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A new methodology of binding energy calculation with respect to different spin arrangements for a multiatomic electron system
is developed from the first principle in the frame of the exchange perturbation theory (EPT). We developed EPT formalism in
the general form of the Rayleigh-Srchödinger expansion with a symmetric Hamiltonian, taking into account an exchange and
nonadditive contributions of a superexchange interaction. The expressions of all corrections to the energy and wave function
were reduced to the nonsymmetric Hamiltonian form. The EPT method is extended for the case of degeneracy in the total spin
of a system. As an example of the application of the developed EPT formalism for the degeneracy case, spin arrangements were
considered for the key 〈Mn〉–O–〈Mn〉 (〈Mn〉: Mn3+ or Mn4+) fragments in manganites. In 〈Mn〉–O–〈Mn〉 for La1/3Ca2/3MnO3

are in good agreement the obtained estimations of Heisenberg parameter and binding energy with the available experimental data.

1. Introduction

Analytical calculation of the interaction potential in mul-
tiatomic electron systems with intermediate interatomic dis-
tances is essentially a problem in quantum chemistry. Inter-
mediate distances indicate the distances on which inter-
atomic interaction becomes small enough to be considered as
a perturbation, with the exchange contribution being expo-
nentially small, but exceeding van der Waals interaction. The
quantum chemical analysis of a multiatomic system for the
intermediate interatomic distances with respect to electronic
spin ordering should definitely take into account intercenter
electronic permutations.

The most efficient method for such distances is the per-
turbation theory method, because of its possibility to present
the result in the form of expansion, each term of which
has definite physical interpretation [1, 2]. The variation
procedures of atom and molecule wave function calculation
or density functional approximation (DFT) method [3] in
the frame of the mean field theory allow us to calculate
pair potential of the particle interaction for the ground
state. However, a common procedure in this case is forcing

the wave function parameters to fit the experimental form
of the potential [1, 2]. Excited state determination needs
additional convergence conditions. There is a quantum
chemical Hartree-Fock method based on the Slater deter-
minant, where antisymmetric wave function uses definite
electron spin z-projections. The disadvantage of this method
is concerned with the impossibility of determining the total
spin value of the electronic system involved in interaction
because of the noncommutating of the total spin quadrate
operator of the system ̂S2 and ŝiz operators of the electronic
spin z-projection for each particle, for example, [̂S2, ŝiz] /= 0.
It is important that interatomic potentials in the analytical
form be found from the first principles, and exchange pertur-
bation theory method gives such an opportunity. However,
constructing the exchange perturbation theory formalism is
connected with the two main following problems [1, 2].

First, the base of multiatomic system wave functions,
being antisymmetric in intercenter permutations, is nonor-
thogonal and hence overcompleted (this is known as the
overcompleteness catastrophe).

Second, the perturbation operator and unperturbed part
of the Hamiltonian with respect to electron intercenter
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permutations are asymmetric. The total Hamiltonian ̂H =
̂H0 + ̂V of the system includes two terms: that of unperturbed

Hamiltonian ̂H0 of the noninteracting multiatomic system
and the ̂V perturbation, describing all electron and nuclei
intercenter interactions. The total Hamiltonian of the system
is symmetric with respect to intercenter permutations. In
other words, [ ̂H, ̂A] = 0, but [ ̂H0, ̂A] /= 0 and [ ̂V , ̂A] /= 0,
where ̂A is the antisymmetrization operator.

It is also necessary we take into account nonadditive
superexchange contributions to the system energy and
include pairwise nonadditive interactions in a symmetric
Hamiltonian formalism. The constants of the superexchange
interaction are usually estimated by combinations of pair
integrals [4, 5], which actually means that the specific non-
additive part of multicenter interaction is discarded.

There are many formal EPT variants classified according
to the way of overcoming these problems (a detailed descrip-
tion of this classification can be found in Kaplan’s mono-
graph [1, 2]). All EPT variants can be divided into two
groups, the first of which consisting of theories with
non-symmetric Hamiltonian known as symmetry-adapted
perturbation theories, for example [6–9]. It uses the fun-
damental basis of the zeroth functions, which are non-
symmetric in intercenter electron permutations. These func-
tions are eigenfunctions of non-symmetric Hamiltonian of
the unperturbed system. Wave function antisymmetrization
is done post factum in each interpolation step. Finally, this
analysis requires the use of an additional variation procedure.
The second group consists of approaches, allowing for the
general Rayleigh Schrödinger form use by setting up a special
zeroth symmetric Hamiltonian, for which the antisymmetric
functions are eigenfunctions. An attempt to modify the
Hamiltonian in such a way was made in [10, 11] (known as
the Sternheimer procedure), which led to a non-Hermitian
form of the total Hamiltonian and actually limited the
use of the method only by the two-electron systems. The
symmetric Hamiltonian treatment has been abandoned due
to several unsolvable problems in this approach. The main
problem is that the perturbation corrections have no well-
defined meaning in the limit of complete basis set. In con-
trast, methods with non-symmetric Hamiltonian known as
symmetry-adapted perturbation theories became the main-
stream method for intermolecular interaction calculations.

The Ritchie EPT [12], where the specific projection oper-
ators Λp to the subspace of wave functions, corresponding
to the determined permutation p, were sophistically entered
and employed in the ETP formalism in the Wigner form of
expansion, can also be assigned to the second group. The
explicit forms of these operators were not given. A similar
way of the Hamiltonian symmetrized form construction
was used in [13], where the perturbation theory in the
Rayleigh-Schrödinger form was developed; however, the
Λp operators were not obtained analytically either. The
symmetric nonperturbed Hamiltonian and symmetric form
of the perturbation operator were developed from the first
principles in [14–16] for the two-center system, but only the
attempts of developing analytical forms of the projection
operators were made.

