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A damage assessment procedure has been developed using artificial neural network (ANN) for prestressed concrete beams. The
methodology had been formulated using the results obtained from an experimental study conducted in the laboratory. Prestressed
concrete (PSC) rectangular beams were cast, and pitting corrosion was introduced in the prestressing wires and was allowed to
be snapped using accelerated corrosion process. Both static and dynamic tests were conducted to study the behaviour of perfect
and damaged beams. The measured output from both static and dynamic tests was taken as input to train the neural network.
Back propagation network was chosen for this purpose, which was written using the programming package MATLAB. The trained
network was tested using separate test data obtained from the tests. A damage assessment procedure was developed using the
trained network, it was validated using the data available in literature, and the outcome is presented in this paper.

1. Introduction

Concrete structures are designed and constructed to suit
the requirements of its time. Damages may be unavoidable
during its design life time due to various reasons. A structure
which is said to be well designed may survive the damage but
safety is not guaranteed. When the damage goes undetected
and unrepaired, it will lead to failure or may demand costly
repair and huge loss of life. Therefore, the problem of
maintenance and repair of existing structures involves dam-
age detection at an early stage. For massive structures like
bridges which were constructed some 50 to 60 years ago, it is
necessary to test their functionality under the present loading
condition and quantify damage, if any, since demolishing
and reconstructing them would involve huge expenditures.
Evaluating the residual life and remaining load-carrying
capacity of these structures is also important. Damage can be
defined as the change in performance of structures, which
can be identified in terms of crack formation and a conse-
quent stiffness reduction. Damage recognition and location
are the key factors in the design of a structural health mon-
itoring system. When damage lies inside the structure and
is not visible to the naked eye, it is possible to locate and

quantify the damage with nondestructive tests and various
analytical models [1]. Vibration-based damage detection
methods seem to be effective at detecting and localizing the
damage on full-scale structures [2].

The easiest and simplest way to detect damage with
dynamic parameters is by noting the changes in the natural
frequency of the system. Cawley and Adams [3] formulated a
scheme to detect damage in composite materials from natu-
ral frequency shifts. Abdel Wahab and Roeck [1] investigated
the application of the change in modal curvatures to detect
the damage in a prestressed concrete bridge. They modelled
simply supported and continuous beams using finite ele-
ments and introduced damage at different locations in terms
of reduced stiffness of the corresponding elements, and they
concluded that the natural frequencies of the damaged and
undamaged beams indicated the presence of damage in a
global sense. Abdul Razak and Choi [4] studied the effect
of general corrosion on the modal parameters of reinforced
concrete beams. Modal tests were performed and compared
against that from a control beam. The changes were incon-
sistent with the changes in natural frequencies, but a trend
observed was mode dependent. The load carrying capacity
of the beams was determined through static load test, and
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the results were correlated with the state of corrosion damage
and changes in the modal parameters. From the changes in
natural frequencies, stiffness degradation was estimated and
compared.

Carpinteri et al. [5] have discussed some aspects of the
NDE techniques in in situ damage assessment. They have
taken up the study on assessing the stability of a historical
masonry tower using the NDE technique called thermogra-
phy and with nonlinear numerical simulations. According to
the authors, the results of the analysis gave valuable hints
about how much damage had occurred and when the
restoration should take place.

Wu et al. [6] illustrated the neural network-based meth-
odology to show that this approach could be used to identify
member damage. The authors used the Fourier spectra of the
computed relative acceleration, generated from a numerical
model of a simple three-storey frame, as an input to neural
network. According to their results, ANNs can learn about
the behaviour of undamaged and damaged structures to
identify the damaged member and the extent of damage from
patterns in the frequency response of a structure.

According to Chen et al. [7], neural network can dis-
tinguish small differences between the transmissibility func-
tions which carry the information of structural faults. The
transmissibility function is sensitive to structural faults and
easy to measure in the situations where the excitations of the
structural system are not available or immeasurable. They
had also suggested that transmissibility is a useful feature
for training neural network as a fault diagnosis model. Fang
et al. [8] referred the features of various training algorithms
and with that as basis implemented the neural network to
the frequency-response-functions- (FRFs-) based structural
damage detection. The analysis results on a cantilever beam
show that, in all considered damage cases (i.e., trained dam-
age cases and unseen damage cases, single-damage cases and
multiple-damage cases), the neural network can assess dam-
age conditions with very good accuracy.

