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This paper provides some relations between the idempotent operators and the solutions to
operator equations ABA = A2 and BAB = B2.

1. Introduction

Let H be a complex Hilbert space. Denote by B(H) the Banach algebra of all bounded linear
operators onH. For A,B ∈ B(H), if A and B satisfy the relations

ABA = A2, BAB = B2, (1.1)

we say the pair of (A,B) is the solution to (1.1). In [1], Vidav has investigated the self-adjoint
solutions to (1.1) and showed that the pair of (A,B) is self-adjoint solution to (1.1) if and
only if there exists unique idempotent operator P such that A = PP ∗ and B = P ∗P . In [2],
Rakočević gave another proof of this result by using some properties of generalized inverses.
In [3], Schmoeger generalized the Vidav’s result concerning (1.1) by using some properties of
Drazin inverses. The aim of this paper is to investigate some connections between idempotent
operators and the solutions to (1.1). We prove main results as follows.

(1) A and B are idempotent solution to (1.1) if and only if there exist idempotent
operators P and Q satisfying (1.1) such thatA = PQ and B = QP .

(2) If A is generalized Drazin invertible such that AπB(I − Aπ) = 0. Then A and
B satisfy (1.1) if and only if A = P1 + N1 and B = P2 + N2, where N1 and
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N2 are arbitrary quasinilpotent elements satisfying (1.1), P1 and P2 are arbitrary
idempotent elements satisfying R(P1) = R(P2) and Pi⊥cNj , i, j = 1, 2.

Before proving the main results in this paper, let us introduce some notations and
terminology which are used in the later. For T ∈ B(H), we denote by R(T), N(T), σp(T) and
σ(T) the range, the null space, the point spectrum, and the spectrum of T , respectively. An
operator P ∈ B(H) is said to be idempotent if P 2 = P . P is called an orthogonal projection
if P = P 2 = P ∗, where P ∗ denotes the adjoint of P . An operator A ∈ B(H) is unitary if
AA∗ = A∗A = I. A is positive if (Ax, x) ≥ 0 for all x ∈ H and its unique positive square root
is denoted by A1/2. For a closed subspace K of H,T |K denotes the restriction of T on K and
PK denotes the orthogonal projection onto K. The generalized Drazin inverse (see [4, 5]) is
the element Td ∈ B(H) such that

TTd = TdT, TdTTd = Td, T − T2Td is quasinilpotent. (1.2)

It is clear Td = T−1 if T ∈ B(H) is invertible. If T is generalized Drazin invertible, then the
spectral idempotent Tπ of T corresponding to {0} is given by Tπ = I − TTd . The operator
matrix form of T with respect to the space decomposition H = N(Tπ ) ⊕ R(Tπ ) is given by
T = T1 ⊕ T2, where T1 is invertible and T2 is quasinilpotent.

2. Some Lemmas

To prove the main results, some lemmas are needed.

Lemma 2.1 (see [6, Lemma 1.1]). Let P be an idempotent in B(H). Then there exists an invertible
operator S ∈ B(H) such that SPS−1 is an orthogonal projection.

Lemma 2.2 (see [7, Theorem 2.1]). Let P,Q ∈ B(H) with P = P 2 and Q = Q2 = Q∗. If R(P) =
R(Q), then P + P ∗ − I is always invertible and

Q = P(P + P ∗ − I)−1 = (P + P ∗ − I)−1P ∗. (2.1)

Lemma 2.3 (see [8, Remark 1.2.1]). Let A,B ∈ B(H). Then σ(AB) \ {0} = σ(BA) \ {0}.

Lemma 2.4 (see [9, 10]). Let A ∈ B(H) have the matrix form A =
(

A11 A12
A21 A22

)
. Then A ≥ 0 if

and only if Aii ≥ 0, i = 1, 2, A21 = A∗
12 and there exists a contraction operator D such that A12 =

A1/2
11 DA1/2

22 .