In the present paper we have developed a general EPT
form for the multiatomic electron system for the case of the
nonorthogonal basis of spatial parts of the wave function
antisymmetrized with respect to the intercenter electron per-
mutations. Due to the one-to-one correspondence between
the symmetries of the wave function spin and spatial parts
we create an algorithm permitting to determine the total
spin value for the system of electrons involved in interaction.
The analytical form of the ̂Λ-projection operators and the
symmetric form of the unperturbed Hamiltonian as well
as that of the perturbation operator have been obtained.
The resultant expressions of the corrections to the energy
and wave functions were analytically reduced to the non-
symmetric perturbation form. Such simple form is more use-
ful for the applications; nevertheless, it contains all exchange
and superexchange inputs. The EPT formalism is extended
for the case of degeneracy in the total spin for multiatomic
electronic system. As an example of the EPT developed
formalism application for the case of degeneracy we consider
the spin arrangement problem in the key manganese 〈Mn〉–
O–〈Mn〉 fragments (〈Mn〉: Mn3+ or Mn4+) in manganites.
On the basis of the analytical equations obtained, calculation
of the binding energy and splitting in the total spin system
have been performed for the La1/3Ca2/3MnO3 compound.
The estimations obtained are in good agreement with the
available experimental data.

2. Exchange Perturbation Theory

Exchange interaction between closely spaced atoms involves
participation of out-shell electrons of these atoms. These
shells can include not only the outermost valence shell, but
also inner shells adjacent to the last shell, providing an
appreciable contribution to the overlap energy. In general,
a total of N > 2 electrons will participate in the interaction
of each pair of atoms. The total system Hamiltonian can be
indicated as a HamiltonianH0 of the independent atoms plus
perturbation operator V taking into account all interatomic
interactions:

̂H = H0 +V. (1)

The spatial part of the zero approximation wave function

Φ(r1, . . . , rN ) =
∏

α

ψα
(

ri, . . . , rj
)

(2)

is a simple product of atomic wave functions. We may leave
the wave function spin part, if the unperturbed Hamiltonian
and the perturbation do not directly contain spin operators,
such as relativistic inputs of the spin-orbit and the spin-spin
interactions. The spatial eigenfunction Φn(r1, . . . , rN ) of the
unperturbed Hamiltonian

H0Φn(r1, . . . , rN ) = E0
nΦn(r1, . . . , rN ), (3)

being antisymmetrized in intercenter permutations
Ψ0
n(r1, . . . , rN) = ̂AΦn(r1, . . . , rN), will not be an ei-

genfunction of the H0 Hamiltonian. Here, ̂A is the anti-
symmetrization operator. The antisymmetric wave function
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corrections calculated in the non-symmetric perturbation V
will contain nonphysical contributions [1].

The spatial part of the wave function antisymmetrized

with the Young operator ω[λ]
p,t , where [λ] is the form of Young

tableaux and t is the number of the standard tableaux, can be
written as [2]

Ψ0
n(r1, . . . , rN ) = ̂AΦn(r1, . . . , rN )

=
∑

t

ω[λ]
p=0,tΦ

p=0
n

= 1
f Pn

P
∑

p=0

(−1)gpΦ
p
n(r1, . . . , rN ),

(4)

where p is the number of the permutation, gP is the per-
mutation parity factor, and Φ

p
n(r1, . . . , rN ) is the same simple

product as (2), but with the electron permutation of number
p, where P is the total number of the possible permutations,
1/ f

p
n is normalization f Pn = ∑P

p=0 (−1)gP (Φ0
n | Φp

n). We will

use the notation for the non-symmetric state vector—|Φp
n)

and for the antisymmetric state vector—|Ψ0
n〉. Here is the

normalization condition (Φ0
n | Ψ0

n〉 = 1, which differs by a
factor

√
P from the commonly used condition 〈Ψ0 | Ψ0〉 = 1.

First, we will construct a symmetric form of the unper-
turbed Hamiltonian. The function Φ

p
n(r1, . . . , rN ) in which

electrons have been interchanged is also an eigenfunction
of the unperturbed system Hamiltonian H0

P with the same
permutation, that is, H0

PΦ
P
i = E0

iΦ
P
i . Then we can write out

the following set of equations:

H0
p=0

∣

∣

∣Φ
p=0
i

)

= E0
i

∣

∣

∣Φ
p=0
i

)

,

H0
p=1

∣

∣

∣Φ
p=1
i

)

= E0
i

∣

∣

∣Φ
p=1
i

)

,

...

H0
P

∣

∣

∣ΦP
i

)

= E0
i

∣

∣

∣ΦP
i

)

.

(5)

We sum up these equations so that, on the right, we obtain
the function corresponding to the coordinate part of the
Young tableaux, for which the symmetrization procedure is
carried out in (4). The result is

p=P
∑

p=0

(−1)gpH0
p

∣

∣

∣Φ
p
i

)

= E0
i

p=P
∑

p=0

(−1)gp
∣

∣

∣Φ
p=0
i

)

, (6)

or with respect to (4) we get the following expression:

p=P
∑

p=0

(−1)gpH0
p

∣

∣

∣Φ
p
i

)

= E0
i f

P
i

∣

∣

∣Ψ0
i

〉

. (7)

We introduce a projector Λπ
n = |Φπ

n)(Φπ
n| on the π-permu-

tation vector of the state corresponding to energy level E0
n.

