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Let (B(t))t∈[0,1] be the linear Brownianmotion and (Xn(t))t∈[0,1] the (n−1)-fold integral of Brownian

motion, with n being a positive integer:Xn(t) =
∫ t
0((t− s)n−1/(n−1)!)dB(s) for any t ∈ [0, 1]. In this

paper we construct several bridges between times 0 and 1 of the process (Xn(t))t∈[0,1] involving
conditions on the successive derivatives of Xn at times 0 and 1. For this family of bridges, we
make a correspondence with certain boundary value problems related to the one-dimensional
polyharmonic operator. We also study the classical problem of prediction. Our results involve
various Hermite interpolation polynomials.

1. Introduction

Throughout the paper, we will denote, for any enough differentiable function f , its ith
derivative by f (i) or dif/dti.

Let (B(t))t∈[0,1] be the linear Brownian motion started at 0 and (β(t))t∈[0,1] be the linear
Brownian bridge within the time interval [0, 1]: (β(t))t∈[0,1] = (B(t) | B(0) = B(1) = 0)t∈[0,1].
These processes are Gaussian processes with covariance functions

cB(s, t) = s ∧ t, cβ(s, t) = s ∧ t − st. (1.1)



2 International Journal of Stochastic Analysis

For a given continuous function u, the functions vB and vβ, respectively, defined on [0, 1] by

vB(t) =
∫1

0
cB(s, t)u(s)ds, vβ(t) =

∫1

0
cβ(s, t)u(s)ds (1.2)

are the solutions of the respective boundary value problems on [0, 1]:

⎧
⎨

⎩

v′′
B = −u,
vB(0) = v′

B(1) = 0,

⎧
⎨

⎩

v′′
β
= −u,

vβ(0) = vβ(1) = 0.
(1.3)

Observe that the differential equations are the same in both cases. Only the boundary con-
ditions differ. They are Dirichlet-type boundary conditions for Brownian bridge while they
are Dirichlet/Neumann-type boundary conditions for Brownian motion.

These well-known connections can be extended to the polyharmonic operator
d2n/dt2n, where n is a positive integer. This latter is associated with the (n − 1)-fold integral
of Brownian motion (Xn(t))t∈[0,1]:

Xn(t) =
∫ t

0

(t − s)n−1
(n − 1)!

dB(s) for any t ∈ [0, 1]. (1.4)

(Notice that all of the derivatives at time 0 naturally vanish: Xn(0) = Xn−1(0) = · · · = X2(0) =
X1(0) = 0.) Indeed, the following facts, for instance, are known (see, e.g., [1, 2]).

(i) The covariance function of the process (Xn(t))t∈[0,1] coincides with the Green
function of the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(2n) = (−1)nu on [0, 1],

v(0) = v′(0) = · · · = v(n−1)(0) = 0,

v(n)(1) = v(n+1)(1) = · · · = v(2n−1)(1) = 0.

(1.5)

(ii) The covariance fonction of the bridge (Xn(t) | Xn(1) = 0)t∈[0,1] coincides with the
Green function of the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(2n) = (−1)nu on [0, 1],

v(0) = v′(0) = · · · = v(n−1)(0) = 0,

v(n−1)(1) = v(n+1)(1) = · · · = v(2n−1)(1) = 0.

(1.6)
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(iii) The covariance fonction of the bridge (Xn(t) | Xn(1) = Xn−1(1) = · · · = X1(1) =
0)t∈[0,1] coincides with the Green function of the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(2n) = (−1)nu on [0, 1],

v(0) = v′(0) = · · · = v(n−1)(0) = 0,

v(1) = v′(1) = · · · = v(n−1)(1) = 0.

(1.7)

Observe that the differential equations and the boundary conditions at 0 are the same in all
cases. Only the boundary conditions at 1 differ. Other boundary value problems can be found
in [3, 4].

We refer the reader to [5] for a pioneering work dealing with the connections between
general Gaussian processes and Green functions; see also [6]. We also refer to [7–13] and the
references therein for various properties, namely, asymptotical study, of the iterated integrals
of Brownian motion and more general Gaussian processes as well as to [3, 4, 14, 15] for
interesting applications of these processes to statistics.

The aim of this work is to examine all the possible conditioned processes of
(Xn(t))t∈[0,1] involving different events at time 1:

(
Xn(t) | Xj1(1) = Xj2(1) = · · · = Xjm(1) = 0

)
t∈[0,1] (1.8)

for a certain numberm of events, 1 ≤ m ≤ n, and certain indices j1, j2, . . . , jm such that 1 ≤ j1 <
j2 < · · · < jm ≤ n, and to make the connection with the boundary value problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(2n) = (−1)nu on [0, 1],

v(0) = v′(0) = · · · = v(n−1)(0) = 0,

v(i1)(1) = v(i2)(1) = · · · = v(in)(1) = 0

(BVP)

for certain indices i1, i2, . . . , in such that 0 ≤ i1 < i2 < · · · < in ≤ 2n − 1. Actually, we will see
that this connection does not recover all the possible boundary value problems, and we will
characterize those sets of indices for which such a connection exists.

The paper is organized as follows. In Section 2, we exhibit the relationships between
general Gaussian processes and Green functions of certain boundary value problems.
In Section 3, we consider the iterated integrals of Brownian motion. In Section 4, we
construct several bridges associated with the foregoing processes and depict explicitly their
connections with the polyharmonic operator together with various boundary conditions. One
of the main results is Theorem 4.4. Moreover, we exhibit several interesting properties of the
bridges (Theorems 4.1 and 4.3) and solve the prediction problem (Theorem 4.6). In Section 5,
we illustrate the previous results on the case n = 2 related to integrated Brownian motion.
Finally, in Section 6, we give a characterization for the Green function of the boundary value
problem (BVP) to be a covariance function. Another one of the main results is Theorem 6.3.
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2. Gaussian Processes and Green Functions

We consider an n-Markov Gaussian process (X(t))t∈[0,1] evolving on the real line R. By “n-
Markov,” it is understood that the trajectory t �→ X(t) is n times differentiable and the n-
dimensional process (X(t), X′(t), . . . , X(n−1)(t))t∈[0,1] is a Markov process. Let us introduce the
covariance function of (X(t))t∈[0,1]: for s, t ∈ [0, 1], cX(s, t) = E[X(s)X(t)]. It is known (see
[6]) that the function cX admits the following representation:

cX(s, t) =
n−1∑

k=0

ϕk(s ∧ t)ψk(s ∨ t), (2.1)

where ϕk, ψk, k ∈ {0, 1, . . . , n − 1}, are certain functions.
Let D0, D1 be linear differential operators of order less than p, and let D be a linear

differential operator of order p defined by

D =
p∑

i=0

αi
di

dti
, (2.2)

where α0, α1, . . . , αp are continuous functions on [0, 1]. More precisely, we have for any p times
differentiable function f and any t ∈ [0, 1],

(Df)(t) =
p∑

i=0

αi(t)f (i)(t). (2.3)

Theorem 2.1. Assume that the functions ϕk, ψk, k ∈ {0, 1, . . . , n − 1}, are p times differentiable and
satisfy the following conditions, for a certain constant κ:

n−1∑

k=0

[
ϕkψ

(i)
k − ϕ(i)

k ψk
]
=

⎧
⎨

⎩

0 if 0 ≤ i ≤ p − 2,

κ if i = p − 1,
(2.4)

Dϕk = Dψk = 0,
(D0ϕk

)
(0) = 0,

(D1ψk
)
(1) = 0. (2.5)

Then, for any continuous function u on [0, 1], the function v defined on [0, 1] by

v(t) =
∫1

0
cX(s, t)u(s)ds (2.6)

solves the boundary value problem

⎧
⎨

⎩

Dv = αpu,

(D0v)(0) = (D1v)(1) = 0.
(2.7)

Remark 2.2. If the problem (2.7) is determining, that is, if it has a unique solution, then the
covariance function cX is exactly the Green function of the boundary value problem (2.7).
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Proof. In view of (2.1), the function v can be written as

v(t) =
n−1∑

k=0

[

ψk(t)
∫ t

0
ϕk(s)u(s)ds + ϕk(t)

∫1

t

ψk(s)u(s)ds

]

. (2.8)

The derivative of v is given by

v′(t) =
n−1∑

k=0

[

ψ ′
k(t)

∫ t

0
ϕk(s)u(s)ds + ϕ′

k(t)
∫1

t

ψk(s)u(s)ds

]

(2.9)

and its second-order derivative, since
∑n−1

k=0[ϕkψ
′
k
− ϕ′

k
ψk] = 0, by

v′′(t) =
n−1∑

k=0

[

ψ ′′
k(t)

∫ t

0
ϕk(s)u(s)ds + ϕ′′

k(t)
∫1

t

ψk(s)u(s)ds +
[
ϕk(t)ψ ′

k(t) − ϕ′
k(t)ψk(t)

]
u(t)

]

=
n−1∑

k=0

[

ψ ′′
k(t)

∫ t

0
ϕk(s)u(s)ds + ϕ′′

k(t)
∫1

t

ψk(s)u(s)ds

]

.