Lemma 2.5. Let A,B ∈ B(H) with ABA = A2 and BAB = B2. Then

(AB)k = AkB = ABk, AkBl = Ak+l−1B = ABk+l−1 (2.2)

for all nonnegative integer k, l ≥ 1.
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Proof. The conditions ABA = A2 and BAB = B2 imply that (AB)2 = ABAB = A2B = AB2.
Now suppose (AB)k = AkB = ABk holds for nonnegative integer 2 ≤ k ≤ m. Then, for
k = m + 1, we have

(AB)m+1 = (AB)2(AB)m−1 = A2B(AB)m−1 = A(AB)m = Am+1B

= AAmB = A2Bm = AB2Bm−1 = ABm+1.
(2.3)

Hence (AB)k = AkB = ABk and AkBl = Ak−1ABl = Ak−1AlB = Ak+l−1B = ABk+l−1 for all
nonnegative integer k, l ≥ 1.

An element T ∈ B(H) whose spectrum σ(T) consists of the set {0} is said to be quasi-
nilpotent [8]. It is clear that T is quasi-nilpotent if and only if the spectral radius γ(T) =
sup{|λ| : λ ∈ σ(T)} = 0. In particular, if there exists a positive integerm such thatAm = 0, then
A is m-nilpotent element. For the quasi-nilpotent operator, we have the following results.

Lemma 2.6. Let A and B satisfy (1.1). Then A is quasinilpotent if and only if B is quasinilpotent.
In particular, A is nilpotent if and only if B is nilpotent; if A is quasinilpotent and AB = BA, then
A2 = B2 = 0.

Proof. Because σ(A2)∪{0} = σ(ABA)∪{0} = σ(A2B)∪{0} = σ(AB2)∪{0} = σ(BAB)∪{0} =
σ(B2) ∪ {0}, it follows thatA is quasinilpotent if and only if B is quasinilpotent.

By Lemma 2.5, if there is a nonnegative integer m ≥ 1 such that Am = 0, then

Bm+1 = Bm−1BAB = BAmB = 0. (2.4)

Similarly we can show thatAn+1 = 0 if Bn = 0. HenceA is nilpotent if and only if B is nilpotent.
If A is quasinilpotent, then B is quasinilpotent, so I −A and I − B are invertible. From

the condition AB = BA, we obtain A2(I − B) = A2 − ABA = 0, B2(I − B) = B2 − BAB = 0. It
follows A2 = 0 and B2 = 0.

Lemma 2.7. Let A and B satisfy (1.1). Then for every integer k ≥ 1,

σ
(
A2
)
= σ
(
B2
)
, σ

(
AkB

)
= σ
(
BkA

)
. (2.5)

Proof. Since A2B = AB2 by Lemma 2.5,

σ
(
A2B

)
∪ {0} = σ(ABA) ∪ {0} = σ

(
A2
)
∪ {0},

σ
(
AB2

)
∪ {0} = σ(BAB) ∪ {0} = σ

(
B2
)
∪ {0}.

(2.6)
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Note that A is invertible if and only if B is invertible. We get σ(A2) = σ(B2). Next, if 0 /∈
σ(AB), then from (AB)2 = A2B we obtain AB = A, that is, A is invertible. It follows that
A = B = I because ABA = A2 and BAB = B2, so σ(AB) = σ(BA). Now,

σ
(
AkB

)
= σ
(
(AB)k

)
=
{
λk : λ ∈ σ(AB)

}
,

σ
(
BkA

)
= σ
(
(BA)k

)
=
{
μk : μ ∈ σ(BA)

}
.

(2.7)

Hence, σ(AkB) = σ(BkA) for every integer k ≥ 1.

3. Idempotent Solutions

In this section, we will show that the solutions to (1.1) have a closed connection with the
idempotent operators. Our main results are as follows.

Theorem 3.1. The following assertions are equivalent.

(a) A and B are idempotent solution to (1.1).