Applying it to the antisymmetrized vector |Ψ0
n〉 with respect

to the normalization condition we get

Λπ
n

∣

∣Ψ0
n

〉 = (−1)gπ
∣

∣Φπ
n

)

. (8)

Using (8), equation (7) can be presented in the following
form:

1
f Pi

p=P
∑

p=0

H0
pΛ

p
i

∣

∣

∣Ψ0
i

〉

= E0
i

∣

∣

∣Ψ0
i

〉

, (9)

or

̂H0

∣

∣

∣Ψ0
i

〉

= E0
i

∣

∣

∣Ψ0
i

〉

, (10)

where the symmetrized unperturbed Hamiltonian has the
form

̂H0 =
P
∑

p=0

H0
p

∑

n

1
f Pn

Λ
p
n. (11)

We can represent the perturbation operator in the symmetric
form

̂V =
P
∑

p=0

Vp

∑

n

1
f Pn

Λ
p
n. (12)

The total Hamiltonian of the interacting system is always
invariant under the electron permutations so that the solu-
tion of the Schrödinger equation can be antisymmetric under
the electron permutations

̂H|Ψ〉 = E|Ψ〉, (13)

where ̂H = ̂H0 + ̂V with respect to (11) and (12).
Solving (13) by the approximation method, we search for

the perturbative corrections to the energy of the unperturbed
system and the wave function (10). The perturbation opera-
tor in the form of (12) provides the same symmetry for the
corrections as does the initial wave function. If interaction is
small, we can represent the wave function and energy in the
form of the following series:

|Ψi〉 =
∣

∣

∣Ψ(0)
i

〉

+
∣

∣

∣Ψ(1)
i

〉

+ · · · ,

Ei = E(0)
i + E(1)

i + · · · .
(14)

In the first approximation in the perturbation, the
Schrödinger equation takes the form

̂H0

∣

∣

∣Ψ
(1)
i

〉

+ ̂V
∣

∣

∣Ψ
(0)
i

〉

= E(1)
i

∣

∣

∣Ψ
(0)
i

〉

+ E(0)
i

∣

∣

∣Ψ
(1)
i

〉

. (15)

The intermediate normalization condition is

(Φi | Ψi〉 =
(

Φi | Ψ0
i

〉

, (16)

that is, (Φi|{|Ψi〉 − |Ψ0
i 〉} = 0. Which means that all correc-

tions to the vector |Ψ0
i 〉 of the zeroth approximation lie in the

subspace orthogonal to this vector.
There is a projection operator ̂Pi = |Ψ0

i 〉(Φi| in the sub-
space of vectors parallel to |Ψ0

i 〉.
Since

̂Pi ̂H0

∣

∣

∣Ψ
(1)
i

〉

= E0
i
̂Pi
∣

∣

∣Ψ
(1)
i

〉

(17)
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is valid (see Appendix A), applying the projection operator ̂Pi
to (15) results in (Φi| ̂V|Ψ0

i 〉|Ψ0
i 〉 = E(1)

i |Ψ0
i 〉. Then the first-

order correction to the energy is

E(1)
i = (Φi| ̂V

∣

∣

∣Ψ(0)
i

〉

. (18)

Now we introduce the projector

̂Oi = 1− ̂Pi (19)

on the subspace of vectors orthogonal to the vector |Ψ0
i 〉. The

first-order corrections to the antisymmetrized vector |Ψ0
i 〉

will have the following form of expansion:

∣

∣

∣Ψ(1)
i

〉

=
∑

n

′Cn
∣

∣

∣Ψ(0)
n

〉

, (20)

where n /= i. Inserting the expansion (20) to (15) and apply-
ing the projector (19) to the result, we obtain the following
equation:

̂Oi ̂V
∣

∣

∣Ψ
(0)
i

〉

=
∑

n

Cn
(

E0
i − E0

n

)∣

∣

∣Ψ(0)
n

〉

. (21)

Using the property of completeness
∑

n |Φp
n)(Φ

p
n| = ̂I of the

orthogonal basis of the non-symmetric zeroth functions, we
can get the left-hand side of (21) as follows (the details can
be found in Appendix A):

̂Oi ̂V
∣

∣

∣Ψ(0)
i

〉

= 1
P

∑

n

′ f pn
∣

∣

∣Ψ(0)
n

〉(

Φ(0)
n

∣

∣

∣
̂Oi ̂V

∣

∣

∣Ψ(0)
i

〉

. (22)

From (21) and (22) we obtain the first-order corrections to
the wave vector

∣

∣

∣Ψ(1)
i

〉

= 1
P

∑

n

f
p
n

(

Φ(0)
n

∣

∣

∣
̂Oi ̂V

∣

∣

∣Ψ(0)
i

〉

(

E0
i − E0

n

)

∣

∣Ψ0
n

〉

,

∣

∣

∣Φ(1)
i

)

= 1
P

∑

n

f
p
n

(

Φ(0)
n

∣

∣

∣
̂Oi ̂V

∣

∣

∣Ψ(0)
i

〉

(

E0
i − E0

n

)

∣

∣Φ0
n

)

.

(23)

Since (Φi| ̂Oi ̂V|Ψ(0)
i 〉 = (Φi|{1 − |Ψi〉(Φi|} ̂V|Ψ(0)

i 〉 ≡ 0 and

(Φn| ̂Oi = (Φn| − (Φn|Ψ(0)
i 〉(Φi| ≈ (Φn| (see Appendix A),

we get the final expressions:

∣

∣

∣Ψ
(1)
i

〉

= 1
P

∑

n

′ f Pn

(

Φ
(0)
n

∣

∣

∣
̂V
∣

∣

∣Ψ
(0)
i

〉

(

E0
i − E0

n

)

∣

∣

∣Ψ(0)
n

〉

,

∣

∣

∣Φ
(1)
i

)

= 1
P

∑

n

′ f Pn

(

Φ
(0)
n

∣

∣

∣
̂V
∣

∣

∣Ψ
(0)
i

〉

(

E(0)
i − E(0)

n

)

∣

∣

∣Φ(0)
n

)

.

(24)

Here the intermediate normalization condition {(Φ(0)
i | +

(Φ(1)
i |}{|Ψ(0)

i 〉 + |Ψ(1)
i 〉} = 1 is used.