(2.10)

More generally, because of the assumptions (2.4), we easily see that, for i ∈ {0, 1, . . . , p − 1},

v(i)(t) =
n−1∑

k=0

[

ψ
(i)
k (t)

∫ t

0
ϕk(s)u(s)ds + ϕ

(i)
k (t)

∫1

t

ψk(s)u(s)ds

]

, (2.11)

and the pth order derivative of v is given by

v(p)(t) =
n−1∑

k=0

[

ψ
(p)
k (t)

∫ t

0
ϕk(s)u(s)ds + ϕ

(p)
k (t)

∫1

t

ψk(s)u(s)ds

+
[
ϕk(t)ψ

(p−1)
k (t) − ϕ(p−1)

k (t)ψ(t)
]
u(t)

]

=
n−1∑

k=0

[

ψ
(p)
k (t)

∫ t

0
ϕk(s)u(s)ds + ϕ

(p)
k (t)

∫1

t

ψk(s)u(s)ds

]

+ κu(t).

(2.12)

Actually, we have proved that, for i ∈ {0, 1, . . . , p − 1},

v(i)(t) =
∫ t

0

∂icX
∂ti

(s, t)u(s)ds. (2.13)
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Finally, due to (2.5),

Dv(t) =
n−1∑

k=0

[

Dψk(t)
∫ t

0
ϕk(s)u(s)ds +Dϕk(t)

∫1

t

ψk(s)u(s)ds

]

+ καpu(t) = καpu(t). (2.14)

Concerning the boundary value conditions, referring to (2.5), we similarly have

(D0v)(0) =
n−1∑

k=0

(D0ϕk
)
(0)
∫1

0
ψk(s)u(s)ds = 0,

(D1v)(1) =
n−1∑

k=0

(D1ψk
)
(1)
∫1

0
ϕk(s)u(s)ds = 0.

(2.15)

The proof of Theorem 2.1 is finished.

In the two next sections, we construct processes connected to the equation Dv = u
subject to the boundary value conditions at 0: (Di

0v)(0) = 0 for i ∈ {0, 1, . . . , n − 1} and others
at 1 that will be discussed subsequently, where D and Di

0 are the differential operators (D
being of order p = 2n) defined by

D = (−1)n d2n

dt2n
, Di

0 =
di

dti
. (2.16)

3. The (n − 1)-Fold Integral of Brownian Motion

Let (B(t))t∈[0,1] be the linear Brownian motion limited to the time interval [0, 1] and started at
0. We introduce the (n − 1)-fold integral of Brownian motion: for any t ∈ [0, 1],

Xn(t) =
∫ t

0

(t − s)n−1
(n − 1)!

dB(s). (3.1)

In particular, X1 = B. The trajectories of (Xn(t))t∈[0,1] are n times differentiable and we have

X
(i)
n = Xn−i for 0 ≤ i ≤ n − 1. Moreover, we have at time 0 the equalities Xn(0) = Xn−1(0) =

· · · = X2(0) = X1(0) = 0. The process (Xn(t))t∈[0,1] is an n-Markov Gaussian process since the
n-dimensional process (Xn(t), Xn−1(t), . . . , X1(t))t∈[0,1] is Markovian. The covariance function
of the Gaussian process (Xn(t))t∈[0,1] is given by

cXn(s, t) =
∫s∧t

0

(s − u)n−1
(n − 1)!

(t − u)n−1
(n − 1)!

du. (3.2)
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In order to apply Theorem 2.1, we decompose cXn into the form (2.1). We have for, e.g., s ≤ t,

cXn(s, t) =
∫ s

0

(s − u)n−1
(n − 1)!2

[
n−1∑

k=0

(
n − 1

k

)

(−u)n−1−ktk
]

du

=
n−1∑

k=0

(−1)n−1−k tk

k!

∫s

0

(s − u)n−1
(n − 1)!

un−1−k

(n − 1 − k)!du

=
n−1∑

k=0

(−1)n−1−k s2n−1−k

(2n − 1 − k)!
tk

k!
.

(3.3)

We then obtain the following representation:

cXn(s, t) =
n−1∑

k=0

ϕk(s)ψk(t) (3.4)

with, for any k ∈ {0, 1, . . . , n − 1},

ϕk(s) = (−1)n−1−k s2n−1−k

(2n − 1 − k)! , ψk(t) =
tk

k!
. (3.5)

We state below a result of [2] that we revisit here by using Theorem 2.1.

Theorem 3.1. Let u be a fixed continuous function on [0, 1]. The function v defined on [0, 1] by

v(t) =
∫1

0
cXn(s, t)u(s)ds (3.6)

is the solution of the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(2n) = (−1)nu on [0, 1],

v(i)(0) = 0 for i ∈ {0, 1, . . . , n − 1},
v(i)(1) = 0 for i ∈ {n, n + 1, . . . , 2n − 1}.

(3.7)
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Proof. Let us check that conditions (2.4) and (2.5) of Theorem 2.1 are fulfilled. First, we have

n−1∑

k=0

[
ϕk(t)ψ

(i)
k (t) − ϕ(i)

k (t)ψk(t)
]

=
n−1∑

k=0

(−1)n−1−k
[

1{k≥i}
t2n−1−k

(2n − 1 − k)!
tk−i

(k − i)! − 1{k≤2n−1−i}
t2n−1−i−k

(2n − 1 − i − k)!
tk

k!

]

= (−1)n−1 t2n−1−i

(2n − 1 − i)!

[

1{i≤n−1}
n−1∑

k=i

(−1)k
(
2n − 1 − i
k − i

)

−
(2n−1−i)∧(n−1)∑

k=0

(−1)k
(
2n − 1 − i

k

)]

= (−1)n−1 t2n−1−i

(2n − 1 − i)!

[

1{i≤n−1}

(
n−1−i∑

k=0

(−1)i+k
(
2n − 1 − i

k

)

−
n−1∑

k=0

(−1)k
(
2n − 1 − i

k

))

−1{i≥n}
2n−1−i∑

k=0

(−1)k
(
2n − 1 − i

k

)]

.

(3.8)

Performing the transformation k �→ 2n−1− i−k in the first sum lying within the last equality,
we get

n−1−i∑

k=0

(−1)i+k
(
2n − 1 − i

k

)

−
n−1∑

k=0

(−1)k
(
2n − 1 − i

k

)

=
2n−1−i∑

k=n

(−1)k
(

2n − 1 − i
2n − 1 − i − k

)

+
n−1∑

k=0

(−1)k
(
2n − 1 − i

k

)

=
2n−1−i∑

k=0

(−1)k
(
2n − 1 − i

k

)

= δi,2n−1,

(3.9)

and then

n−1∑

k=0

[
ϕk(t)ψ

(i)
k (t) − ϕ(i)

k (t)ψk(t)
]
= (−1)nδi,2n−1. (3.10)

On the other hand, setting

D = (−1)n d2n

dt2n
, Di

0 =
di

dti
, Di

1 =
di+n

dti+n
, (3.11)

we clearly see that, for any k ∈ {0, 1, . . . , n − 1},

Dϕk = Dψk = 0, Di
0ϕk(0) = Di

1ψk(1) = 0 for i ∈ {0, 1, . . . , n − 1}. (3.12)

Consequently, by Theorem 2.1, we see that the function v solves the boundary value problem
(3.7). The uniqueness part will follow from a more general argument stated in the proof of
Theorem 4.4.
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4. Various Bridges of the (n − 1)-Fold Integral of Brownian Motion

In this section, we construct various bridges related to (Xn(t))t∈[0,1]. More precisely, we take
(Xn(t))t∈[0,1] conditioned on the event that certain derivatives vanish at time 1. Let us recall
that all the derivatives at time 0 naturally vanish: Xn(0) = Xn−1(0) = · · · = X2(0) = X1(0) = 0.