Zapico et al. [9] in their paper described a procedure
for damage assessment in a two-storey steel frame and
steel-concrete composite floors structure. The procedure is
based on a multilayer perceptron (MLP). A simplified finite
element model was used to generate the training data. This
model was previously updated through another MLP using
two natural frequencies as inputs and the stiffness of the
beams and masses as updating parameters. The different
combinations of damage at the ends of the longitudinal
beams were used as damage scenarios. The training data for
the MLP were generated by varying at random the stiffness of
the longitudinal beams. Two natural frequencies and mode
shapes were used as inputs, and three different definitions
of damage (sections, bars, and floors) were tried as outputs.
MLPs were trained through the error back-propagation
algorithm. Finally, the performance of the procedure was
evaluated through the experimental data. Only the approach
of damage at floor level gives reasonable results.

Yuen and Lam [10] had reviewed the works of many
researchers on damage detection using ANN. They have also
developed an ANN based design method which does not

need user’s judgment. By using the proposed ANN-design
method both location, and severity of damage could be
known. The method was employed in an example to demon-
strate their proposed methodology. Norhisham Bakhary
et al. [11] in this study proposed a statistical approach to
take into account the effect of uncertainties in developing
an ANN model. By applying Rosenblueth’s point estimate
method verified by Monte Carlo simulation, the statistics
of the stiffness parameters were estimated. The probability
of damage existence (PDE) is then calculated based on the
probability density function of the existence of undamaged
and damaged states. The developed approach is applied to
detect simulated damage in a numerical steel portal frame
model and also in a laboratory-tested concrete slab. The
effects of using different severity levels and noise levels on the
damage detection results were discussed.

de Lautour and Omenzetter [12] in this study present
a general method for predicting seismic-induced damage
using artificial neural networks (ANNs). The approach was
to describe both the structure and ground motion using a
large number of structural and ground motion properties.
The class of structures analysed were 2D reinforced concrete
(RC) frames that varied in topology, stiffness, strength, and
damping and were subjected to a suite of ground motions.
Dynamic structural responses were simulated using nonlin-
ear FEM analysis and damage indices describing the extent
of damage calculated. Using the results of the numerical
simulations, a mapping between the structural and ground
motion properties and the damage indices was than estab-
lished using an ANN. The performance of the ANN was
assessed using several examples, and the ANN was found to
be capable of successfully predicting damage.

Though more works have been done involving reinforced
concrete and steel structures using ANN, not much work
has been done on PSC members. Modelling of damaged pre-
stressed concrete beam is complicated, and usage of conven-
tional methods for damage assessment of Prestressed Con-
crete (PSC) beams thus becomes difficult. ANN is a possible
solution in this situation. Therefore, a well-designed neural
network is able to serve as a real time data processor for
damage assessment.

The main focus of this work was to train and test the
network only with natural frequency and stiffness of dam-
aged and perfect beams. Widely used feed forward ANN that
learns with back propagation algorithm was adopted, and
details about network architecture are presented. Further,
it has been demonstrated that it is possible to predict the
damage with acceptable accuracy by just feeding the current
stiffness and natural frequency of the damaged structure
[13] as inputs to the trained ANN. A novel in situ damage
assessment procedure that needs only limited nondestructive
measurements on the damaged structure is proposed.

The newness of this procedure is that it requires only
minimum data collected from the damaged structure and
theoretical data developed for the original structure. So, with
minimum number of inputs, the procedure is adopted. No
further experiments are needed to get data in order to adopt
procedure.



Advances in Artificial Neural Systems 3

Output layer

Input layer

Hidden
layers

Direction of
error
propagation

Direction
of

activation
propagation

Figure 1: Architecture of the back propagation network.