Using (9), (11), and (12), it can be shown that the integral

(Φ(0)
n | ̂V |Ψ(0)

i 〉 is equal to the integral 〈Ψ(0)
n |Vp=0|Φ(0)

i ),
where perturbation V has the simple non-symmetric form

corresponding to the number of permutations p = 0. Then
(18) and (24) can be rewritten in the form of non-symmetric
perturbation operator:

E(1)
i =

〈

Ψ
(0)
i

∣

∣

∣Vp=0|Φi),

∣

∣

∣Ψ(1)
i

〉

= 1
P

∑

n

′ f Pn

〈

Ψ(0)
n

∣

∣

∣Vp=0

∣

∣

∣Φ(0)
i

)

(

E(0)
i − E(0)

n

)

∣

∣

∣Ψ(0)
n

〉

,

∣

∣

∣Φ(1)
i

)

= 1
P

∑

n

′ f Pn

〈

Ψ(0)
n

∣

∣

∣Vp=0

∣

∣

∣Φ(0)
i

)

(

E(0)
i − E(0)

n

)

∣

∣

∣Φ(0)
n

)

.

(25)

Higher-order corrections are found in a similar way. So, for
the second order we obtain the following equation:

̂H0

∣

∣

∣Ψ(2)
i

〉

+ ̂V
∣

∣

∣Ψ(1)
i

〉

= E(0)
i

∣

∣

∣Ψ
(2)
i

〉

+ E(1)
i

∣

∣

∣Ψ
(1)
i

〉

+ E(2)
i

∣

∣

∣Ψ
(0)
i

〉

,

(26)

from which, after applying the operator ̂Pi, we find the
second-order correction to the energy:

E(2)
i =

∑

k

′ f
P
k

P

(

Φ
(0)
i

∣

∣

∣
̂V
∣

∣

∣Ψ0
k

〉(

Φ
(0)
k

∣

∣

∣
̂V
∣

∣

∣Ψ
(0)
i

〉

(

E(0)
i − E(0)

k

) . (27)

Hence for the simple non-symmetric form it is

E(2)
i =

∑

k

′ f
P
k

P

〈

Ψ(0)
i

∣

∣

∣Vp=0

∣

∣

∣Φ(0)
k

)〈

Ψ(0)
k

∣

∣

∣Vp=0

∣

∣

∣Φ(0)
i

)

(

E(0)
i − E(0)

k

) . (28)

Similarly, applying the operator ̂Oi, we find the wave
vector correction:

∣

∣

∣Ψ
(2)
i

〉

=
∑

n

′∑

k

′ f
P
n f

P
k

P2

∣

∣Ψ0
n

〉

〈

Ψ0
n

∣

∣Vp=0

∣

∣

∣Φ0
k

)〈

Ψ0
k

∣

∣

∣Vp=0

∣

∣

∣Φ0
i

)

(

E0
i − E0

k

)(

E0
i − E0

n

)

−
∑

n

′
(

f Pn
P

)2
∣

∣Ψ0
n

〉

〈

Ψ0
n

∣

∣Vp=0

∣

∣

∣Φ0
i

)〈

Ψ0
i

∣

∣

∣Vp=0

∣

∣

∣Φ0
i

)

(

E0
i − E0

n

)2

−
∣

∣

∣Ψ0
i

〉

2

∑

n

′
(

f Pn
P

)2
〈

Ψ0
i

∣

∣

∣Vp=0
∣

∣Φ0
n

)〈

Ψ0
n

∣

∣Vp=0

∣

∣

∣Φ0
i

)

(

E0
i − E0

n

)2 ,

∣

∣

∣Φ(2)
i

)

=
∑

n

′∑

k

′ f
P
n f

P
k

P2

∣

∣Φ0
n

)

〈

Ψ0
n

∣

∣Vp=0

∣

∣

∣Φ0
k

)〈

Ψ0
k

∣

∣

∣Vp=0

∣

∣

∣Φ0
i

)

(

E0
i − E0

k

)(

E0
i − E0

n

)
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−
∑

n

′
(

f Pn
P

)2
∣

∣Φ0
n

)

〈

Ψ0
n

∣

∣Vp=0

∣

∣

∣Φ0
i

)〈

Ψ0
i

∣

∣

∣Vp=0

∣

∣

∣Φ0
i

)

(

E0
i − E0

n

)2

−
∣

∣

∣Φ0
i

)

2

∑

n

′
(

f Pn
P

)2
〈

Ψ0
i

∣

∣

∣Vp=0
∣

∣Φ0
n

)〈

Ψ0
n

∣

∣Vp=0

∣

∣

∣Φ0
i

)

(

E0
i − E0

n

)2 .

(29)

Here we used the intermediate normalization condition
{(

Φ0
i

∣

∣

∣ +
(

Φ(1)
i

∣

∣

∣ +
(

Φ(2)
i

∣

∣

∣
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〉
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∣

∣
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〉
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∣

∣
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i

〉}

= 1.

(30)

For the third-order correction to the energy, we get the fol-
lowing equation:
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⎜
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⎟
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(31)

The set of the antisymmetrized wave function is nonorthog-
onal, but this set satisfies the property of completeness.
Applying the operator

∑

n |Ψn〉(Φn| to an arbitrary antisym-
metrized vector |Ψ〉, we get

∑

n

|Ψn〉(Φn | Ψ〉 =
∑

n

P
∑

p=0

∣

∣

∣Φ
p
n

)

(Φn | Ψ〉 · (−1)gp
1
f Pn
.

(32)

Since this arbitrary vector |Ψ〉 is antisymmetric, it can be
written out in the following form:

∑

n

∣

∣Ψ0
n

〉

(Φn|Ψ〉 =
∑

n

P
∑

p=0

(−1)gp

f Pn
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∣
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P
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(−1)gP

f Pn

∣

∣

∣Φ
p
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)(

Φ
p
n | Ψ

〉

(−1)gp

=
P
∑

p=0

1
f0
|Ψ〉 = P

f0
|Ψ〉,

(33)

where f Pn ≈ f0 =
∑p=P

p=0 (Φ0 | Φp
0 )(−1)gp and

∑

n |Φp
n)(Φ

p
n| =

1 are used. Then we get the equation

f0
P

∑

n

|Ψn〉(Φn| =
∑

n

|Φn)(Φn|. (34)

This property of completeness (34) was proved with the use
of two approximations:

(

Φ0
i | Φp

n

)