For any m ∈ {0, 1, . . . , n}, let J = {j1, j2, . . . , jm} be a subset of {1, 2, . . . , n} with 1 ≤
j1 < j2 < · · · < jm ≤ n and the convention that for m = 0, J = ∅. We see that, for each
m ∈ {0, 1, . . . , n}, we can define ( nm ) subsets of indices J , and the total number of sets J is then∑n

m=0(
n
m ) = 2n. Set for any t ∈ [0, 1]

Y (t) =
(
Xn(t) | Xj(1) = 0, j ∈ J) = (Xn(t) | Xj1(1) = Xj2(1) = · · · = Xjm(1) = 0

)
. (4.1)

In this way, we define 2n processes (Y (t))t∈[0,1] that we will call “bridges” of (Xn(t))t∈[0,1]. In
particular,

(i) for J = ∅, we simply have (Y (t))t∈[0,1] = (Xn(t))t∈[0,1];

(ii) for J = {1}, the corresponding process is the (n − 1)-fold integral of Brownian
bridge

(Xn(t) | X1(1) = 0)t∈[0,1] =

(∫ t

0

(t − s)n−1
(n − 1)!

dβ(s)

)

t∈[0,1]
; (4.2)

(iii) for J = {n}, the corresponding process is the “single” bridge of (n − 1)-fold integral
of Brownian motion:

(Xn(t) | Xn(1) = 0)t∈[0,1] =

(∫ t

0

(t − s)n−1
(n − 1)!

dB(s) |
∫1

0

(1 − s)n−1
(n − 1)!

dB(s) = 0

)

t∈[0,1]
; (4.3)

(iv) for J = {1, 2, . . . , n}, the corresponding process is

(Xn(t) | Xn(1) = Xn−1(1) = · · · = X1(1) = 0)t∈[0,1]. (4.4)

This is the natural bridge related to the n-dimensional Markov process
(Xn(t), Xn−1(t), . . . , X1(t))t∈[0,1].

In this section, we exhibit several interesting properties of the various processes
(Y (t))t∈[0,1]. One of the main goals is to relate these bridges to additional boundary value
conditions at 1. For this, we introduce the following subset I of {0, 1, . . . , 2n − 1}:

I = (n − J) ∪ [{n, n + 1, . . . , 2n − 1} \ (J + n − 1)] (4.5)

with

n − J =
{
n − j, j ∈ J} = {n − j1, . . . , n − jm

}
,

J + n − 1 =
{
j + n − 1, j ∈ J} = {j1 + n − 1, . . . , jm + n − 1

}
.

(4.6)
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Table 1

I {0, 1, . . . , n − 1} {n, n + 1, . . . , 2n − 1} {n − 1, n + 1, . . . , 2n − 1} {0, n + 1, . . . , 2n − 2}
J {1, 2, . . . , n} ∅ {1} {n}

The cardinality of I is n. Actually, the set I will be used further for enumerating the boundary
value problems which can be related to the bridges labeled by J . Conversely, I yields J
through

J = (n − I) ∩ {1, 2, . . . , n}. (4.7)

In Table 1, we give some examples of sets I and J .

4.1. Polynomial Drift Description

Below, we provide a representation of (Y (t))t∈[0,1] by means of (Xn(t))t∈[0,1] subject to a
random polynomial drift.

Theorem 4.1. One has the distributional identity

(Y (t))t∈[0,1]
d=

⎛

⎝Xn(t) −
∑

j∈J
Pj(t)Xj(1)

⎞

⎠

t∈[0,1]

, (4.8)

where the functions Pj , j ∈ J , are Hermite interpolation polynomials on [0, 1] characterized by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P
(2n)
j = 0,

P
(i)
j (0) = 0 for i ∈ {0, 1, . . . , n − 1},
P
(i)
j (1) = δj,n−i for i ∈ I.

(4.9)

Remark 4.2. In the case where n = 2, we retrieve a result of [16]. Moreover, conditions (4.9)
characterize the polynomials Pj , j ∈ J . We prove this fact in Lemma A.1 in the Appendix.

Proof. By invoking classical arguments of Gaussian processes theory, we have the distribu-
tional identity

(Y (t))t∈[0,1]
d=

⎛

⎝Xn(t) −
∑

j∈J
Pj(t)Xj(1)

⎞

⎠

t∈[0,1]

, (4.10)

where the functions Pj , j ∈ J , are such that E[Y (t)Xk(1)] = 0 for all k ∈ J . We get the linear
system

∑

j∈J
E
[
Xj(1)Xk(1)

]
Pj(t) = E[Xn(t)Xk(1)], k ∈ J. (4.11)
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We plainly have

E
[
Xj(s)Xk(t)

]
=
∫s∧t

0

(s − u)j−1
(
j − 1

)
!
(t − u)k−1
(k − 1)!

du. (4.12)

Then, the system (4.11) writes

∑

j∈J

1
j + k − 1

Pj(t)
(
j − 1

)
!
=
∫ t

0

(t − u)n−1
(n − 1)!

(1 − u)k−1du. (4.13)

The matrix of this system (1/(j + k − 1))j,k∈J is regular as it can be seen by introducing the
related quadratic form which is definite positive. Indeed, for any real numbers xj , j ∈ J , we
have

∑

j,k∈J

xjxk

j + k − 1
=
∫1

0

⎛

⎝
∑

j,k∈J
xjxku

j+k−2

⎞

⎠du =
∫1

0

⎛

⎝
∑

j∈J
xju

j−1

⎞

⎠

2

du ≥ 0,

∑

j,k∈J

xjxk

j + k − 1
= 0 iff ∀j ∈ J, xj = 0.

(4.14)

Thus, the system (4.11) has a unique solution. As a result, the Pj are linear combinations of
the functions t �→ ∫ t

0(t − u)n−1(1 − u)k−1du which are polynomials of degree less than n + k.
Hence, the Pj are polynomials of degree at most 2n − 1.

We now compute the derivatives of Pj at 0 in 1. We have P (i)
j (0) = 0 for i ∈ {0, 1, . . . , n−

1} since the functions t �→ ∫ t
0(t − u)n−1(1 − u)k−1du plainly enjoy this property. For checking

that P (i)
j (1) = δj,n−i for i ∈ I, we successively compute

(i) for i ∈ {0, 1, . . . , n − 1},

di

dti
E[Xn(t)Xk(1)] = E[Xn−i(t)Xk(1)]; (4.15)

(ii) for i = n − 1,

di

dti
E[Xn(t)Xk(1)] = E[B(t)Xk(1)] =

∫ t

0

(1 − u)k−1
(k − 1)!

du; (4.16)

(iii) for i = n,

di

dti
E[Xn(t)Xk(1)] =

(1 − t)k−1
(k − 1)!

; (4.17)
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(iv) for i ∈ {n, n + 1, . . . , n + k − 1},

di

dti
E[Xn(t)Xk(1)] = (−1)i+n (1 − t)k+n−i−1

(k + n − i − 1)!
; (4.18)

(v) for i = k + n − 1,

di

dti
E[Xn(t)Xk(1)] = (−1)k−1; (4.19)

(vi) for i ≥ k + n,

di

dti
E[Xn(t)Xk(1)] = 0. (4.20)

Consequently, at time t = 1, for i ≥ n,

di

dti
E[Xn(t)Xk(1)]

∣∣∣∣∣
t=1

= (−1)k−1δi,k+n−1. (4.21)

Now, by differentiating (4.11), we get for i ∈ {0, 1, . . . , n − 1},
∑

j∈J
E
[
Xj(1)Xk(1)

]
P
(i)
j (1) = E[Xn−i(1)Xk(1)], k ∈ J. (4.22)

In particular, if i ∈ (n − J), this can be rewritten as

∑

j∈J
E
[
Xj(1)Xk(1)

]
P
(i)
j (1) =

∑

j∈J
δj,n−iE

[
Xj(1)Xk(1)

]
, k ∈ J, (4.23)

which by identification yields P (i)
j (1) = δj,n−i. Similarly, for i ∈ {n, n + 1, . . . , 2n − 1}, in view of

(4.21), we have

∑

j∈J
E
[
Xj(1)Xk(1)

]
P
(i)
j (1) = (−1)k−1δi,k+n−1, k ∈ J. (4.24)

In particular, if i ∈ {n, n + 1, . . . , 2n − 1} \ (J + n − 1), we have δi,k+n−1 = 0 for k ∈ J , and then

∑

j∈J
E
[
Xj(1)Xk(1)

]
P
(i)
j (1) = 0, k ∈ J, (4.25)

which by identification yields P (i)
j (1) = 0 = δj,n−i. The proof of Theorem 4.1 is finished.
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4.2. Covariance Function

Let cY be the covariance function of (Y (t))t∈[0,1]: cY (s, t) = E[Y (s)Y (t)]. In the next theorem,
we supply a representation of cY of the form (2.1).