2. Feed Forward Artificial Neural Network and
Back Propagation Algorithm

Even though the ANN and back propagation algorithm are
well known, this section briefly revisits the concepts of feed
forward that learns by back propagation algorithm used
in the damage assessment of prestressed concrete beams
presented in this paper. The processing units in this artificial
neural network are arranged in layers, that is, input layer,
an output layer, and a number of hidden layers as shown in
Figure 1. The hidden units presented here allow the network
to represent and compute more complicated associations
between patterns. The inputs are presented to the input layer.
Each neuron in the hidden layer receives the weighted sum
from the input layer and transfers its result to the output
layer. The back propagation-learning algorithm calculates
the error between the generated output and targeted output
and uses the estimated error to modify the weight in response
to the errors. The back propagation algorithm learns by
changing its weights to follow the steepest path towards the
bottom of a bowl shaped error surface. This process contin-
ues until a set of weights, which processes data accurately
for the application, is found out. The final weights represent
what the network has learnt and enable to infer for other
data. Processing element of this network with specified
inputs is shown in Figure 2.

Once the type of ANN and the learning algorithm are
decided, it is necessary to generate the required training
and test data. When the modeling of damaged PSC beam
is difficult, one needs to depend upon the experimentally
acquired data on the structure under study for training and
testing the ANN. From theory, it is well known that the
dynamic and/or static characteristics of the damaged PSC
beams carry information about the damaged state of the
structures. The ANN is made to recognize the damage
occurred in the structure under study by presenting the
measured dynamic and/or static data of the damaged and
undamaged beams obtained experimentally. The following
section presents the details of the experimental program car-
ried out to generate the necessary training and test data for
the ANN.

3. Experimental Study

Fivepost tensioned concrete rectangular beams were used in
this investigation. The beams were of uniform cross section,
that is, 125 × 250 × 4200 mm. At each end, there were
anchorage zones with enlarged section of size 350 × 230 ×
250 mm and length of 230 mm. The overall length of the
beam was 4860 mm, out of which 4590 mm was consid-
ered as the test zone. In order to achieve accessibility to
prestressing tendons where the damage is introduced by
corrosion, an opening 100×120×60 mm wide was provided
in the middle bottom side of the beam. The beams were
provided with nominal reinforcement in order to take up the
handling stresses. The longitudinal reinforcement consists
of two high yield strength deformed (HYSD) bars of 8 mm
diameter at the top and the bottom. The stirrups were
made using mild steel bars of 6 mm diameter and were
provided with a spacing of 175 mm. At the anchorage zone,
12 bars of 6 mm diameter were provided between 25 and
250 mm from the edge. Reinforcement details were kept the
same for all the beams. The beams were cast with a mean
concrete strength of 57 N/mm2, posttensioned to a stress
level of 0.7 fpu. The ultimate strength of the high tensile
steel (HTS) wire is 1715.2 N/mm2. Six HTS wires of 7 mm
diameter were used for each beam. The first beam, designated
as P7B1, was a perfect beam with absolutely no damage.
The other four beams, namely, P7CB1, P7CB2, P7CB3, and
P7CB4 were damaged to 33.33, 50, 66.67, and 83.33%,
respectively. The damage percentage represents the percent-
age of wires snapped. Snapping of wires was done using the
accelerated electrochemical process. Through this process,
pitting corrosion was induced and the wires were snapped.
The setup made for inducing corrosion damage using ac-
celerated electrochemical process is shown in Figure 3. After
damaging the beams, static and dynamic tests were con-
ducted on all five beams.

3.1. Testing of Beams. All the beams were subjected to both
static and dynamic tests. The beams were tested under
repeated loading at an interval of 10 kN each (load stage).
Four cycles of repeated load were applied in each load stage.
The beams were repeatedly loaded till the failure load is
reached. Deflections and strains were measured for a load
increment of 2.5 kN up to failure. Crack width of five cracks
in the constant bending moment zone was also measured
using a crack detection microscope of 0.02 mm precision.
Static tests were conducted for determining the moment
curvature, load deflection variations with loading in addition
to the evaluation of ultimate load carrying capacity of the test
beams.

Dynamic test was conducted at every 10 kN load interval
and after four cycles of load application at each stage. The
dynamic response was picked up by linear variable differential
transducer (LVDT) placed at mid span in the form of dis-
placement history for the beams at all the chosen load stages.
It was utilised for the frequency analysis. The time history
records were analysed using the software DASYLAB for
obtaining the natural frequencies.
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Figure 2: Processing element of this network with specified inputs.
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Figure 3: Corrosion induction setup.