�
(

Φ0
n | Φp

n

)

∼
(

Φ0
i | Φp

i

)

,

f Pn ≈ f0 =
p=P
∑

p=0

(

Φ0 | Φp
0

)

(−1)gp .
(35)

Thus, we have reduced the expressions for the high-order
corrections to the energy and wave function for multiatomic
system to the form of the exchange perturbation theory of
Rayleigh-Schrödinger formalism with nonsymmetric Hamil-
tonian, so-called symmetry-adapted perturbation theories.
In doing so the intercenter overlapping of the wave functions
and superexchange effects were taken into account. The
antisymmetrization with the Young tableaux makes the set of
zero approach wave functions nonorthogonal; nevertheless,
this set can meet the property of completeness under the
condition of (35). The obtained EPT expansion is two-
parametrical. The first small parameter is included in the
perturbation, and it has the order of vanishing aB/R, where
aB is Bohr’s radius, whereas R is interatomic distance. The
second parameter is the degree of interatomic overlapping,
which has the order of vanishing exp(−R/aB).

It should be underlined that for the intercenter distances
R > 15aB the expressions for all corrections to the energy
and wave function in the frame of EPT naturally become
a standard expansion of Rayleigh-Schrödinger perturbation
theory. In this case all exchange integrals containing the
intercenter permutations (Φ′| ̂V|Φ) � (Φ| ̂V|Φ) are much
less than the simple Coulomb contributions and the overlap-
ping integrals(Φ | Φ′) → 0.

2.1. The Case of Degeneracy. The zeroth wave vector for a
multicenter system can be antisymmetrized by various Young
tableaux, which differ for different values of total system
spin. In other words, a multiatomic system of noninteracting
atoms is degenerate in total spin, with the degeneracy
lifted by allowing for the ordinary intercenter Coulomb
interaction. Thus, by the zeroth approximation we have

∣

∣Ψ0
nα

〉 = Aα
∣

∣Φ0
n

)

,

̂H0α
∣

∣Ψ0
nα

〉 = E0
n

∣

∣Ψ0
nα

〉

,

̂H0α =
P
∑

p=0,n

1
f αn
H0
pΛ

p
n ,

(36)

where {|Ψ0
nα〉} is the set of wave vectors antisymmetrized by

different Young tableaux α and corresponding to the same
energy level E0

n of the system.
The wave vector of an interacting multicenter system of

electrons is taken in the form

|Ψi〉 =
∑

β

C0
β

∣

∣

∣Ψ0
βi

〉

+
∣

∣ϕ
〉

, (37)
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where ϕ is a wave function correction. If we substitute (37)
in the complete Schrödinger equation (13), we obtain

̂H
∑

β

C0
β

∣

∣

∣Ψ0
β

〉

+ ̂H
∣

∣ϕ
〉

=
(

E0
i + ε

)
∑

β

C0
β

∣

∣

∣Ψ0
β

〉

+
(

E0
i + ε

)
∣

∣ϕ
〉

,
(38)

where ε is an energy correction. Since the total Hamiltonian
is invariant under all permutations, it can be taken outside
the summation sign in accordance with the Young tableau:

∑

β

(

̂H0
β + ̂Vβ

)

C0
β

∣

∣

∣Ψ0
β

〉

+ ̂H
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〉
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〉

+
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E0
i + ε

)
∣

∣ϕ
〉

.
(39)

Using (36), we can shift all terms containing the required
wave function correction ϕ to the left-hand side of (39) and
all the other terms to the right-hand side. The result is

̂H
∣

∣ϕ
〉−

(

E0
i + ε

)
∣

∣ϕ
〉 =

∑

β

(

ε − ̂Vβ

)

C0
β

∣

∣

∣Ψ0
β

〉

. (40)

In (40) we drop all the terms whose order is higher than the
first one, thus getting

(

̂H0
γ − E0

i

)
∣

∣ϕ
〉 =

∑

β

(

ε − ̂Vβ

)

C0
β

∣

∣

∣Ψ0
β

〉

. (41)

The solution of the homogeneous analog of (41) for ϕ is
|ϕ〉 = |Ψ0

γ〉. Then, according to the Fredholm alternative
[17], the nonhomogeneous equation (41) has a solution only
if the bra-vector 〈Ψ0

γ| is orthogonal to the entire right-hand
side:

∑

β

{

ε
〈

Ψ0
γ | Ψ0

β

〉

−
〈

Ψ0
γ

∣

∣

∣
̂Vβ

∣

∣

∣Ψ0
β

〉}

C0
β = 0. (42)

Thus, we have a system of equations (42) for determining
the coefficients C0

β of the regular zeroth wave function. The
system has a solution only if the main determinant of (42) is
equal to zero:

∣

∣

∣εΔγβ −
〈

Ψ0
γ

∣

∣

∣
̂Vβ

∣

∣

∣Ψ0
β

〉∣

∣

∣ = 0, (43)

where

Δγβ =
〈

Ψ0
γ | Ψ0

β

〉

. (44)

This is the secular equation for determining the energy cor-
rections. Because of

〈

Ψ0
γ

∣

∣

∣
̂Vβ

∣

∣

∣Ψ0
β

〉

= Δγβ
(

Φ0
∣

∣ ̂Vβ

∣
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∣Ψ0
β

〉

, (45)

the secular equation becomes

∏

β=1

(

ε− (Φ0
∣

∣Vβ

∣

∣

∣Ψ0
β

〉)

· detΔγβ = 0. (46)

Then for the corrections ε to the energy we obtain definite
expressions:

ε = (Φ0
∣

∣
̂Vα

∣

∣Ψ0
α

〉

, (47)

or, in the simple non-symmetric form,

ε = 〈Ψ0
α

∣

∣
̂Vp=0

∣

∣Φ0) (48)

only if the condition

detΔαβ /= 0 (49)

is satisfied. Then the set of zeroth wave functions antisym-
metrized by the Young tableaux is regular.