Theorem 4.3. The covariance function of (Y (t))t∈[0,1] admits the following representation: for s, t ∈
[0, 1],

cY (s, t) =
n−1∑

k=0

ϕk(s ∧ t)ψ̃k(s ∨ t) (4.26)

with, for any k ∈ {0, 1, . . . , n − 1},

ψ̃k(t) = ψk(t) −
∑

j∈J
ψ
(n−j)
k (1)Pj(t). (4.27)

Moreover, the functions ψ̃k, k ∈ {0, 1, . . . , n − 1}, are Hermite interpolation polynomials such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ̃
(2n)
k = 0,

ψ̃
(i)
k (0) = δi,k for i ∈ {0, 1, . . . , n − 1},
ψ̃
(i)
k (1) = 0 for i ∈ I.

(4.28)

Proof. We decompose Y (t) into the difference

Y (t) = Xn(t) − Z(t) with Z(t) =
∑

j∈J
Pj(t)Xj(1). (4.29)

We have

cY (s, t) = E[Xn(s)Xn(t)] + E[Z(s)Z(t)] − E[Xn(s)Z(t)] − E[Z(s)Xn(t)]

= cXn(s, t) +
∑

j,k∈J
E
[
Xj(1)Xk(1)

]
Pj(s)Pk(t)

−
∑

j∈J
E
[
Xn(t)Xj(1)

]
Pj(s) −

∑

j∈J
E
[
Xn(s)Xj(1)

]
Pj(t).

(4.30)

By definition (4.11) of the Pj ’s, we observe that

∑

j,k∈J
E
[
Xj(1)Xk(1)

]
Pj(s)Pk(t) −

∑

k∈J
E[Xn(s)Xk(1)]Pk(t)

=
∑

k∈J

⎛

⎝
∑

j∈J
E
[
Xj(1)Xk(1)

]
Pj(s) − E[Xn(s)Xk(1)]

⎞

⎠Pk(t) = 0.

(4.31)
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Then, we can simplify cY (s, t) into

cY (s, t) = cXn(s, t) −
∑

j∈J
E
[
Xn(t)Xj(1)

]
Pj(s). (4.32)

Since the covariance functions cY and cXn are symmetric, we also have

cY (s, t) = cXn(s, t) −
∑

j∈J
E
[
Xn(s)Xj(1)

]
Pj(t). (4.33)

Let us introduce the symmetric polynomial

Q(s, t) =
∑

j∈J
E
[
Xn(s)Xj(1)

]
Pj(t) =

∑

j∈J
E
[
Xn(t)Xj(1)

]
Pj(s). (4.34)

It can be expressed by means of the functions ϕk, ψk’s as follows:

Q(s, t) =
∑

j∈J

n−1∑

k=0

ϕk(s ∧ t)ψ(n−j)
k (1)Pj(s ∨ t). (4.35)

We can rewrite cY (s, t) as

cY (s, t) = cXn(s, t) −Q(s, t) =
n−1∑

k=0

ϕk(s ∧ t)
⎡

⎣ψk(s ∨ t) −
∑

j∈J
ψ
(n−j)
k (1)Pj(s ∨ t)

⎤

⎦, (4.36)

and then, for s, t ∈ [0, 1],

cY (s, t) =
n−1∑

k=0

ϕk(s ∧ t)ψ̃k(s ∨ t) with ψ̃k(t) = ψk(t) −
∑

j∈J
ψ
(n−j)
k (1)Pj(t). (4.37)

We immediately see that ψ̃k is a polynomial of degree less than 2n such that ψ̃(i)
k (0) = δi,k for

i ∈ {0, 1, . . . , n − 1} and, since P (i)
j (1) = δj,n−i,

ψ̃
(i)
k (1) = ψ(i)

k (1) −
∑

j∈J
ψ
(n−j)
k (1)P (i)

j (1) =
(
1 − 1{i∈n−J}

)
ψ
(i)
k (1). (4.38)

We deduce that

⎧
⎨

⎩

ψ̃
(i)
k (1) = 0 if i ∈ (n − J),
ψ̃
(i)
k (1) = ψ(i)

k (1) = 0 if i ∈ {n, n + 1, . . . , 2n − 1} \ (J + n − 1).
(4.39)

Then ψ̃(i)
k
(1) = 0 for any i ∈ I. This ends up the proof of Theorem 4.3.
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4.3. Boundary Value Problem

In this section, we write out the natural boundary value problem which is associated with
the process (Y (t))t∈[0,1]. The following statement is the main connection between the different
boundary value conditions associated with the operator d2n/dt2n and the different bridges of
the process (Xn)t∈[0,1] introduced in this work.

Theorem 4.4. Let u be a fixed continuous function on [0, 1]. The function v defined on [0, 1] by

v(t) =
∫1

0
cY (s, t)u(s)ds (4.40)

is the solution of the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(2n) = (−1)nu on [0, 1],

v(i)(0) = 0 for i ∈ {0, 1, . . . , n − 1},
v(i)(1) = 0 for i ∈ I.

(4.41)

Proof.

Step 1. Recall that cY (s, t) = cXn(s, t)−Q(s, t). We decompose the function v into the difference
w − z, where, for t ∈ [0, 1],

w(t) =
∫1

0
cXn(s, t)u(s)ds, z(t) =

∫1

0
Q(s, t)u(s)ds. (4.42)

We know from Theorem 3.1 that w(2n) = (−1)nu, w(i)(0) = (∂iQ/∂ti)(s, 0) = 0 for i ∈
{0, 1, . . . , n − 1} and w(i)(1) = 0 for i ∈ {n, n + 1, . . . , 2n − 1}. Moreover, with the function
t �→ Q(s, t) being a polynomial of degree less than 2n, the function z is also a polynomial of
degree less than 2n. Then z(2n) = 0, z(i)(0) = 0 for i ∈ {0, 1, . . . , n − 1}, and

v(2n) = w(2n) − z(2n) = (−1)nu, v(i)(0) = w(i)(0) − z(i)(0) = 0 for i ∈ {0, 1, . . . , n − 1}. (4.43)

On the other hand, we learn from (2.13) that, for i ∈ {0, 1, . . . , 2n − 1},

w(i)(1) =
∫1

0

∂icXn

∂ti
(s, 1)u(s)ds, (4.44)

and then, for i ∈ {0, 1, . . . , n − 1},

w(i)(1) =
∫1

0
E[Xn(s)Xn−i(1)]u(s)ds. (4.45)
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We also have, for any i ∈ {0, 1, . . . , 2n − 1},

∂iQ

∂ti
(s, 1) =

∑

j∈J
E
[
Xn(s)Xj(1)

]
P
(i)
j (1) = 1{i∈(n−J)}E[Xn(s)Xn−i(1)]. (4.46)

As a result, we see that

z(i)(1) =
∫1

0

∂iQ

∂ti
(s, 1)u(s)ds = 1{i∈(n−J)}w(i)(1). (4.47)

This implies that, for i ∈ (n − J), z(i)(1) = w(i)(1) and for i ∈ {n, n + 1, . . . , 2n − 1} \ (J + n − 1),
z(i)(1) = 0 = w(i)(1). Then z(i)(1) = w(i)(1) for any i ∈ I, that is, v(i)(1) = 0. The function v is a
solution of (4.41).

Step 2. We now check the uniqueness of the solution of (4.41). Let v1 and v2 be two solutions
of Dv = u. Then the function w = v1 − v2 satisfies Dw = 0, w(i)(0) = 0 for i ∈ {0, 1, . . . , n − 1}
and w(i)(1) = 0 for i ∈ I. We compute the following “energy” integral:

∫1

0
w(n)(t)2dt = (−1)n+1

[
n−1∑

i=0
(−1)iw(i)(t)w(2n−1−i)(t)

]1

0

+ (−1)n
∫1

0
w(t)w(2n)(t)dt

= (−1)n+1
n−1∑

i=0
(−1)iw(i)(1)w(2n−1−i)(1).

(4.48)

We have constructed the set I in order to have w(i)(1)w(2n−1−i)(1) = 0 for any i ∈ {0, 1, . . . , n −
1}: when we pick an index i ∈ {0, 1, . . . , n − 1}, either i ∈ I or 2n − 1 − i ∈ I. Indeed,

(i) if i ∈ I ∩ {0, 1, . . . , n − 1}, w(i) = 0;

(ii) if i ∈ {0, 1, . . . , n−1}\I, by observing that {0, 1, . . . , n−1}\I = {0, 1, . . . , n−1}\(n−J),
we have 2n−1−i ∈ {n, n+1, . . . , 2n−1}\(J+n−1). Since {n, n+1, . . . , 2n−1}\(J+n−1) ⊂
I, we see that 2n − 1 − i ∈ I and then w(2n−1−i) = 0.

