − − − +

· · · ·
·

5 − − − − Old ωi4 Old ωi5

New interval

Old interval

ωi1 ωi2 ωi3 ωi4 ωi5

σ
ξ i

j

− − − −
·

· · · ·

Outer Loop

(1) The algorithm selects one of the parameters from the
first group, for example, B, for the outer loop. It relies
on the availability of upper and lower bounds for it. If
the parameter is the gain B, then the lower and upper
bounds are defined as B1 and B5, respectively.

(2) The algorithm defines five intermediate values within
the above range, that is, B1 to B5, where B1 is the lower
value, B5 is the highest value and the values of B2 to
B4 are evenly distributed between B1 and B5.

(3) For each value of Bi, an inner loop is created for the
other parameter in group one, that is, ωn. Therefore,
five inner loops are created. Each one of the inner
loops has the following process.

Inner Loop i, i = 1, . . . , 5

(a) Upper and lower bounds are specified forωn, denoted
as ωi5 and ωi1 , respectively.

(b) The algorithm defines five intermediate values within
the above range, that is, ωi1 to ωi5 , where ωi1 is the
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Figure 20: (a) x2’s actual and estimated values, (b) estimation error
of x2 obtained by using the IBSS/SVSF.

lower value, ωi5 is the highest value, and the values of
(ωi2 to ωi4 ) are evenly distributed between ωi1 and ωi5 .

(c) Each value of ωij is assumed to be an initial guess for
the shooting method, where i and j denote the outer
and inner loops, respectively. The pair (Bi,ωij ) are
assumed to be the values of the unknown parameters
B and ωn. Note that if B and ωn are known, the
system satisfies the observability condition for the
estimation of the remaining parameters (ξ) using

the measurement. Therefore, the third parameter, ̂ξ i j ,
can be extracted by using the measurement (z), the
input (u), the sampling time Ts, and the assigned pair
of (Bi,ωij ) through filtering or by using the inverse
model as follows:

̂ξiJk−1
=
(

Biuk−1 − ω2
i j Tsz1k−1 −

(

z2k − z2k−1

)

)

(

2ωijTsz2k−1

) , (34)

where ̂ξiJk−1
is the extracted damping ratio at time k−1

using the pair (Bi,ωij ).

(d) ̂ξij = [̂ξiJk−d+1
· · · ̂ξiJk ] is a stochastic variable segment

that is a function of the system and measurement
noise as well as modeling errors. The variance of

each ̂ξij , σ̂ξ i j
, is calculated for each corresponding ωij

which results in five values distributed as shown in
Figure 7 (note the parabolic shape). The derivative
of the curve is obtained by taking the differences
between two successive variance points at a time.
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Figure 21: (a) x3’s actual and estimated values, (b) estimation error
of x3 obtained by using the IBSS/SVSF.

The sign of the derivative is examined. Using the bi-
section method, a new subinterval is created from the
old interval by reassigning the interval boundaries,
ωi1 or/and ωi5 as shown in Table 2. Note that only one
minimum value of the variance exists in the interval.
The extreme cases (case 1 and case 5 in Table 2) treat
the location of the minimum variance value to be
close to the interval boundaries.

(e) After defining the new interval, steps (b) to (d) are
repeated iteratively until the width of the resultant
interval of natural frequency is smaller than a
threshold, ε.

(f) Once the loop stops, the natural frequency, ωni , of
that loop is assumed to be half of the final resultant
interval.

End of the Inner Loop i

(4) The algorithm uses the measurements, the input, the
sampling time, and the pairs (Bi,ωni) to obtain the

damping ratio ̂ξi for each inner loop as follows:

̂ξi =
(

Biuk−1 − ω2
niTsz1k−1 −

(

z2k − z2k−1

)

)

(

2ωniTsz2k−1

) . (35)

(5) The variance of ̂ξ i, σ̂ξ i , is calculated for each cor-
responding pair (Bi,ωni) and results in five values
distributed as shown in Figure 7. Similar to step
(d), a new subinterval is created for the gain B by
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Figure 22: (a) ξ’s actual and estimated values, (b) estimation error
of ξ obtained by using the IBSS/SVSF.

reassigning the interval boundaries; B1 or/and B5 as
discussed in step (d) and as shown in Table 2 (by
replacing ωij with Bi).

(6) After defining the new interval, steps (2) to (5) are
repeated iteratively until the width of the resultant
interval of the gain B is smaller than a threshold, ρ.