(b) There exist idempotent operators P and Q satisfying (1.1) such that

A = PQ, B = QP. (3.1)

Proof. Clearly, we only needs prove that (a) implies (b). Since A and B are idempotent
operators, ABA = A2 and BAB = B2, without loss of generality, we can assume that one of
A and B is orthogonal projection by Lemma 2.1. For example, assume that B is an orthogonal
projection. From ABA = A, we obtainN(B|R(A)) = 0. Since B is an orthogonal projection and
BAB = B, we have BA∗B = B and N(I|R(A)⊥ − B|R(A)⊥) = 0. By Lemma 2.4, A and B can be
written in the forms of

A =

⎛
⎜⎜⎜⎜⎜⎝

I 0 P13 P14

I P23 P24

0

0

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

I

Q1 Q1/2
1 DQ1/2

2

Q1/2
2 D∗Q1/2

1 Q2

0

⎞
⎟⎟⎟⎟⎟⎠

, (3.2)

with respect to the space decomposition H =
∑4

i=1 ⊕Hi, respectively, where H1 = N(IR(A) −
B|R(A)), H2 = R(A) 	 H1, H4 = N(B|R(A)⊥), H3 = R(A)⊥ 	 H4 and the entries omitted are
zero. It is easy to see that Qi as operators on H1+i, i = 1, 2, are injective positive contractions,
and D is a contraction fromH3 into H2 by Lemma 2.4. Since B is an orthogonal projection,

⎛
⎝ Q1 Q1/2

1 DQ1/2
2

Q1/2
2 D∗Q1/2

1 Q2

⎞
⎠

2

=

⎛
⎝ Q1 Q1/2

1 DQ1/2
2

Q1/2
2 D∗Q1/2

1 Q2

⎞
⎠, (3.3)
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that is,

⎛
⎝ Q2

1 +Q1/2
1 DQ2D∗Q1/2

1 Q3/2
1 DQ1/2

2 +Q1/2
1 DQ3/2

2

Q1/2
2 D∗Q3/2

1 +Q3/2
2 D∗Q1/2

1 Q2
2 +Q1/2

2 D∗Q1DQ1/2
2

⎞
⎠ =

⎛
⎝ Q1 Q1/2

1 DQ1/2
2

Q1/2
2 D∗Q1/2

1 Q2

⎞
⎠.

(3.4)

Comparing both sides of the above equation and observing that self-adjoint operators Qi,
I −Qi, i = 1, 2 are injective, by a straightforward computation we obtain

Q2 = D∗(I −Q1)D, DD∗ = I, D∗D = I. (3.5)

Hence

B = I ⊕
⎛
⎝ Q1 Q1/2

1 (I −Q1)1/2D

D∗(I −Q1)1/2Q1/2
1 D∗(I −Q1)D

⎞
⎠ ⊕ 0, (3.6)

where 0 and 1 are not in σp(Q1), D is unitary from H3 onto H2 (see [11] and Lemma 1 in
[12]). Denote by ABA = (Tij)1≤i,j≤4. A direct computation shows that

T12 = P13D
∗Q1/2

1 (I −Q1)1/2, T22 = Q1 + P23D
∗Q1/2

1 (I −Q1)1/2, (3.7)

and ABA = A if and only if T12 = 0 and T22 = I. Since Q1 and I − Q1 injective self-adjoint
operators, we obtain P13 = 0 and P23D∗Q1/2

1 = (I −Q1)1/2. Moreover, we can show BAB = B

when P13 = 0 and P23D∗Q1/2
1 = (I −Q1)1/2. Hence,

A =

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 P14

I P23 P24

0

0

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

I

Q1 Q1/2
1 (I −Q1)1/2D

D∗(I −Q1)1/2Q1/2
1 D∗(I −Q1)D

0

⎞
⎟⎟⎟⎟⎟⎠

, (3.8)

where Q1 is a contraction on H2, 0 and 1 are not in σp(Q1), D is unitary from H3 onto H2,
Pi4 ∈ B(H4,Hi), i = 1, 2 are arbitrary, P23 ∈ B(H3,H2) and P23D∗Q1/2

1 = (I −Q1)1/2. Let

P = I ⊕
(
I P23

0 0

)
⊕ 0,

Q =

⎛
⎜⎜⎜⎜⎜⎝

I P14

Q1 Q1/2
1 (I −Q1)1/2D Q1P24

D∗(I −Q1)1/2Q1/2
1 D∗(I −Q1)D D∗(I −Q1)1/2Q1/2

1 P24

0

⎞
⎟⎟⎟⎟⎟⎠

.