Next,
∫1
0 w

(n)(t)2 dt = 0 which entails w(n) = 0, that is, w is a polynomial of degree less than
n. Moreover, with the boundary value conditions at 0, we obtain w = 0 or v1 = v2.

The proof of Theorem 4.4 is finished.

Remark 4.5. We have seen in the previous proof that uniqueness is assured as soon as the
boundary value conditions at 1 satisfy w(i)(1)w(2n−1−i)(1) = 0 for any i ∈ {0, 1, . . . , n − 1}.
These conditions are fulfilled when the set I = {i1, i2, . . . , in} ⊂ {0, 1, . . . , 2n − 1} is such that
i1 ∈ {0, 2n − 1}, i2 ∈ {1, 2n − 2}, i3 ∈ {2, 2n − 3}, . . ., in ∈ {n − 1, n}. This is equivalent to say that
I and (2n − 1 − I)make up a partition of {0, 1, . . . , 2n − 1}, or

2n − 1 − I = {0, 1, . . . , 2n − 1} \ I. (4.49)
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In this manner, we get 2n different boundary value problems which correspond to the
2n different bridges we have constructed. We will see in Section 6 that the above identity
concerning the differentiating set I characterizes the possibility for the Green function of the
boundary value problem (4.41) to be the covariance of a Gaussian process.

4.4. Prediction

Now, we tackle the problem of the prediction for the process (Y (t))t∈[0,1].

Theorem 4.6. Fix t0 ∈ [0, 1]. The shifted process (Y (t + t0))t∈[0,1−t0] admits the following represen-
tation:

(Y (t + t0))t∈[0,1−t0] =

(

Ỹt0(t) +
n−1∑

i=0

Qi,t0(t)Y
(i)(t0)

)

t∈[0,1−t0]
, (4.50)

where

Ỹt0(t) = X̃n(t) −
∑

j∈J
P̃j,t0(t)X̃j(1 − t0). (4.51)

The process (X̃n(t))t∈[0,1−t0] is a copy of (Xn(t))t∈[0,1−t0] which is independent of (Xn(t))t∈[0,t0].
The functions P̃j,t0 , j ∈ J , andQi,t0 , i ∈ {0, 1, . . . , n−1}, are Hermite interpolation polynomials

on [0, 1 − t0] characterized by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P̃
(2n)
j,t0

= 0,

P̃
(ι)
j,t0

(0) = 0 for ι ∈ {0, 1, . . . , n − 1},
P̃
(ι)
j,t0

(1 − t0) = δι,n−j for ι ∈ I,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q
(2n)
i,t0

= 0,

Q
(ι)
i,t0
(0) = δι,i for ι ∈ {0, 1, . . . , n − 1},

Q
(ι)
i,t0
(1 − t0) = 0 for ι ∈ I.

(4.52)

Actually, these functions can be expressed by means of the functions Pj , j ∈ J , and ψ̃i, i ∈ {0, 1, . . . , n−
1}, as follows:

P̃j,t0(t) = (1 − t0)n−jPj
(

t

1 − t0

)
, Qi,t0 = (1 − t0)iψ̃i

(
t

1 − t0

)
. (4.53)

In other words, the process (Ỹt0(t))t∈[0,1−t0] is a bridge of length (1 − t0) which is independent of
(Y (t))t∈[0,t0], that is,

(
Ỹt0(t)

)

t∈[0,1−t0]
d=
(
X̃n(t) | X̃j(1 − t0) = 0, j ∈ J

)

t∈[0,1−t0]
. (4.54)
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Proof.

Step 1. Fix t0 ∈ [0, 1]. We have the well-known decomposition, based on the classical
prediction property of Brownian motion stipulating that (B(t + t0))t∈[0,1−t0] = (B̃t0(t) +
B(t0))t∈[0,1−t0], where (B̃t0(t))t∈[0,1−t0] is a Brownian motion independent of (B(t))t∈[0,t0],

(Xn(t + t0))t∈[0,1−t0] =

(

X̃n(t) +
n−1∑

k=0

tk

k!
Xn−k(t0)

)

t∈[0,1−t0]
(4.55)

with X̃n(t) =
∫1
0 ((t − s)n−1/(n − 1)!)dB̃(s). Differentiating this equality (n − j) times, j ∈

{1, 2, . . . , n}, we obtain

Xj(t + t0) = X̃j(t) +
n−1∑

k=n−j

tj+k−n
(
j + k − n)!Xn−k(t0). (4.56)

Therefore,

Y (t + t0) = Xn(t + t0) −
∑

j∈J
Pj(t + t0)Xj(1)

= X̃n(t) +
n−1∑

k=0

tk

k!
Xn−k(t0) −

∑

j∈J
Pj(t + t0)

⎡

⎣X̃j(1 − t0) +
n−1∑

k=n−j

(1 − t0)j+k−n(
j + k − n)!Xn−k(t0)

⎤

⎦

=

⎡

⎣X̃n(t) −
∑

j∈J
Pj(t + t0)X̃j(1 − t0)

⎤

⎦

+
n−1∑

k=0

⎡

⎣ t
k

k!
−

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! Pj(t + t0)

⎤

⎦Xn−k(t0).

(4.57)

We are going to express theXn−k(t0), k ∈ {1, . . . , n}, by means of the X̃j(1− t0), j ∈ J . We have,
by differentiating (4.57) i times, for i ∈ {0, 1, . . . , n − 1},

Y (i)(t + t0) =

⎡

⎣X̃n−i(t) −
∑

j∈J
P
(i)
j (t + t0)X̃j(1 − t0)

⎤

⎦

+
n−1∑

k=0

⎡

⎣ tk−i

(k − i)!1{k≥i} −
∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! P

(i)
j (t + t0)

⎤

⎦Xn−k(t0).

(4.58)
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For t = 0, this yields

Y (i)(t0) = −
∑

j∈J
P
(i)
j (t0)X̃j(1 − t0) +

n−1∑

k=0

⎡

⎣δi,k −
∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! P

(i)
j (t0)

⎤

⎦Xn−k(t0). (4.59)

Set for i, k ∈ {0, 1, . . . , n − 1}

aik = δi,k −
∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! P

(i)
j (t0), (4.60)

and let us introduce the matrix

A = (aik)0≤i,k≤n−1 (4.61)

together with its inverse matrix

B = A−1 = (bik)0≤i,k≤n−1. (4.62)

Equalities (4.59) for i ∈ {0, 1, . . . , n− 1} read as a linear system of (n− 1) equations and (n− 1)
unknowns:

n−1∑

k=0

aikXn−k(t0) = Y (i)(t0) +
∑

j∈J
P
(i)
j (t0)X̃j(1 − t0), i ∈ {0, 1, . . . , n − 1}, (4.63)

which can be rewritten into a matrix form as

A

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

Xn(t0)

Xn−1(t0)

...

X2(t0)

X1(t0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

Y (t0)

Y ′(t0)

...

Y (n−2)(t0)

Y (n−1)(t0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
∑

j∈J
X̃j(1 − t0)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pj(t0)

P ′
j(t0)

...

P
(n−2)
j (t0)

P
(n−1)
j (t0)

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (4.64)

The solution is given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Xn(t0)

Xn−1(t0)

...

X2(t0)

X1(t0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= B

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Y (t0)

Y ′(t0)

...

Y (n−2)(t0)

Y (n−1)(t0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
∑

j∈J
X̃j(1 − t0)B

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Pj(t0)

P ′
j(t0)

...

P
(n−2)
j (t0)

P
(n−1)
j (t0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.65)
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and we see that Xn−k(t0), k ∈ {0, 1, . . . , n − 1}, is of the form

Xn−k(t0) =
n−1∑

i=0

bkiY
(i)(t0) +

∑

j∈J

[
n−1∑

i=0

bkiP
(i)
j (t0)

]

X̃j(1 − t0). (4.66)

Therefore, by plugging (4.66) into (4.57), we obtain

Y (t + t0)

= X̃n(t) −
∑

j∈J
Pj(t + t0)X̃j(1 − t0) +

n−1∑

k=0

⎡

⎣ t
k

k!
−

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! Pj(t + t0)

⎤

⎦

×
⎡

⎣
n−1∑

i=0

bkiY
(i)(t0) +

∑

j∈J

(
n−1∑

i=0

bkiP
(i)
j (t0)

)

X̃j(1 − t0)
⎤

⎦

= X̃n(t) −
∑

j∈J

⎡

⎣Pj(t + t0) −
∑

0≤i,k≤n−1
bkiP

(i)
j (t0)

⎛

⎝ tk

k!
−

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! Pj(t + t0)

⎞

⎠

⎤

⎦X̃j(1 − t0)

+
∑

0≤i,k≤n−1
bki

⎡

⎣ t
k

k!
−

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! Pj(t + t0)

⎤

⎦Y (i)(t0).