3. Application of EPT to Manganites

In the last decades many experiments have been devoted
to the investigation of perovskites and manganites [18–
21]. Scientific interest to such systems has emerged due
to their remarkable physical properties. Depending on the
composition they show a variety of magnetic and electrical
phenomena, including ferromagnetic, antiferromagnetic,
charge, and orbital ordering. So, for example, the initial
three-component LaMno3 and AmnO3 (A: Sr, Ca, or Ba)
are antiferromagnetic compounds with the spin moments
located on the manganese ions. The four-component stoi-
chiometric La1−xAxMnO3 with 0.2 ≤ x ≤ 0.5 is strongly
ferromagnetic and demonstrates the metal-type conductivity
below the Curie temperature, whereas the same system with
x > 0.5 is insulator with antiferromagnetic behavior below
Neel temperature TN .

Usually the microscopic description of magnetic order-
ing in crystalline structures including manganites [19–22]
is either a statistical analysis of spin systems on the basis of
the Heisenberg Hamiltonian or the analysis of magnetic sus-
ceptibility in the single-electron approximations in Stoner’s
[23–25], Hubbard’s [4], Anderson’s [23–25] or Hohenberg-
Kohn’s type [3] models. The main parameter characterizing
the spin system is the parameter of exchange (or superex-
change) interaction. Hubbard-type model considers only
the systems with electrons strongly localized at the centers.
Therefore, the Coulomb exchange interaction in such system
is calculated in the Wannier function approach. The use
of a “truncated” Wannier-function basis artificially reduces
the contribution of the intercenter exchange energy and,
therefore, essentially eliminates the intercenter correlation
effects. The Stoner model is used in the cases of nearly free
electron gas. Anderson [23–25] was the first to point out
the need for a more careful quantum chemical description
of interatomic (interionic) interaction. Anderson’s model
considers the intracenter exchange (Hund’s exchange) as
well as intercenter exchange interactions; however, remaining
in the frame of Hubbard’s and Stoner’s models, it does
not take real superexchange interactions into account. As it
was pointed out by Edio Dagotto [19–21], “the Heisenberg
parameters J usually have a large error and, as a consequence,
it is common practice to simply consider them as free
parameters to be determined from experiments.”
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We will apply the EPT algorithm developed in the present
work for the analysis of magnetic ordering and energy
splitting for the key fragments of 〈Mn〉–O–〈Mn〉 (〈Mn〉:
Mn3+ or Mn4+), which is critical for the interplay of charge,
orbital, and spin ordering in manganites. On the basis
of the energy splitting analysis we will estimate the main
parameters of magnetic ordering (Heisenberg parameter and
the resultant magnetic moment) for the La1/3Ca2/3MnO3

manganites.
Magnetic structures of La1−xCaxMnO3 (x ≥ 0.5) were

determined from neutron diffraction measurements
carried out by Wollan and Koehler [26]. According
to [26], in the most studied La1/2Ca1/2MnO3 and
La1/3Ca2/3MnO3 compounds magnetic structures belong
to CE type. For instance, in La1/2Ca1/2MnO3 compound
below TN ≈ 170 K, it consists of two ferromagnetic zigzag
(· · ·Mn3+–Mn4+–Mn3+–Mn4+ · · · ) chains coupled antifer-
romagnetically in the (a − b) basal plane. These planes are
stacked along the c-axis but with the opposite spins.

There are three possible three-center fragments in the key
manganese chain, those of Mn3+–O2−–Mn4+, Mn4+–O2−–
Mn4+, and Mn3+–O2−–Mn3+. The magnetic form factors
of the Mn4+ and Mn3+ ions correspond to the 3d3 and
3d4 states, respectively. For the Mn3+–O2−–Mn4+ fragment
we consider the following microscopic model: owing to
electrostatic dipole interaction, we assume that one electron
of oxygen is drawn off from O2− ion by Mn4+ resulting
in the hybridization state of 2p5 of oxygen and 3dz2 of
manganese; then we get a virtual (or intermediate) (Mn3+–
O− + 1e ↔ Mn4+/3+) state. Due to the overlapping of the
electron wave functions and their hybridization, the (Mn3+–
O− + 1e ↔ Mn4+/3+) fragment has a common electron
cloud, making this fragment electrostatically stable with
approximately identical two manganese ions with valence
3+. The presence of significant O2p hole numbers in the
manganites is confirmed experimentally [27, 28]. Then in
our calculations, because of the noted hybridization, we will
take into account only three “active” electrons centred on

the three different ions: 3dz2 , 3dz2 (−→r ) + 2p5(−→r −−→R ) for the
manganese ions, and 2p5 for the oxygen ion.

The complete electron wave function of the ion chain
(for brevity, we denote this chain by I-II-III) can be
antisymmetrized in three different ways corresponding to the
following spin configurations: (I↑II↑III↑), (I↑II↑III↓), and
(I↑II↓III↑). The corresponding Young tableaux are given in
Figure 1.

At the beginning, the electrons with numbers 1, 2, and
3 belong to the ions I, II, III, respectively. In this case
the coordinate parts of the wave function corresponding to
the Young tableaux α, β, γ are [13], [2, 1], and [2, 1] type,
respectively:

Ψ0
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∣

∣

∣

∣

∣

∣

∣
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Figure 1

Ψβ(r1, r2, r3) = ω[21]
11 ΦMn(r1)ΦO

(

R

2
− r2

)

ΦMn(R− r3),

Ψγ(r1, r2, r3) = ω[21]
12 ΦMn(r1)ΦO

(

R

2
− r2

)

ΦMn(R− r3),

(50)

where, for instance, r1 is the position vector of the electron 1,
ΨI(r1) is a one electron wave function centered at the center I,
and R is the radius vector from the first manganese ion to the

second one. The Young operator ω[21]
pt of antisymmetrization

for the tableau [2, 1] type is presented in Appendix B.
The integrals corresponding to the exchange densities are

I1 =
∫

Ψ∗I (r)ΨII(r)d3r =
∫

Ψ∗II(r)ΨIII(r)d3r,

I2 =
∫

Ψ∗I (r)ΨIII(r)d3r.

