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In Ricci flow theory, the topology of Ricci soliton is important. We call a metric quasi-Einstein if
the m-Bakry-Emery Ricci tensor is a constant multiple of the metric tensor. This is a generalization
of gradient shrinking Ricci soliton. In this paper, we will prove the finiteness of the fundamental
group of m-quasi-Einstein with a positive constant multiple.

1. Introduction and Main Results

Ricci flow is introduced in 1982 and developed by Hamilton (cf. [1]):

∂

∂t
g = −2Ric,

g(0) = g0.
(1.1)

Recently, Perelman supplemented Hamilton’s result and solved the Poincaré Conjecture and
the Geometrization Conjecture by using a Ricci flow theory. But in higher dimension greater
than 4 classification using Ricci flow is still far-off. Most above all the classification of Ricci
solitons, which are singularity models, is not completed. But there exist many properties of
Ricci solitons. Here we say g is a Ricci soliton if (M,g) is a Riemannian manifold such that
the identity

Ric + LXg = cg (1.2)
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holds for some constant c and some complete vector field X on M. If c > 0, c = 0, or c < 0,
then we call it shrinking, steady, or expanding. Moreover, if the vector field X appearing in
(1.2) is the gradient field of a potential function (1/2)f , one has Ric + ∇∇f = cg and says g
is a gradient Ricci soliton. In 2008, Lōpez and Rı́o have shown that if (M,g) is a complete
manifold with Ric + LXg ≥ cg and some positive constant c, then M is compact if and
only if ‖X‖ is bounded. Moreover, under these assumptions if M is compact, then π1(M) is
finite. Furthermore, Wylie [2] has shown that under these conditions if M is complete, then
π1(M) is finite. Moreover, in 2008, Fang et al. (cf. [3]) have shown that a gradient shrinking
Ricci soliton with a bounded scalar curvature has finite topological type. By [4, Proposition
1.5.6], Cao and Zhu have shown that compact steady or expanding Ricci solitons are Einstein
manifolds. In addition by [4, Corollary 1.5.9 (ii)] note that compact shrinking Ricci solitons
are gradient Ricci solitons. So we are interested in shrinking gradient Ricci solitons. In [6,
page 354], Eminenti et al. have shown that compact shrinking Ricci solitons have positive
scalar curvatures. In [6] Case et al. have shown that anm-quasi-Einstein with 1 ≤ m < ∞ and
c > 0 has a positive scalar curvature. Let me introduce the definition ofm-quasi-Einstein.

Definition 1.1. The triple (M,g, f) is an m-quasi-Einstein manifold if it satisfies the equation

Ric +Hessf − 1
m
df ⊗ df = cg (1.3)

for some c ∈ R.
Herem-Bakry-Emery Ricci tensor Ricm

f

.= Ric +Hessf − (1/m)df ⊗ df for 0 < m ≤ ∞ is
a natural extension of the Ricci tensor to smooth metric measure spaces (cf. [6, Section 1 ]).
Note that ifm = ∞, then it reduces to a gradient Ricci soliton. In this paper, we will prove the
finiteness of the fundamental group of an m-quasi-Einstein with c > 0.

Theorem 1.2. Let (M,g, f) be a complete manifold with c > 0 and Ric+Hessf−(1/m)df⊗df ≥ cg.
Then it has a finite fundamental group.

2. The Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to the proofs of [2, 7].

Proof. We will prove it by dividing into two cases.

Case 1. ‖∇f‖ is bounded. We claim that the bounded ‖∇f‖ implies the compactness of M.
Let q be a point in M, and consider any geodesic γ : [0,∞) → M emanating from q and
parametrized by arc length t. Then we have

∫T

0
Ric

(
γ̇ , γ̇

) ≥ cT +
1
m

∫T

0

(
df

(
γ̇
))2 −

∫T

0
γ̇
(
g
(∇f, γ̇

)) ≥ cT − g
(∇f, γ̇

)|T0 . (2.1)

Since g(∇f, γ̇)|T0 is boundedwe have that
∫∞
0 Ric(γ̇ , γ̇) = ∞. Hence, the claim is followed

by the proof of [4, Theorem 1]. Let (M̃, g̃) be the Riemannian universal cover of (M,g), let
p : (M̃, g̃) → (M,g) be a projection map, and let f̃ be a map f ◦ p. Since p is a local isometry,
then the same inequality holds, that is, Ric(g̃) + Hesseg̃ f̃ − (1/m)df̃ ⊗ df̃ ≥ cg̃. Now, since
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‖∇̃f̃‖ is bounded, it is followed from the above argument that M̃ is compact. So π1(M) is
finite.

Case 2. ‖∇f‖ is unbounded. We will prove this case by following the proof of [2]. By Case 1,
M is noncompact. For any p ∈ M, define

Hp
.= max

{
0, sup

{
Ricy(v, v) : y ∈ B

(
p, 1

)
, ‖v‖ = 1

}}
. (2.2)

Note that by [7, Lemma 2.2] we have

∫ r

0
Ric

(
γ̇ , γ̇

)
ds ≤ 2(n − 1) +Hp +Hq. (2.3)

Assume that d(p, q) > 1. On the other hand, from the inequality of Theorem 1.2, we have

∫ r

0
Ric

(
γ̇ , γ̇

)
ds ≥ cd

(
p, q

)
+

1
m

∫ r

0

(
df

(
γ̇
))2 −

∫ r

0
γ̇
(
g
(∇f, γ̇

))

≥ cd
(
p, q

) − ∥∥∇f
∥∥
p −

∥∥∇f
∥∥
q,

(2.4)

since g(∇f, γ̇) ≤ ‖∇f‖‖γ̇‖. Hence, we have that for any p, q ∈ M

d
(
p, q

) ≤ max
{
1,

1
c

(
2(n − 1) +Hp +Hq +

∥∥∇f
∥∥
p +

∥∥∇f
∥∥
q

)}
. (2.5)

Now we will apply a similar argument like Case 1. Fix p̃ ∈ M̃, and let h ∈ π1(M) identified
as a deck transformation on M̃. Note that B(p̃, 1) and B(h(p̃), 1) are isometric, and thusHp̃ =
Hh(p̃). Also ‖∇̃f̃‖p̃ = ‖∇̃f̃‖h(p̃). So we conclude that

d
(
p̃, h

(
p̃
)) ≤ max

{
1,

2
c

(
n − 1 +Hp̃ +

∥∥∥∇̃f̃
∥∥∥
p̃

)}
(2.6)

for any h ∈ π1(M). Since the right-hand side is independent of h, this proves this case.
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