(4.67)

Finally, Y (t + t0) can be written as

Y (t + t0) = Ỹt0(t) +
n−1∑

i=0

Qi,t0(t)Y
(i)(t0), (4.68)

where

Qi,t0(t) =
n−1∑

k=0

bki

⎡

⎣ t
k

k!
−

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! Pj(t + t0)

⎤

⎦,

Ỹt0(t) = X̃n(t) −
∑

j∈J
P̃j,t0(t)X̃j(1 − t0)

(4.69)

with

P̃j,t0(t) = Pj(t + t0) −
∑

0≤i,k≤n−1
bkiP

(i)
j (t0)

⎡

⎣ t
k

k!
−

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! Pj(t + t0)

⎤

⎦

= Pj(t + t0) −
n−1∑

i=0

P
(i)
j (t0)Qi,t0(t).

(4.70)
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Step 2. We easily see that the functions P̃j,t0 and Qi,t0 are polynomials of degree less than 2n.
Let us compute now their derivatives at 0 and t0. First, concerning Qi,t0 we have

Q
(ι)
i,t0
(t) =

n−1∑

k=0

bki

⎡

⎣ tk−ι

(k − ι)!1{k≥ι} −
∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! P

(ι)
j (t + t0)

⎤

⎦. (4.71)

Choosing t = 0 and recalling the definition of aιk and the fact that the matrices (aik)0≤i,k≤n and
(bik)0≤i,k≤n are inverse, this gives, for ι ∈ {0, 1, . . . , n − 1},

Q
(ι)
i,t0
(0) =

n−1∑

k=0

bki

⎡

⎣δι,k −
∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! P

(ι)
j (t0)

⎤

⎦ =
n−1∑

k=0

aιkbki = δι,i. (4.72)

Choosing t = 1 − t0, we have for ι ∈ I

Q
(ι)
i,t0
(1 − t0) =

n−1∑

k=0

bki

⎡

⎣(1 − t0)k−ι
(k − ι)! 1{k≥ι} −

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! P

(ι)
j (1)

⎤

⎦. (4.73)

By Theorem 4.1, we know that P (ι)
j (1) = δj,n−ι for ι ∈ I; then

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! P

(ι)
j (1) =

(1 − t0)k−ι
(k − ι)! 1{k≥ι}1{ι∈(n−J)}. (4.74)

Observing that, if ι ≤ k ≤ n − 1, the conditions ι ∈ (n − J) and ι ∈ I are equivalent, we simply
have

∑

j∈J :j≥n−k

(1 − t0)j+k−n(
j + k − n)! P

(ι)
j (1) =

(1 − t0)k−ι
(k − ι)! 1{k≥ι} (4.75)

which immediately entails, by (4.73),

Q
(ι)
i,t0
(1 − t0) = 0 for ι ∈ I. (4.76)

Next, concerning P̃ (ι)
j,t0

, we have

P̃
(ι)
j,t0

(t) = P (ι)
j (t + t0) −

n−1∑

i=0

P
(i)
j (t0)Q

(ι)
i,t0
(t). (4.77)
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Choosing t = 0, this gives, for ι ∈ {0, 1, . . . , n − 1}, since Q(ι)
i,t0
(0) = δι,i,

P̃
(ι)
j,t0

(0) = P (ι)
j (t0) −

n−1∑

i=0

P
(i)
j (t0)Q

(ι)
i,t0
(0) = 0. (4.78)

Choosing t = 1 − t0, we have, for ι ∈ I, since P (ι)
j (1) = δι,n−j and Q

(ι)
i,t0
(1 − t0) = 0,

P̃
(ι)
j,t0

(1 − t0) = P (ι)
j (1) −

n−1∑

i=0

P
(i)
j (t0)Q

(ι)
i,t0
(1 − t0) = δι,n−j . (4.79)

The polynomials P̃j,t0 (resp., Qi,t0) enjoy the same properties than the Pj ’s (resp., the ψ̃i’s),
regarding the successive derivatives, they can be deduced from these latter by a rescaling
according as

P̃j,t0(t) = (1 − t0)n−jPj
(

t

1 − t0

) (
resp. Qi,t0 = (1 − t0)iψ̃i

(
t

1 − t0

))
. (4.80)

It is then easy to extract the identity in distribution below, by using the property of Gaussian
conditioning:

⎛

⎝X̃n(t) −
∑

j∈J
P̃j,t0(t)X̃j(1 − t0)

⎞

⎠

t∈[0,1−t0]

d=
(
X̃n(t) | X̃j(1 − t0) = 0, j ∈ J

)

t∈[0,1−t0]
. (4.81)

Theorem 4.6 is established.

5. Example: Bridges of Integrated Brownian Motion (n = 2)

Here, we have a look on the particular case where n = 2 for which the corresponding process
(Xn(t))t∈[0,1] is nothing but integrated Brownian motion (the so-called Langevin process):

X2(t) =
∫ t

0
B(s)ds. (5.1)

The underlying Markov process is the so-called Kolmogorov diffusion (X2(t), X1(t))t∈[0,1].
All the associated conditioned processes that will be constructed are related to the equation
v(4)(t) = u(t) with boundary value conditions at time 0: v(0) = v′(0) = 0. There are four such
processes:

(i) (X2(t))t∈[0,1] (integrated Brownian motion);

(ii) (X2(t) | X1(1) = 0)t∈[0,1] (integrated Brownian bridge);
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(iii) (X2(t) | X2(1) = 0)t∈[0,1] (bridge of integrated Brownian motion);

(iv) (X2(t) | X1(1) = X2(1) = 0)t∈[0,1] (another bridge of integrated Brownian motion).

On the other hand, when adding two boundary value conditions at time 1 to the foregoing
equation, we find six boundary value problems: v(1) = v′(1) = 0, v(1) = v′′(1) = 0, v(1) =
v′′′(1) = 0, v′(1) = v′′(1) = 0, v′(1) = v′′′(1) = 0, v′′(1) = v′′′(1) = 0. Actually, only four of them
can be related to some Gaussian processes—the previously listed processes—in the sense of
our work whereas two others cannot be.

For each process, we provide the covariance function, the representation by means
of integrated Brownian motion subject to a random polynomial drift, the related boundary
value conditions at 1, and the decomposition related to the prediction problem. Since the
computations are straightforward, we will omit them and we only report here the results.

For an account on integrated Brownian motion in relation with the present work, we
refer the reader to, for example, [16] and references therein.

5.1. Integrated Brownian Motion

The process corresponding to the set I = ∅ is nothing but integrated Brownian motion:

(X2(t))t∈[0,1] =

(∫ t

0
B(s)ds

)

t∈[0,1]
. (5.2)

The covariance function is explicitly given by

c(s, t) =
1
6
[s ∧ t]2[3(s ∨ t) − s ∧ t]. (5.3)

This process is related to the boundary value conditions at 1 (J = {2, 3}): v′′(1) = v′′′(1) = 0.
The prediction property can be stated as follows:

(X2(t + t0))t∈[0,1−t0] =
(
X̃2(t) +X2(t0) + tX1(t0)

)

t∈[0,1−t0]
. (5.4)

5.2. Integrated Brownian Bridge

The process corresponding to the set I = {1} is integrated Brownian bridge:

(Y (t))t∈[0,1] =

(∫ t

0
B(s)ds | B(1) = 0

)

t∈[0,1]
=

(∫ t

0
β(s)ds

)

t∈[0,1]
= (X2(t) | X1(1) = 0)t∈[0,1].