(3.9)
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Then we can deduce that idempotent operators P and Q satisfy (1.1), PQ = A and QP =
B.

Theorem 3.1 shows that the arbitrary pair of idempotent solution (A,B) can be written
asA = PQ, B = QP with idempotent operators P andQ satisfying (1.1). Next, we discuss the
uniqueness of the idempotent solution to (1.1).

Theorem 3.2. Let B be given idempotent. Then (1.1) has unique idempotent solution A if and only
if N(B|R(A)⊥) = 0. In this case, A,B satisfy AB = A and BA = B.

Proof. Suppose that the pair (A,B) being the idempotent solution to (1.1). By the proof of
Theorem 3.1, ifH4 = N(B|R(A)⊥)/= 0, the idempotent solutionA is not unique because P14 and
P24 are arbitrary elements; if H4 = N(B|R(A)⊥) = 0, then A and B have the form

A =

⎛
⎜⎜⎝

I 0 0

I P23

0

⎞
⎟⎟⎠, B =

⎛
⎜⎜⎝

I

Q1 Q1/2
1 (I −Q1)1/2D

D∗(I −Q1)1/2Q1/2
1 D∗(I −Q1)D

⎞
⎟⎟⎠. (3.10)

Since Q1 = Q∗
1 is injection, D is unitary and P23D∗Q1/2

1 = (I − Q1)1/2, so Q1/2
1 DP ∗

23 = (I −
Q1)1/2 and P ∗

23 = D∗Q−1/2
1 (I − Q1)1/2. Hence, we obtain that P23 is uniquely determined and

P23 = Q−1/2
1 (I − Q1)1/2D. Therefore the idempotent solution A is unique and AB = A and

BA = B.

The following result was first given by Vidav [1]. We give an alternative short proof.

Theorem 3.3 (see [1, Theorem 2]). The following assertions are equivalent.

(a) A and B are self-adjoint solution to (1.1).

(b) There is an idempotent operator P such that

A = PP ∗, B = P ∗P. (3.11)

Proof. (b) implies (a) is clear. Now, suppose that (a) holds. From

A(B − I)2A = AB2A − 2ABA +A2 = A2BA −A2 = A3 −A2, (3.12)

we have A3 − A2 = A(B − I)(A(B − I))∗ ≥ 0, so σ(A3 − A2) ⊂ [0,∞). The spectral mapping
theorem gives

λ3 − λ2 ≥ 0, ∀λ ∈ σ(A) \ {0}. (3.13)

Thus, for ∀λ ∈ σ(A) \ {0}, we have λ ≥ 1 and thereforeA ≥ 0. R(A) is closed since 0 is not the
accumulation point of σ(A). Hence A has the matrix form A = A1 ⊕ 0 according to the space
decompositionH = R(A)⊕R⊥(A), whereA1 is invertible. Similarly, we can derive that B ≥ 0.
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By Lemma 2.4, B can be written as B =
(

B1 B2
B∗
2 B4

)
with B1 ≥ 0 and B4 ≥ 0. From ABA = A2, we

have B1 = I. From BAB = B2, we have

I + B2B
∗
2 = A1,

B∗
2B2 + B2

4 = B∗
2A1B2

}
=⇒ B2

4 =
(
B∗
2B2
)2 =⇒ B4 = B∗

2B2, (3.14)

since the square root of a positive operator is unique. Define P =
(
I B2
0 0

)
. Then P 2 = P ,

PP ∗ =

(
I + B2B

∗
2 0

0 0

)
= A, P ∗P =

(
I B2

B∗
2 B∗

2B2

)
= B. (3.15)

The next characterizations of the solutions to (1.1) are clear.

Corollary 3.4. (a) For arbitrary idempotent operators P and Q, A = PQ, B = QP are the solution
to (1.1).

(b) If A is an idempotent operator satisfying AB = BA, then B is one solution to (1.1) if and
only if there exists a square-zero operatorN0 such that B = A +N0 and AN0 = N0A = 0.