End of the Outer Loop. Once the outer loop stops, the gain,
̂B, is assumed to be half of its final interval. One more inner
loop is done using the gain ̂B and the steps (a) to (f) to

obtain ω̂n. The damping ratio, ̂ξ, is then obtained by using
the measurement, the input, the pair (̂B, ω̂n) and the inverse
model as follows:

̂ξ = 1
d

k
∑

j=k−d+1

̂Buj−1 − ω̂2
nTsz1 j−1 −

(

z2 j − z2 j−1

)

2ω̂nTsz2 j−1

. (36)

Increasing the number of parameters results in more
nested loops, where for each inner loop there will be five
subinner loops, and for each sub-inner loop there will be a
further five sub-subinner loops, and so on. The algorithm’s
computational time grows exponentially with the number of
parameters. This algorithm is only suitable for systems with
low levels of complexity and orders.

4.4. The Iterative Bi-Section/Shooting Method Combined with
the SVSF and the KF. The IBSS is used to refine the estimated
model. However, it does not estimate the states. Therefore,
the IBSS needs to be combined with a filter such as the KF or
the SVSF in order to estimate the states. This combination
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Figure 23: (a) ωn’s actual and estimated values, (b) estimation error
of ωn obtained by using the IBSS/SVSF.

can also be used to estimate observable parameters. In
this study, the combination of the SVSF with the IBSS is
presented and is compared to the KF with the IBSS. In
the example and algorithms presented, it is assumed that
all model parameters and all states are extracted from the
measurement signals. The only known information is model
structure.

4.4.1. The Iterative Bi-Section/Shooting with the KF. The
iterative Bi-section/shooting method is combined with the
Kalman filter (IBSS/KF) to estimate the states and the
parameters using data segments of the measurement signal.
The segments are needed for the IBSS. As mentioned earlier,
the parameters in the segments are assumed to be constant,
otherwise the IBSS method will be misled. The IBSS element
will be used to refine the filter’s model to reduce errors
and then the KF is used to obtain the states. The main
shortcoming of the IBSS/KF is that if the system’s parameters
change, the IBSS/KF will not know when this change has
occurred. Therefore, a segment of the measurements is taken
at a time, in which the parameters are assumed to be
constant. The segment is processed using the IBSS to obtain
the parameters. In the next step, the KF estimates the states
as shown in Figure 9 and as follows.

(1) The measurement signal is divided into segments.
The parameters of the system are assumed to be con-
stant within the segment. Each segment is processed
individually by the IBSS and the KF. The last time
step value in a segment is considered as an initial
condition to the next segment (for the KF).
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Table 3: The parameters of the EHA proposed in [13].

Symbol Description Value

Ae Piston area 5.05× 10−4 m2

Be Load friction 760 Ns/m

Dp Pump displacement 1.69× 10−7 m3/rad

L Leakage coefficient 2.5× 10−11 m3/(Pa · s)

M Load mass 20 Kg

V0 Chamber volume 6.85× 10−5 m3

βe Effective bulk modulus 1.5× 108 − 2× 108 Pa
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Figure 24: (a) Gain’s actual and estimated values, (b) estimation
error of gain obtained by using the IBSS/SVSF.

(2) The IBSS is applied to the segment to achieve the
best value of the filter’s model parameters. The cost
function (or criterion of the goodness) is the lowest
variance in the estimation of the damping ratio, ξ, (in
case of second-order system).

(3) The KF estimates the states of the system in the
segment based on the new model’s parameters from
the IBSS.

(4) Steps 1 to 3 are repeated for all data segments.

4.4.2. The Iterative Bi-Section/Shooting SVSF. The advantage
of the combination of the IBSS with the SVSF is that
the secondary indicators of performance of the SVSF can
very accurately determine when a physical parameter has
changed. This is very advantageous since the IBSS requires
that parameters are constant during the interval that they
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Figure 25: The error when changes happen within the segment.

are estimated. This provides a dynamic segmentation ability
to the IBSS/SVSF that is not possible with the IBSS/KF. The
combined IBSS/SVSF provides a remarkable algorithm that
enables the estimation of both all of the states and all of
the model parameters for low-order systems. The combined
robust stability of the SVSF and the interval definition can
lead to a stable overall process.

The iterative bi-section/shooting method is combined
with the SVSF (IBSS/SVSF) to estimate the states and the
parameters. Moreover, the SVSF’s secondary indicators of
performance are used to detect parametric changes in the
system once they occur and pass that information to the
IBSS for interval selection. If chattering occurs when the
boundary layer is set to have a width that is a function
of the upper bounds of uncertainties, then this means that
the upper bound has been breached and at least one of the
parameters has changed. Hence, chattering can provide a
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Figure 26: Comparison between the IBSS/KF and the IBSS/SVSF in term of the damping ratio profile.

good indicator of the inception of change in systems. Once
chattering occurs, the IBSS refines the estimated model. The
SVSF then uses the refined model to continue estimating
the states until chattering condition reoccurs. The combined
algorithm is summarized in Figure 10 and as follows.