(51)

For the initial distribution of the numbered electrons over
the centers, the perturbation operator is

̂V = z1z2e2

|RI − RII| +
z2

1
e2

|RI − RIII| +
z1z2e2

|RII − RIII| −
z2e2

|r1 − RII|

− z1e2

|r1 − RIII| −
z1e2

|r2 − RI| −
z1e2

|r2 − RIII| −
z1e2

|r3 − RI|

− z2e2

|r3 − RII| +
e2

|r1 − r2| +
e2

|r2 − r3| +
e2

|r1 − r3|
= ̂VI,II + ̂VII,III + ̂VIII,I,

(52)

where, for instance,

̂VI,II = z1z2e2

|RI − RII| −
z2e2

|r1 − RII| −
z1e2

|r2 − RI| +
e2

|r1 − r2| ,
(53)

describes the interaction of the ion cores I and II, the inter-
action of the electrons with the “foreign” nuclei, and the
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interaction of the electrons with each other, respectively. RI,
RII, and RIII are position vectors of the interacting ions I, II,
and III, respectively; z1, z2, and z3 stand for the ion charges.
Direct calculation yields the following values of the scalar
product parameters:

Δαβ = Δαγ = 0, Δβγ = 2
1− I2I2

1
, Δγγ = 4

1− I2I2
1

,

Δαα = 6
1− 2I2

1 (1− I2)− I2
2

, Δββ = 4
1− I2

1 + I2
2 − I2I2

1
.

(54)

The determinant condition is
∣

∣

∣

∣

∣

∣

∣

∣
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Δαα 0 0

0 Δββ Δβγ

0 Δγβ Δγγ

∣

∣
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∣

∣

∣

∣

∣

∣

/= 0, (55)

Thus the condition to find a solution is met. In this case the
energy corrections are

εα =
〈

Ψ0
α

∣

∣ ̂Vp=0
∣

∣Φ0),
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〈

Ψ0
β

∣

∣

∣
̂Vp=0

∣
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εγ =
〈
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∣

∣
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(56)

where

∣

∣Φ0) =
∣

∣

∣

∣
ΦMn(r1)ΦO

(

R

2
− r2

)

ΦMn(R− r3)
)

. (57)

As an example, we consider the La1/3Ca2/3MnO3 manganite
with the known magnetic ground state of CE type. For
La1/3Ca2/3MnO3 due to Jahn-Teller effect, RMn3+−O = 2.19 Å,
RMn4+−O = 1.97 Å [18] in the zigzig chain, and then |RI −
RII| = 2.19 Å, |RII − RIII| = 1.97 Å. Then the energy
corrections calculated for all possible spin configurations in
Mn3+–O2−–Mn4+ fragment are

εα(↑↑↑) = −0.0165 a.u,

εβ(↑↓↓) = −0.0173 a.u,

εγ(↑↓↑) = −0.0197 a.u.

(58)

We note that the numerical values of the three-center
superexchange contributions are of the same order as the
pair couple exchange. They can yield the exchange energy
correction of 10 to 30%, depending on the factor I1, I2
accounting for the extent of the third electron overlap.

In the manganites, spin orientation according to inside
Hund exchange JHund = 1.5 eV [18] is ferromagnetic.
For the considered fragment the magnetization and the
Heisenberg parameter are M = 7μB and J1 ≈ εβ − εγ =
0.0024 a.u. = 0.065 eV, correspondingly, with the mixing of
the magnetization state M = 9μB and the J ′1 ≈ εβ − εα =
0.0008 a.u. = −0.022 eV parameter.

The Mn4+–O2−–Mn4+ fragment has an absolutely sym-
metric spatial form with respect to the intercenter and
intracenter electron permutations as shown in Figure 2.

Figure 2

Figure 3

Its symmetry corresponding to the spin part is described
by the only possible Young diagram (see Figure 3).

The total spin S of such system equals zero and
corresponds to the antiferromagnetic state. In the same
way, for the Mn3+–O2−–Mn3+ fragment we also obtain
antiferromagnetic state with S = 0. Then we estimate
the Heisenberg parameter for the fragments under con-
sideration. For R = 3.94 Å [18] between two Mn4+ ions
in the (a-b) basal plane the estimation results in J =
−0.0102 eV corresponding to the antiferromagnetic state.
For the Mn3+–O2−–Mn3+ and Mn4+–O2−–Mn4+ fragments
located between two zigzag chains in the basal plane with
R = 3.94 Å [18] as well, we obtained JMn3−Mn3 = −0.0134 eV
and JMn4−Mn4 = −0.0102, respectively. For the interplanar
interactions in the c direction both fragments have the
absolutely symmetric spatial form with respect to intercenter
and intracenter electron permutations, with the distance
in this case being R ≈ 3.94 Å [18] for both triads under
considerations. Our estimations result in the following values
for the Heisenberg parameter: JMn3−Mn3 = −0.0134 eV for
the Mn3+–Mn3+ fragment and JMn4−Mn4 = −0.0102 eV for
the Mn4+–Mn4+ fragment. The antiferromagnetic character
of exchange interaction obtained for these fragments is
in agreement with the experimentally detected magnetic
structure [26].

The estimation of the average Heisenberg 〈J〉 parameter
with respect to degeneracy factor from (58) equals 〈J〉 ≈
0.04 eV; then the average magnetization per manganat ion is
μ ≈ 4.1μB. From the statistic Heisenberg model [4] the Weiss
temperature θ = (2/3)J , then 〈J〉 ≈ 0.023 eV. The estimated
value of the Heisenberg parameter is in good agreement
with θ ≈ 175 K obtained in the experiment for the undoped
compound [29].