(c) If A is an orthogonal projection, then self-adjoint operator B satisfies (1.1) if and only if
A = B.

Proof. (a) See Theorem 2.2 in [3].
(b) By simultaneous similarity transformations, A and B can be written as A = I ⊕ 0

and B = N21 ⊕N22 since AB = BA. From ABA = A2, we obtain N21 = I. From BAB = B2, we
obtain N2

22 = 0. Select 0 ⊕N22 = N0. Then N2
0 = 0, B = A +N0 and AN0 = N0A = 0.

(c)We use the notations from Theorem 3.3. If A is an orthogonal projection, thenA1 =
I, B2 = 0 in the proof of Theorem 3.3, so the result is a direct corollary of Theorem 3.3.

4. The Perturbation of the Solutions

The operators A and B are said to be c-orthogonal, denoted by A⊥cB, whenever AB = 0 and
BA = 0. The next result is a generalization of Theorems 2.2 and 3.2 in [6], where the same
problems have been considered for ind(A) ≤ 1 and ind(B) ≤ 1.

Theorem 4.1. Let A be generalized Drazin invertible such that AπB(I −Aπ) = 0. Then

A and B satisfy (1.1) iff A = P1 +N1, B = P2 +N2, (4.1)

where N1 and N2 are arbitrary quasinilpotent elements satisfying (1.1), P1 and P2 are arbitrary
idempotent elements satisfying R(P1) = R(P2) and Pi⊥cNj , i, j = 1, 2.
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Proof. Let us consider the matrix representation of A and B relative to the P = I − Aπ . We
have

A =

(
A1 0

0 A2

)

P

, B =

(
B1 B2

B3 B4

)

P

, (4.2)

where A1 is invertible and A2 is quasinilpotent. From ABA = A2, we have

B1 = I, B2A2 = 0, A2B3 = 0, A2B4A2 = A2
2. (4.3)

From BAB = B2 and (4.3), we have

I + B2B3 = A1,

B2 + B2B4 = A1B2,

B3 + B4B3 = B3A1,

B3B2 + B2
4 = B3A1B2 + B4A2B4.

(4.4)

From AπB(I −Aπ) = 0, we have B3 = 0. Now, it follows from (4.2), (4.3) and (4.4) that

A =

(
I 0

0 A2

)

P

, B =

(
I B2

0 B4

)

P

, (4.5)

with

A2B4A2 = A2
2, B4A2B4 = B2

4 , B2A2 = 0, B2B4 = 0. (4.6)

Hence, B4 is quasinilpotent by Lemma 2.6. Select

N1 = 0 ⊕P A2, N2 = 0 ⊕P B4, P1 = I ⊕P 0, P2 = B −N2. (4.7)

Then P1 and P2 are idempotent operators and R(P1) = R(P2). N1 and N2 are quasinilpotent
operators satisfying (1.1) and Pi⊥cNj , i, j = 1, 2.

For the proof of sufficiency observe that R(P1) = R(P2) leads to P1P2 = P2, P2P1 = P1.
Straightforward calculations show that ABA = A2 and BAB = B2.

We also prove the next result which can be seen as one corollary of Theorem 4.1.

Corollary 4.2. Let A be generalized Drazin invertible such thatAπAB = AπBA. Then

A and B satisfy (1.1) iff A = P1 +N1, B = P2 +N2, (4.8)

where N1 and N2 are 2-nilpotent operators satisfying N1N2 = N2N1, P1 and P2 are arbitrary
idempotent elements satisfying R(P1) = R(P2) and Pi ⊥c Nj , i, j = 1, 2.
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Proof. The sufficiency is clear. For the proof of the necessity, let A and B have the matrix
representation as (4.2). From ABA = A2 and BAB = B2, we know that Ai, i = 1, 2 and Bi, i =
1, 2, 3, 4 satisfy (4.3) and (4.4). The condition AπAB = AπBA implies that

A2B3 = B3A1, A2B4 = B4A2. (4.9)