(1) A SVSF with an appropriate smoothing boundary
layer is used to estimate the states, and chattering is
monitored.

(2) Once chattering occurs, the IBSS takes a segment of
the measurement and processes it to obtain model
parameters and to refine the filter’s model.

(3) The SVSF then continues to obtain the estimates until
another chattering condition occurs.

(4) Steps 1 to 3 are repeated.

In the following section, the methods are applied to an
example problem.

5. Simulation Test

5.1. Simulation Setup. In this study, the proposed algorithm-
sare tested by their application to a simulation model of
an electrohydrostatic actuator (EHA) described in [13]. The
EHA is a “pump-controlled hydraulic system” that is used in
the aerospace industry; that is, airplanes aileron, [21]. The
EHA is an integrated unit that consists of an electrical motor,
bidirectional pump, pressure and position sensors, and a
linear actuator. Its hydraulic circuit is shown in Figure 11,

[18, 22]. The EHA can be described by a third-order model
defined in its discretized state space form as

⎡

⎢

⎢

⎢

⎣

x1k+1

x2k+1

x3k+1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 Ts 0

0 1 Ts

0 −ω2
nTs 1− 2ξωnTs

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x1k

x2k

x3k

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0

0

BTs

⎤

⎥

⎥

⎥

⎦

uk +

⎡

⎢

⎢

⎢

⎣

w1k

w2k

w3k

⎤

⎥

⎥

⎥

⎦

zk+1 =

⎡

⎢

⎢

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎥

⎦

xk+1 + vk+1,

(37)

where x1, x2, and x3 are the position, velocity, and accel-

eration, ωn =
√

2(βAE
2/MV0), B = (2DβAE/MV0), and

ξ = 1/2
√

2((BEV0 +LMβ)/(
√

MV0

√

βAE
2)), these parameters

are defined and quantified in Table 3. The parameter β is the
effective bulk modulus and its value is defined in the range
(1× 108− 3× 108) Pa. The effective bulk modulus is made to
change randomly several times. As the effective bulk modulus
changes, the parameters B, ωn, and ξ are also changed.
The number of parameters in the EHA system is similar
to the number of parameters in a second-order system.
Therefore, the IBSS algorithm described in example 1 is
used. The output signals have been divided into segments
with a length equal to 200 time steps for the IBSS/KF. In



16 ISRN Signal Processing

Table 4: Comparison between the IBSS/KF and the IBSS/SVSF.

IBSS-KF IBSS-SVSF

Computation time 539.17 sec 42.8 sec

Position RMSE 1.16× 10−5 5.23× 10−10

Velocity RMSE 2.5× 10−8 2.8× 10−9

Acceleration RMSE 6.16× 10−6 8.92× 10−7

Damping ratio RMSE 4.1× 10−6 1.5× 10−6

Natural frequency RMSE 2× 10−2 1.2× 10−3

Gain RMSE 3.45× 10−3 1.86× 10−4

Position MaxError 1.3 1× 10−6

Velocity MaxError 3.8× 10−3 5.5× 10−6

Acceleration MaxError 5.8× 10−1 1.6× 10−3

Damping ratio MaxError 2× 10−2 2× 10−2

Natural frequency MaxError 100.26 99.97

Gain MaxError 17.42 17.45

Position VarError 3.7× 10−5 7.5× 10−14

Velocity VarError 1.72× 10−10 2.15× 10−12

Acceleration VarError 1.04× 10−5 2.16× 10−7

Damping ratio 4.7× 10−6 5.9× 10−7

Natural frequency VarError 109 4.5× 10−1

Gain VarError 3.27 9.4× 10−3

Identify the change in the parameters No Yes

Computation complexity Complex Simple

Memory needed Large Low

Segment length Effects No-Effects

the IBSS/SVSF, segmentation is not required. Initially, the
estimates are within the smoothing boundary layer. When a
system parameter (model) is changed, the filter estimates exit
their smoothing boundary layer thus inducing chattering.
This provides a very effective mechanism for detecting
change in the system model and is utilized in the SVSF/IBSS
formulation in term of segmentation. Hence, instead of
taking segments continuously, a data segment of length 200
time steps is taken only once when chattering is detected.
The changes in the parameters are randomly made and each
change will last for more than 20000 time steps. Within the
segment, the parameters are assumed to be constant. The
IBSS will attempt to estimate the filter parameters ωn, ξ and
B, while the SVSF or the KF estimates the system states. The
sampling time is 0.001 s·ωn, B, and ξ randomly vary between
100 to 400 Hz, 1 to 100 mrad·s and 0 to 1, respectively. The
process and measurement noise are assumed to be white
and Gaussian with noise-to-signal ratio of 10%. For the KF,
the system and measurement noise covariance matrices are
defined as

Q = R =

⎡

⎢

⎢

⎢

⎣

5× 10−14 3× 10−16 3× 10−14

3× 10−16 1× 10−12 1× 10−13

3× 10−14 1× 10−13 1× 10−8

⎤

⎥

⎥

⎥

⎦

, (38)

and the initial error covariance matrix has a value of P0 =
I3×3. For the SVSF, the coefficient matrix γ has a value of γ =
0.1× I3×3. The smoothing boundary layer is designed to have

width of Ψ = [3× 10−6 1.2× 10−5 6× 10−3]
T

. The input

consists of a random signal superimposed on step changes as
shown in Figure 12.