4. Generation of Training and Test Data for
ANN and Its Architecture

It was decided to use all the output obtained from the static
and dynamic tests such as stiffness (s), natural frequency ( f ),
deflection (δ), load at first crack (Pcr), crack width (w), and
ultimate load (Pu) from the perfect and damaged beams for
training the neural network. It may be difficult to assess the
damage using the conventional methods since mathematical
model is required to explain these behaviours. ANN does not
require prior mathematical model to solve a problem which
is a useful aspect of neural network.

4.1. Generation of Training and Test Data from Experiments.
The applied load and the corresponding stiffness, natural
frequency, deflection, and crack width values of damaged
and undamaged beams (P7B1, P7CB1, P7CB3, and P7CB4)
were obtained at regular intervals from the static and
dynamic tests. Even though two sets of beams were tested and
data collected for each case, only one data set was used for
training. However, the ANN needs a larger volume of data
so that it learns better and predicts the damage accurately.

ANN can be robust if large amount of training data is made
available since training with large data can avoid the problem
of over fitting and it can be fault tolerant with significant
amount of redundancy and better learning algorithms. Over
fitting or over learning is indicated by the inability of a
network to perform better when unseen test data is presented
to the network even though it is able to classify the training
data. When large amount of data is used for training and the
structure and size of the network are chosen properly to han-
dle the data, the problem of over fitting can be avoided. To
achieve this, the experimentally obtained results were linearly
interpolated using the software ORIGIN to get the values
at small regular intervals of load (1 kN) thus making the
training and test database larger.

The sample training data are given in Table 1. The data
were normalized. The natural frequency, deflection, and
crack width data obtained for the beam P7CB2 damaged to
the extent of 50% in a similar manner were used as exclusive
test data (Table 2). This enables us to test the ability of ANN
to generalize when presented with totally unseen data. In
addition to these test data, the static and dynamic data for
40% and 70% damage levels were also obtained by interpo-
lation of the data acquired through experiments, and these
data were also used as test data.

4.2. Architecture of the ANN. Feed forward neural network
learning by back propagation (BP) algorithm written in
MATLAB has been used, and its ability to predict damage just
from the current natural frequency and postcrack stiffness
obtained from the load-deflection characteristics of the dam-
aged beam has been studied by training and testing the ANNs
for various cases of input and comparing their performance
for various input conditions. Postcrack stiffness of the dam-
aged beam was also considered along with natural frequency
since the frequency changes alone are insufficient to quantify
the damage. To achieve this, the basic structure of the
ANN was maintained and only the number of input nodes
in the input layer was changed. During training process,
different nodes were tried by trial and error for the hidden
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Table 1: Sample training data.

Load kN

Natural frequency (Hz) at various damage levels

0% 33.33% 66.66% 83%

P7B1 P7CB1 P7CB3 P7CB4

0 23.5 22.58 21.36 20.75

10 23.5 22.58 21.36 20.75

20 23.5 22.58 21.36 20.14

30 23.5 21.97 20.75 18.92

40 22.28 21.36 19.53 —

50 21.36 20.75 — —

60 16.48 — — —

Table 2: Sample test data.

Load kN Natural frequency (Hz) at 50% damage (P7CB2)

0 21.36

10 21.36

20 21.36

30 20.75

40 20.14

50 19.53

layers to achieve the given performance accuracy, which is
user defined. After various trials, these nodes were finalized,
which gave the optimum output. So these numbers of nodes
were chosen based on the performance accuracy require-
ment. The specifications of the ANN that gave the best
performance and are used in this study are as follows.

(i) Number of input nodes in the input layer: 2–5 for
different cases.

(ii) Number of output nodes in the output layer: 1.

(iii) Number of hidden layers: 2 with 7 and 5 nodes, re-
spectively.

(iv) Training algorithm used: back propagation.

(v) Learning method: supervised learning.

(vi) The output of the neural network is the predicted
extent of damage in the beam.

5. ANN Training and Testing

This section presents the results of ANN training and test
details for different cases and analyses the suitability of ANN
for damage assessment of PSC beams. Mainly, the focus of
the study was to evaluate the effectiveness of ANN for dam-
age assessment when trained only with natural frequency
and stiffness of the damaged beam and with the mix of
static and dynamic test data. Keeping this purpose in mind,
the training of the ANN has been carried out for a changing
number of inputs. However, the structure of the ANN and
the training algorithm used were maintained as explained
in the previous section for all the cases. In order to adopt
the damage assessment procedure for various field beams

having different cross sections, all the data were normalized
before feeding into the network. The following were the cases
studied in this work.