It follows that B3 = 0 because A2B3 = 0 and A1 is invertible by (4.3) and (4.4). Also, (4.2),
(4.3), and (4.4) imply A2 is quasinilpotent and

A2
2 = A2B4A2, B2

4 = B4A2B4, B4A2 = A2B4. (4.10)

It follows immediately that A2
2 = B2

4 = 0 by Lemma 2.6. Now, we obtain

A =

(
I 0

0 A2

)

P

, B =

(
I B2

0 B4

)

P

, (4.11)

with

B2B4 = 0, B2A2 = 0, A2B4 = B4A2, A2
2 = B2

4 = 0. (4.12)

Select

N1 = 0 ⊕P A2, N2 = 0 ⊕P B4, P1 = I ⊕P 0, P2 = B −N2. (4.13)

Then P1 and P2 are idempotent operators and R(P1) = R(P2). N2
1 = 0 and N2

2 = 0 satisfying
Pi ⊥c Nj , i, j = 1, 2 and N1N2 = N2N1.

If we assume that AB = BA instead of the condition AπAB = AπBA, we will get a
much simpler expression for A and B.

Corollary 4.3. Let A be generalized Drazin invertible such thatAB = BA. Then

A and B satisfy (1.1) iff A = P +N1, B = P +N2, (4.14)

where N1 and N2 are 2-nilpotent operators satisfying N1N2 = N2N1, P is arbitrary idempotent
element satisfying P ⊥c N1 and P ⊥c N2.

Proof. Similar to the proof of Theorem 4.1, Corollary 4.2. If AB = BA, then A and B have the
matrix representations

A = I ⊕P A2, B = I ⊕P B4, (4.15)

with A2
2 = B2

4 = 0 and B4A2 = A2B4, so, by Corollary 4.2, the result is clear.
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Remark 4.4. (1) Let γ(T) denote the spectrum radius of operator T . In Corollaries 4.2 and 4.3,
since nilpotent operators A2 and B4 are commutative, we get

γ(A2 − B4) ≤ γ(A2) + γ(−B4) = 0, γ(B4A2) ≤ γ(B4)γ(A2) = 0, (4.16)

that is, A2 − B4 and B4A2 are nilpotent. Hence, A − B is a nilpotent operator and BA can
be decomposed as the c-orthogonality sum of an idempotent operator and a 2-nilpotent
operator.

(2) LetA have the Drazin inverse Ad. Then, by (4.2), A can be written asA = A1 ⊕A2,
where A1 is invertible and A2 is quasi-nilpotent (see also [4, 5]). If A = A∗, then

Ad = A# = A+ = A−1
1 ⊕ 0, (4.17)

where A+ is the Moore-Penrose inverse of A and A# is the group inverse. In fact, if A = A∗,
then A2 = 0 because the self-adjoint quasi-nilpotent operator must be zero. Hence A = A1 ⊕
0,Ad = A# = A+ = A−1

1 ⊕ 0.
(3) If self-adjoint operators A and B satisfy (1.1), then ‖A‖ ≥ 1,

AB = BA iff ‖A‖ = 1 iff A = B = PN(A)⊥ , (4.18)

where PN(A)⊥ is the orthogonal projection on N(A)⊥. In fact, let H = N(A)⊥ ⊕ N(A), then
A = A1 ⊕ 0. Select

B =

(
B1 B2

B∗
2 B4

)
. (4.19)

Similar to the proof of Theorem 4.1, we have

B1 = I, A1 = I + B2B
∗
2, B∗

2A1B2 = B∗
2A1B2 + B2

4 . (4.20)

This shows that ‖A‖ ≥ 1 since A1 = I + B2B
∗
2 ≥ I. If ‖A‖ = 1, then A1 = I, B2 = 0, B4 = 0. Hence

A = B = PN(A)⊥ . If AB = BA, then B2 = 0, so A = I ⊕ 0, B = I ⊕ B4. From BAB = B2, we have
B2
4 = 0, so B4 = 0 since B4 = B∗

4. Hence A = B = PN(A)⊥ . These results (see Theorem 4.2 in [6])
can be seen as the particular case of Corollary 4.3.
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