(5.5)

This process can be represented as

(Y (t))t∈[0,1] =
(
X2(t) − 1

2
t2X1(1)

)

t∈[0,1]
. (5.6)
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The covariance function is explicitly given by

c(s, t) =
1
6
[s ∧ t]2[3(s ∨ t) − s ∧ t] − 1

4
s2t2. (5.7)

The process (Y (t))t∈[0,1] is related to the boundary value conditions at 1 (J = {1, 3}): v′(1) =
v′′′(1) = 0. The prediction property says that

(Y (t + t0))t∈[0,1−t0] =

(

Ỹt0(t) + Y (t0) +

(

t − t2

2(1 − t0)

)

Y ′(t0)

)

t∈[0,1−t0]
. (5.8)

5.3. Bridge of Integrated Brownian Motion

The process corresponding to the set I = {2} is the bridge of integrated Brownian motion:

(Y (t))t∈[0,1] =

(∫ t

0
B(s)ds |

∫1

0
B(s)ds = 0

)

t∈[0,1]
= (X2(t) | X2(1) = 0)t∈[0,1]. (5.9)

The bridge is understood as the process is pinned at its extremities: Y (0) = Y (1) = 0. This
process can be represented as

(Y (t))t∈[0,1] =
(
X2(t) − 1

2
t2(3 − t)X2(1)

)

t∈[0,1]
. (5.10)

The covariance function is explicitly given by

c(s, t) =
1
6
[s ∧ t]2[3(s ∨ t) − s ∧ t] − 1

12
s2t2(3 − s)(3 − t). (5.11)

The process (Y (t))t∈[0,1] is related to the boundary value conditions at 1 (J = {0, 2}): v(1) =
v′′(1) = 0. The prediction property says that

(Y (t + t0))t∈[0,1−t0]

=

(

Ỹt0(t) +
t3 − 3(1 − t0)t2 + 2(1 − t0)3

2(1 − t0)3
Y (t0) +

t3 − 3(1 − t0)t2 + 2(1 − t0)2t
2(1 − t0)2

Y ′(t0)

)

t∈[0,1−t0]
.

(5.12)
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5.4. Other Bridge of Integrated Brownian Motion

The process corresponding to the set I = {1, 2} is another bridge of integrated Brownian
motion (actually of the two-dimensional Kolmogorov diffusion):

(Y (t))t∈[0,1] =

(∫ t

0
B(s)ds |

∫1

0
B(s)ds = B(1) = 0

)

t∈[0,1]
= (X2(t) | X2(1) = X1(1) = 0)t∈[0,1].

(5.13)

The bridge here is understood as the process is pinned at its extremities together with its
derivatives: Y (0) = Y ′(0) = Y (1) = Y ′(1) = 0. This process can be represented as

(Y (t))t∈[0,1] =
(
X2(t) − t2(t − 1)X1(1) − t2(3 − 2t)X2(1)

)

t∈[0,1]
. (5.14)

The covariance function is explicitly given by

c(s, t) =
1
6
[s ∧ t]2[1 − s ∨ t]2[3(s ∨ t) − s ∧ t − 2st]. (5.15)

The process (Y (t))t∈[0,1] is related to the boundary value conditions at 1 (J = {0, 1}): v(1) =
v′(1) = 0. The prediction property says that

(Y (t + t0))t∈[0,1−t0] =

(

Ỹt0(t) +
t2(t + t0 − 1)

(1 − t0)3
Y (t0) +

t2(3 − 3t0 − 2t)

(1 − t0)2
Y ′(t0)

)

t∈[0,1−t0]
. (5.16)

5.5. Two Counterexamples

(i) The solution of the problem associated with the boundary value conditions v(1) = v′′′(1) =
0 (which corresponds to the set I1 = {0, 3}) is given by

v(t) =
∫1

0
G1(s, t)u(s)ds, t ∈ [0, 1], (5.17)

where

G1(s, t) =
1
6
[s ∧ t]2[3(s ∨ t) − s ∧ t] + 1

6
s2t2(s − 3). (5.18)

(ii) The solution of the problem associatedwith the boundary value conditions v′(1) = v′′(1) =
0 (which corresponds to the set I2 = {1, 2}) is given by

v(t) =
∫1

0
G2(s, t)u(s)ds, t ∈ [0, 1], (5.19)
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where

G2(s, t) =
1
6
[s ∧ t]2[3(s ∨ t) − s ∧ t] + 1

6
s2t2(t − 3). (5.20)

We can observe the relationships G1(s, t) = G2(t, s) and I2 = {0, 1, 2, 3} \ (3 − I1). The Green
functions G1 and G2 are not symmetric, so they cannot be viewed as the covariance functions
of any Gaussian process. In the next section, we give an explanation of these observations.

6. General Boundary Value Conditions

In this last part, we address the problem of relating the general boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(2n) = (−1)nu on [0, 1],

v(0) = v′(0) = · · · = v(n−1)(0) = 0,

v(i1)(1) = v(i2)(1) = · · · = v(in)(1) = 0,

(6.1)

for any indices i1, i2, . . . , in such that 0 ≤ i1 < i2 < · · · < in ≤ 2n − 1, to some possible Gaussian
process. Set I = {i1, i2, . . . , in}. We have noticed in Theorem 4.4 and Remark 4.5 that, when I
satisfies the relationship 2n − 1 − I = {0, 1, . . . , 2n − 1} \ I, the system (6.1) admits a unique
solution. We proved this fact by computing an energy integral. Actually, this fact holds for
any set of indices I; see Lemma A.1.

Our aim is to characterize the set of indices I for which the Green function of (6.1)
can be viewed as the covariance function of a Gaussian process. A necessary condition for
a function of two variables to be the covariance function of a Gaussian process is that it
must be symmetric. So, we characterize the set of indices I for which the Green function of
(6.1) is symmetric and we will see that in this case this function is a covariance function. For
this, we make use of general results concerning the relationships between boundary value
problems and symmetric linear operators in Hilbert spaces. Since our results below are direct
applications of Theorem 2 in Section 18.2 of [17, Chapter V], which describes the general form
of boundary conditions corresponding to the self-adjoint extensions of standard symmetric
operator, we only state them without any proof. We refer the reader to a draft [18] for more
details and self-contained proofs.

6.1. Representation of the Solution

We first write out a representation for the Green function of (6.1).

Theorem 6.1. The boundary value problem (6.1) has a unique solution. The corresponding Green
function admits the following representation, for s, t ∈ [0, 1]:

GI(s, t) = (−1)n1{s≤t}
(t − s)2n−1
(2n − 1)!

− (−1)n
∑

ι∈I

(1 − s)2n−1−ι
(2n − 1 − ι)!RI,ι(t), (6.2)
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Table 2

Conditioning set J ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Differentiating set I {3, 4, 5} {2, 4, 5} {1, 3, 5} {0, 3, 4} {1, 2, 5} {0, 2, 4} {0, 1, 3} {0, 1, 2}

Table 3

Differentiating set I1 {0, 1, 4} {0, 1, 5} {0, 2, 5} {0, 3, 5} {0, 4, 5} {1, 4, 5}
Differentiating set I2 {0, 2, 3} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {2, 3, 5}

where the RI,ι, ι ∈ I, are Hermite interpolation polynomials satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R
(2n)
I,ι = 0,

R
(i)
I,ι (0) = 0 for i ∈ {0, 1, . . . , n − 1},

R
(i)
I,ι (1) = δι,i for i ∈ I.

(6.3)

Remark 6.2. Conditions (6.3) completely characterize the polynomials RI,ι, ι ∈ I (see Lemma
A.1 in the appendix).

A necessary condition for GI to be the covariance function of a Gaussian process is
that it must be symmetric: GI(s, t) = GI(t, s) for any s, t ∈ [0, 1]. The theorem below asserts
that if the set of indices I is not of the form displayed in the preamble of Section 4, that is,
I /= {0, 1, . . . , 2n − 1} \ (2n − 1 − I), the Green function GI is not symmetric and consequently
this function cannot be viewed as a covariance function, that is, we cannot relate the boundary
value problem (6.1) to any Gaussian process.

Theorem 6.3. The Green function GI is symmetric (and it corresponds to a covariance function) if
and only if the set of indices I satisfies 2n − 1 − I = {0, 1, . . . , 2n − 1} \ I.

6.2. Example: Bridges of Twice Integrated Brownian Motion (n = 3)

Here, we have a look on the particular case where n = 3 for which the corresponding process
(Xn(t))t∈[0,1] is the twice integrated Brownian motion:

X3(t) =
∫ t

0
(t − s)B(s)ds =

∫ t

0

(∫s2

0
B(s1)ds1

)
ds2. (6.4)

All the associated conditioned processes that can be constructed are related to the equation
v(6)(t) = −u(t) with boundary value conditions at time 0: v(0) = v′(0) = v′′(0) = 0.
There are 23 = 8 such processes. Since the computations are tedious and the explicit results
are cumbersome, we only report the correspondence between bridges and boundary value
conditions at time 1 through the sets of indices I and J . These are written in Table 2.