- Case i. ANN with applied load and natural frequency
as input.

- Case ii. ANN with postcrack stiffness and natural
frequency as input.

- Case iii. ANN with natural frequency (postcracking
preyielding) as input.

- Case iv. ANN with applied load, natural frequency,
and deflection as input.

- Case v. ANN with applied load, natural frequency,
and crack width as input.

- Case vi. ANN with applied load, natural frequency,
deflection, and crack width as input.

- Case vii. ANN with applied load, natural frequency,
deflection, crack width, and ultimate load as input.

For the sake of practical application, only the first three
cases are discussed in this paper. The remaining cases are
explained elsewhere [14].

Case i (ANN with applied load and natural frequency as
inputs). This ANN is trained with applied load and natural
frequencies obtained from the dynamic tests and aims at
predicting the damage level from the average of possible
solutions returned by the ANN for various test input data.
The results obtained in this case are represented in a graph-
ical form in Figure 4, which seems to be promising in the
damage assessment process.

Case ii (ANN with stiffness and natural frequency as inputs).
Each training or test data has two inputs, that is, stiffness
(postcracking-preyielding) and natural frequency. This ANN
has been studied so that a damage assessment procedure can
be evolved that is suitable in practical situation. In a field
beam, which is in the postcracking-preyielding stage, it is
possible to obtain its current stiffness from its load deflection
characteristics measured over a portion of the service load.
A dynamic test on the same beam can return its natural
frequency value. Therefore, these two parameters were
selected for the ANN study and the network was trained,
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and the result is presented below in the form of graph and
is shown in Figure 5. However, the average of the predicted
damage levels for different test data could closely predict the
damage.

Case iii (ANN with natural frequency (postcracking-prey-
ielding) as input). Each training or test data has only one
input, that is, natural frequency. This ANN has been studied
to check if it is possible to predict the damage only with
natural frequency obtained from dynamic tests. The network
was trained and the result is presented in Figure 6. From the
figure, it is observed that each set of the predicted damage is
closer to the expected value.

The input test data for the damage levels of 40% and
70% were interpolated using ORIGIN software. From that
observation, the minimum and the maximum deviations of
the various cases and average predicted damage levels along
with number of epochs and the performance accuracy of the
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Figure 6: Input data set number versus damage predicted by ANN
(Case iii).

network are summarised in Table 3. The performance accu-
racy (user defined value) indicates how close the predicted
output of the network is to the expected or targeted output.
In our case, the targeted output is the expected damage. The
performance accuracy is evaluated from the mean squared
error where the error is the difference between the output of
the network and the targeted output for a set of inputs.

Epochs were not chosen for these cases, but only the
performance accuracy was user defined. So when the accu-
racy level is obtained as expected, the training process stops.
For making comparison, the number of epochs is mentioned.
When the network was provided with more number of
inputs, the prediction was better in terms of performance
accuracy (user defined) and with fewer epochs. The perfor-
mance accuracy becomes less with more number of epochs
required, when the number of inputs starts decreasing. Our
aim is to develop the procedure only with natural frequencies
and stiffness from data obtained from the field. Therefore,
only that particular network was used for developing the
procedure.

The table indicates that for all cases the error in the
predicted damage can be very large when just one test input
data obtained for a single applied load is used to predict the
damage level. Maximum error occurred when the ANN was
trained with only frequency obtained from the dynamic test
as input to the network. This is justified by the fact that the
ANN can learn better and predict better when it is trained
with more database. This error is still comparable with the
errors with which the other ANNs could predict the damage
levels. It is also found that the ANN trained with stiffness
and frequency obtained over an applied load range within its
service load limit could predict the damage very closely (with
a maximum difference of 5% damage) thus paving the way
for the development of a new practical method of damage
assessment of prestressed concrete beams.