4. Conclusions

The general EPT form for a multicenter electron system has
been developed from the first principles, and the degree of
approach has been presented for each order of expansion.
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The analytical form of the ̂Λ-projection operators and the
symmetric form of the Hamiltonian unperturbed part and
that of the perturbation operator have been obtained. In the
frame of the exchange perturbation theory we have reduced
the expressions for the high-order corrections to the energy
and wave function to the standard form of the Rayleigh-
Schrödinger perturbation theory. The EPT formalism is
extended for the degeneracy case in the total spin for the
multicentered electronic system. This formalism does not
need any additional variation procedure; each term of the
expansion obtained has a certain physical interpretation.
The contributions of superexchange interaction enter in
the first-order terms. The main advantage of the presented
formalism is the logical procedure of obtaining energy and
wave function corrections, where it retains the one-to-one
correspondence of the symmetry of spin and spatial parts
of the wave function. Each energy correction corresponds to
certain spin configuration. The presented ETP formalism is
the only method allowing us to find the total spin value and
spin configuration for the multicenter electron system.

As an example, using the developed EPT formalism with
degeneracy in total spin, we obtained the analytical expres-
sions of energy splitting for the key 〈Mn〉–O–〈Mn〉 frag-
ments (〈Mn〉: Mn3+ or Mn4+) in manganites. On the basis
of these expressions the Heisenberg parameter and energy
splitting were estimated for the La1/3Ca2/3MnO3manganite.
The Heisenberg parameter values obtained and the average
magnetic moment of the system are in agreement with
the known magnetic structure [26] and the experimentally
obtained value of the Weiss temperature [29, 30] for the
compound under consideration. The developed algorithm
can be used for the analysis of Mn-site doping effect in
manganites.

Appendices

A. Details of the Theoretical Derivations

Proof of (17), ̂Pi ̂H0|Ψ(1)
i 〉 = E0
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(A.1)

where the completeness property
∑

n |Φp
n)(Φ

p
n| = ̂I is used.

The Properties of Projector on the Vector Subspace, Orthogonal
to the Vector |Ψ0

i 〉. Since (1) ̂Oi|Ψ0
i 〉 ≡ 0, (2) ̂Oi|Ψ0

n〉 ≈ |Ψ0
n〉,

for the non-symmetric bra-vector:

(Φn| ̂Oi = (Φn| −
(

Φn | Ψ0
i

〉

(Φi| ≈ (Φn|,

(Φi| ̂Oi = (Φi| −
(

Φi | Ψ0
i

〉

(Φi| ≡ 0.

(A.2)

Since (Φ0
i | Φ0

n) = 0 and (Φ0
i |Φp

n) � (Φ0
n|Φp

n) ≈ (Φ0
i |Φp

i )
we have an expression:

Pi
∣

∣Ψ0
n

〉 =
∣

∣

∣Ψ0
i

〉(

Φ0
i | Ψ0

n

〉

=
∣

∣

∣Ψ0
i

〉 1
fP

P
∑

p=0

(

Φ0
i | Φp

n

)

(−1)gp ≈ 0.
(A.3)

Proof of (22), ̂Oi ̂V |Ψ0
i 〉 = 1/P

∑

n
′ f pn |Ψ0

n〉(Φ0
n| ̂Oi ̂V |Ψ0

i 〉.
One has

1
P

P
∑

p=0

∑

n /= i

∣

∣

∣Φ
p
n

)(

Φ
p
n

∣

∣

∣
̂Oi ̂V

∣

∣

∣Ψ0
i

〉

= 1
P

P
∑

p=0

∑

n /= i

∣

∣

∣Φ
p
n

)

(−1)p
(

Φ0
n

∣

∣ ̂Oi ̂V
∣

∣

∣Ψ0
i

〉

= 1
P

∑

n /= i
f
p
n
∣

∣Ψ0
n

〉(

Φ0
n

∣

∣ ̂Oi ̂V
∣

∣

∣Ψ0
i

〉

(A.4)

Proof of (44). One has

〈

Ψ0
γ

∣

∣

∣
̂Vβ

∣

∣

∣Ψ0
β

〉

= 1

f
γ

0

P
∑

p=0

(−1)gpγ (Φpγ | ̂Vβ

∣

∣

∣Ψ0
β

〉

= 1

f
γ

0

P
∑

pγ=0

(−1)gpγ+gpβ
(

Φ0
∣

∣
̂Vβ

∣

∣

∣Ψ0
β

〉

= Δγβ
(

Φ0
∣

∣ ̂Vβ

∣

∣

∣Ψ0
β

〉

,

Δγβ =
〈

Ψ0
γ | Ψ0

β

〉

= 1

f
γ

0

P
∑

p=0

(−1)gp
(

Φpγ | Ψ0
β

〉

=
P
∑

p=0

(−1)gpγ
(

Φ0 | Ψ0
β

〉

= 1

f
γ

0

P
∑

p=0

(−1)gpγ+gpβ .

(A.5)
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B. The Young Operators of Antisymmetrization

Young Operators of Antisymmetrization for the Tableaus [2, 1]
Type. Consider

ω[21]
11 = 1√

12
(2 + 2P12 − P23 − P13 − P123 − P132),

ω[21]
12 = 1

2
(P23 − P13 + P123 − P132),

ω[21]
21 = 1

2
(P23 − P13 − P123 + P132),

ω[21]
22 = 1√

12
(2− 2P12 + P23 + P13 − P123 − P132).

(B.1)

Here the Pi jk and Pi j are operators of the numbered j and k
electrons permutation.

The total antisymmetric function is

Ψ(1, 2, 3) = 1
√

fλ

∑

r

ψ[λ]
r χ[˜λ]

r̃

=
{

ω[21]
11 ΦMn(r1)ΦO

(

R

2
− r2

)

ΦMn(R− r3)
}

⊗
{

ω[21]
22 α1β2α3

}

+
{

ω[21]
12 ΦMn(r1)ΦO

(

R

2
− r2

)

ΦMn(R− r3)
}

⊗
{

ω[21]
21 α1α2β3

}

,

(B.2)

where α1 and β2 are spinors, corresponding to the particles
numbered 1 and 2.
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