5.2. Simulation Results of the IBSS/KF Application. The
results of the application of the IBSS/KF are shown in
Figures 13–18. The figures show that the IBSS/KF gives good,
stable, and robust performance although modeling errors are
present. The IBSS provides the KF with a tuned model while
the KF uses this model to estimate the states. The system and
measurement noise affect the results as the estimation error
increases when the noise amplitudes increase.

5.3. Simulation Results of the IBSS/SVSF Application. The
results of the application of the IBSS/SVSF are shown in
Figures 19–24. The figures show that the IBSS/SVSF similarly
to the IBSS/KF gives good, stable, and robust performance
although modeling errors are present.

5.4. Discussion. The two methods, IBSS/SVSF and IBSS/KF,
are compared in terms of the following.

(i) The root mean square error (RMSE j), which is
defined as follows:

RMSE j = 1
length(x)

√

√

√

√

√

length(x)
∑

i=1

(

yji − ŷ ji
)2

,

for y = x1, x2, x3, ξ, ωn and B.

(39)
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(ii) The maximum absolute error (MaxError j), which is
equal to

MaxError j = max
(∣

∣

∣yji − ŷ ji
∣

∣

∣

)

,

for y = x1, x2, x3, ξ, ωn and B.
(40)

(iii) The variance in the error (VarError j) which is equal
to

VarError j = 1
length(x)− 1

,

×
length(x)
∑

i=1

⎛

⎝yji − ŷ ji −
∑length(x)

i=1

(

yji − ŷ ji
)

length(x)

⎞

⎠

2

,

for y = x1, x2, x3, ξ, ωn and B.

(41)

Table 4 summarizes the comparison.
The IBSS/KF and the IBSS/SVSF yield good results on

estimating the states and the parameters. However, there
are some differences between the two algorithms. When the
IBSS/KF is applied, the system cannot identify the exact
time when the parameters change. The algorithm divides the
measurement signal into small segments and assumes that
the segment is small enough, such that no changes happen
within it. When a change happens within the segment, the
error increases causing poor results for the parameters in
that segment as shown in Figure 25. On the other hand, the
IBSS/SVSF does not have this problem. Using the secondary
indicators of performance allows the segment lengths to be
adapted according to the time instance of change in the
parameters.

Further to Figure 25, the IBSS/KF and the IBSS/SVSF are
both able to estimate the states and the parameters. However,
their results differ in terms of adaptation, variance in the
error, and the time needed to estimate the parameters and
the states, as shown in Table 4. The amplitude of noise affects
the IBSS/KF more than the IBSS/SVSF, and the profiles of the
estimated parameters are smoother in IBSS/SVSF than those
of the IBSS/KF, as shown in Figure 26.

The IBSS/SVSF requires less time to estimate the states
and the parameters compared to the IBSS/KF. Taking a
segment each time and analyzing it takes a longer time than
taking one segment per interval and analyzing it. This causes
the IBSS/KF to take more than twelve-times what is needed
for the IBSS/SVSF, as shown in Table 4.

Changing the segment length does not affect the
IBSS/SVSF, while it greatly impacts the IBSS/KF. For exam-
ple, reducing the segment length to 100 time steps makes
the IBSS/SVSF be 1.3-times faster than the reported value
in Table 4 without affecting its performance. However, this
reduction can potentially reduce the overall RMSE of the
IBSS/KF as the segments that have parametric changes within
them become smaller. When the changes happen inside a
segment, it means that the model is incorrectly estimated

because it will be based on two partially different system
models. If the segment is small, then the error becomes
negligible in the overall RMSE. However, this is obtained
at the expense of the computational time which is almost
tripled.

6. Conclusion

A novel iterative parameter estimation technique, referred
to as the iterative bi-section/shooting method (IBSS), is
proposed. The IBSS is a searching technique used to obtain
model parameters for systems in which only the model
structure is known. The IBSS is further combined with the
SVSF and the KF. These methods are applied to an electro-
hydrostatic actuator with randomly changing parameters.
The results show the superior performance of the IBSS/SVSF.
The SVSF/IBSS enables the extraction of all parameters and
states using only the measurement signals.
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