6. Damage Assessment Procedure

It has been demonstrated that the ANN trained with natural
frequency and stiffness can estimate the damage when tested
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with the data obtained in situ. Also, it has been proved that
the ANN trained just with natural frequency can also assess
the damage. Based on this concept, a damage assessment
procedure has been evolved and presented here. The steps
that should be followed for the damage assessment are
explained below.

(1) Evaluate the stiffness of the field beam, which is at
the postcracking-preyielding stage (service stage) by
conducting a static test on the beam. A fraction of
the service load is applied for this purpose.

(2) Measure the in situ natural frequency of the field
beam by conducting a dynamic test (free vibration
test) on the structure.

(3) Evaluate the stiffness ratio, (k/k0), as the ratio of the
measured stiffness of the field beam to the evaluated
stiffness of the reference beam in the postcracking-
preyielding stage.

(4) Evaluate the frequency ratio, ( f / f0), as the ratio of
the measured frequency of the field beam to the
evaluated frequency of the reference beam.

(5) Normalised stiffnesses and the natural frequencies are
considered as input, and they are modified using a
ratio based on moment of inertia, mass, and length
of the field beam. Since the network is trained for
a particular cross-section in this study, a ratio is
arrived between the sectional properties (moment of
inertia, mass, and length) of the field beam to that of
the theoretical beam (beam considered in this study)
[15]. The normalised stiffness and the natural fre-
quency of the field beam are multiplied by the ratio,
and the modified stiffness and the natural frequency
are given as the test data in the already trained
network.

(6) ANN trained with only natural frequency also can be
used in case if it is possible to carry out only free
vibration test on the field beam.

(7) The output of the network gives the extent of damage
suffered by the field beam.

6.1. Validation of the Damage Assessment Procedure. The
above-mentioned procedure is validated using the experi-
mental data presented by Ambrosini et al. [13]. It could be
well understood that the requirements of any validation
procedure will rarely be available directly in the literature
especially dealing with experiments.

Ambrosini et al. [13], National University of Tucumán,
Argentina, had conducted static as well as dynamic tests
with simply supported conditions on laboratory PSC beam
with an I-section of 400 mm × 500 mm with a test span of
13.30 m. The beam had 20 prestressing bars. To simulate
reinforcement damage due to corrosion, the bars were cut,
two by two, until reducing the prestressing reinforcement to
a 50%. The beam was subjected to two-point loads at one-
third points. The dynamic measurement system composed
of acceleration transducers, a dynamic amplifier, and data

Table 4: Comparison of predicted values with Ambrosini et al. [11].

Serial no.
Degree of damage (%)

Expected degree of damage
(Ambrosini et al.)

Predicted damage

1 30 29.93

2 40 41.61

3 50 51.09

acquisition equipment consistent in a computer with a dif-
ferential eight-channel card. Dynamic tests were performed
by exciting the beam with a hammer blow in the central
section. The natural frequencies obtained in each one of the
test stages are tabulated and presented in the literature. These
frequencies were normalized and modified based on the ratio
of sectional properties since the training is done for a beam,
which has different section. The modified frequencies are fed
as test input to the trained network, and the prediction of
ANN gives the degree of damage. The ANN trained only with
natural frequencies has been used here to validate the ANN-
based theoretical approach for damage assessment since the
stiffness data were not available in the literature. Table 4
explains how the damage assessment procedure developed in
his study works. From Table 4, it is demonstrated that the
ANN approach can predict the damage very closely.

7. Conclusions

A damage assessment procedure based on ANN for the
prestressed concrete rectangular beams has been formulated,
and the procedure has been validated using the data available
from the literature. From this study, it can be concluded that

(i) an ANN trained with dynamic data obtained at dif-
ferent loads of a prestressed concrete beam is suf-
ficient to assess the damage level. An ANN trained
with a mix of static and dynamic data can be used
to confirm the prediction of an ANN trained with
dynamic data, if needed. The average of the predicted
damage levels for test data obtained at different loads
is the best method to assess the damage by ANN;

(ii) an assessment technique leading to the quantitative
evaluation of degree of damage is possible by ANN
using the natural frequency and stiffness in the post-
cracking-preyielding range as input data;

(iii) ANN can be used as an effective tool in the damage
assessment of prestressed concrete beams;

(iv) damage assessment procedure developed in this re-
search work can effectively be put in to use for dam-
age assessment of field beams.
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