The Green functions related to the other sets cannot be related to some Gaussian
processes. The sets are written in Table 3 with the correspondence I2 = {0, 1, 2, 3, 4, 5}\(5−I1).
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6.3. Example: Bridges of Thrice Integrated Brownian Motion (n = 4)

For n = 4, only the 24 = 16 following differentiating sets can be related to bridges:

{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 5}, {0, 1, 4, 5}, {0, 2, 3, 6}, {0, 2, 4, 6}, {0, 3, 5, 6}, {0, 4, 5, 6},

{1, 2, 3, 7}, {1, 2, 4, 7}, {1, 3, 5, 7}, {1, 4, 5, 7}, {2, 3, 6, 7}, {2, 4, 6, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}.
(6.5)

Appendix

Hermite Interpolation Polynomials

Lemma A.1. Let ai, i ∈ {0, 1, . . . , n − 1}, and bi, i ∈ I, be real numbers. There exists a unique
polynomial P such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P (2n) = 0,

P (i)(0) = ai for i ∈ {0, 1, . . . , n − 1},

P (i)(1) = bi for i ∈ I.

(A.1)

Remark A.2. Conditions (A.1) characterize the Hermite interpolation polynomial at points 0
and 1 with given values of the successive derivatives at 0 up to order n−1 and given values of
the derivatives at 1 with selected orders in I. When I /= {0, 1, . . . , n−1}, these polynomials differ
from the usual Hermite interpolation polynomials which involve the successive derivatives
at certain points progressively from zero order up to certain orders.

Proof. We look for polynomials P in the form P(t) =
∑2n−1

j=0 cjt
j/j!. We have

P (i)(t) =
2n−1∑

j=0

cj
tj−i

(
j − i)! . (A.2)

Wewill adopt the convention 1/[(j−i)!] = 0 for i > j. Conditions (A.1) yield the linear system
(with the convention that i and j denote, respectively the raw and column indices)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ci = ai if i ∈ {0, 1, . . . , n − 1},
2n−1∑

j=0

cj
(
j − i)! = bi if i ∈ I.

(A.3)
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The (2n) × (2n) matrix of this system writes

A =

⎛

⎜⎜
⎜
⎝

(
δi,j
)

i∈{0,1,...,n−1}
j∈{0,1,...,2n−1}(

1
(
j − i)!

)

i∈I
j∈{0,1,...,2n−1}

⎞

⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

(
δi,j
)
i∈{0,1,...,n−1}
j∈{0,1,...,n−1}

(0) i∈{0,1,...,n−1}
j∈{n,n+1,...,2n−1}(

1
(
j − i)!

)

i∈I
j∈{0,1,...,n−1}

(
1

(
j − i)!

)

i∈I
j∈{n,n+1,...,2n−1}

⎞

⎟
⎟
⎟
⎠
.

(A.4)

Proving the statement of Lemma A.1 is equivalent to proving that the matrix A is regular. In
view of the form of A as a bloc-matrix, we see, since the north-west bloc is the unit matrix
and the north-east bloc is the null matrix, that this is equivalent to proving that the south-east
bloc of A is regular. Let us call this latter A0 and label its columns C(0)

j , j ∈ {0, 1, . . . , n − 1}:

A0 =
( 1
(
n + j − i)!

)

i∈I
j∈{0,1,...,n−1}

=
(
C(0)

0 C(0)
1 · · · C(0)

n−1

)
. (A.5)

For proving that A0 is regular, we factorize A0 into the product of two regular triangular
matrices. The method consists in performing several transformations on the columns of
A0 which do not affect its rank. We provide in this way an algorithm leading to an LU-
factorization of A0, where L is a lower triangular matrix and U is an upper triangular matrix
with no vanishing diagonal term.

We begin by performing the transformation

C(1)
j =

⎧
⎪⎪⎨

⎪⎪⎩

C(0)
j if j = 0,

C(0)
j −

C(0)
j−1

n + j − i1 if j ∈ {1, 2, . . . , n − 1}.
(A.6)

The generic term of the column C(1)
j , for j ∈ {1, 2, . . . , n − 1}, is

1
(
n + j − i)! −

1
n + j − i1

1
(
n + j − i − 1

)
!
=

i − i1
n + j − i1

1
(
n + j − i)! . (A.7)

This transformation supplies a matrixA1 with columns C(1)
j , j ∈ {0, 1, . . . , n−1}, which writes

A1 =
(
C(1)

0 C(1)
1 · · · C(1)

n−1

)
=

( (
1

(n − i)!
)

i∈I

(
i − i1

n + j − i1
1

(
n + j − i)!

)

i∈I
j∈{1,2,...,n−1}

)

.

(A.8)
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We have written

A1 = A0U1, (A.9)

where U1 is the triangular matrix with a diagonal made of 1 below:

U1 =

(

δi,j −
δi,j−11{j≥1}
n + j − i1

)

0≤i,j≤n−1
. (A.10)

We now perform the transformation

C(2)
j =

⎧
⎪⎪⎨

⎪⎪⎩

C(1)
j if j ∈ {0, 1},

C(1)
j − n + j − i1 − 1

n + j − i1
C(1)
j−1

n + j − i2 if j ∈ {2, 3, . . . , n − 1}.
(A.11)

The generic term of the column C(2)
j , for j ∈ {2, 3, . . . , n − 1}, is

i − i1
n + j − i1

1
(
n + j − i)! −

i − i1(
n + j − i1

)(
n + j − i2

)
1

(
n + j − i − 1

)
!

=
(i − i1)(i − i2)(

n + j − i1
)(
n + j − i2

)
1

(
n + j − i)! .

(A.12)

This transformation supplies a matrixA2 with columns C(2)
j , j ∈ {0, 1, . . . , n−1}, which writes

A2 =
(
C(2)

0 C(2)
1 · · · C(2)

n−1

)

=
( (

1
(n − i)!

)

i∈I

∣∣∣∣

(
i − i1

n + 1 − i1
1

(n + 1 − i)!
)

i∈I
∣∣∣∣

( (i − i1)(i − i2)(
n + j − i1

)(
n + j − i2

)
1

(
n + j − i)!

)

i∈I
j∈{2,3,...,n−1}

)

.

(A.13)

We have written

A2 = A1U2 = A0U1U2, (A.14)

where U2 is the triangular matrix with a diagonal made of 1:

U2 =

(

δi,j −
n + j − i1 − 1

(
n + j − i1

)(
n + j − i2

)δi,j−11{j≥2}

)

0≤i,j≤n−1
. (A.15)
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In a recursive manner, we easily see that we can construct a sequence of matrices Ak,Uk,
k ∈ {1, 2, . . . , n− 1}, such that Ak = Ak−1Uk, where Uk is the triangular matrix with a diagonal
made of 1:

Uk =

(

δi,j −
(
n + j − i1 − 1

) · · · (n + j − ik−1 − 1
)

(
n + j − i1

) · · · (n + j − ik
) δi,j−11{j≥k}

)

0≤i,j≤n−1
,

Ak =
( (

1
(n − i)!

)

i∈I

∣
∣∣
∣

(
i − i1

n + 1 − i1
1

(n + 1 − i)!
)

i∈I

∣
∣∣
∣ · · ·

∣
∣
∣
∣

(
(i − i1) · · · (i − ik−1)

(n + k − 1 − i1) · · · (n + k − 1 − ik−1)
1

(n + k − 1 − i)!
)

i∈I
∣
∣
∣
∣

(
(i − i1) · · · (i − ik)

(n + j − i1) · · · (n + j − ik)
1

(n + j − i)!
)

i∈I
j∈{k,...,n−1}

)

.

(A.16)

We finally obtain, since all the Ukk ∈ {1, 2, . . . , n − 1}, are regular, that

A0 = An−1U−1
n−1 · · ·U−1

1 = LU (A.17)

with U = U−1
n−1 · · ·U−1

1 and

L = An−1

=
( (

1
(n − i)!

)

i∈I

∣∣∣∣

(
i − i1

n + 1 − i1
1

(n + 1 − i)!
)

i∈I

∣∣∣∣ · · ·
∣∣∣∣

(
(i − i1) · · · (i − in−1)

(2n − 1 − i1) · · · (2n − 1 − in−1)
1

(2n − 1 − i)!
)

i∈I

)
.

(A.18)

It is clear that the matrices U and L are triangular and regular, and then A0 (and A) is also
regular. Moreover, the inverse of A0 can be computed as

A−1
0 = U−1L−1 = U1 · · ·Un−1L−1. (A.19)

The proof of Lemma A.1 is finished.
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