
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2011, Article ID 869182, 13 pages
doi:10.1155/2011/869182

Research Article

Towards Support for Software Model Checking: Improving
the Efficiency of Formal Specifications

Salamah Salamah,1 Ann Q. Gates,2 Steve Roach,2 and Matthew Engskow1

1 Department of Electrical, Computer, Software, and Systems Engineering, Embry-Riddle Aeronautical University (ERAU),
Daytona Beach, FL 32114, USA

2 Department of Computer Science, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA

Correspondence should be addressed to Salamah Salamah, salamahs@erau.edu

Received 10 December 2010; Accepted 3 March 2011

Academic Editor: Phillip Laplante

Copyright © 2011 Salamah Salamah et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Property Specification (Prospec) tool uses patterns and scopes defined by Dwyer et al., to generate formal specifications in
Linear Temporal Logic (LTL) and other languages. The work presented in this paper provides improved LTL specifications for
patterns and scopes over those originally provided by Prospec. This improvement comes in the efficiency of the LTL formulas as
measured in terms of the number of states in the Büchi automaton generated for the formula. Minimizing the size of the Büchi
automata for an LTL specification provides a significant improvement for model checking software systems using such tools as the
highly acclaimed Spin model checker.

1. Introduction

The process of model checking a system consists of devel-
oping a model of the system to be verified and writing
specifications in a temporal logic such as Linear Temporal
Logic (LTL) [1] or Computational Tree Logic (CTL) [2]. In
automata-based model checking, both the model M and the
complement of the temporal specification S are represented
by a special type of state machine called a Büchi Automaton
(BA) [3]. To check the consistency of M with S, the model
checker calculates the intersection of M and S′ where S′

is the complement of S. If the intersection is empty, then
M is consistent with S. In other words, if M and S′ each
represent a set of specifications and if M ∩ S′ = ∅, then
the system satisfies the specification; otherwise, the system
is inconsistent with the specification and a counter-example
is returned.

The process of writing formal specifications is not easy
because of the required mathematical sophistication and
depth of knowledge in the specification language. For this
reason, tools that simplify the creation of formal specifi-
cations in logics such as LTL are of interest to the model

checking community and others. In the case of automata-
based model checkers such as Spin [4], it is important
that these tools generate efficient formulas, since the model
checker complements the formulas, translates the result into
a BA, and intersects the BA with the automaton of the
system. The size of the automaton that results from the
intersection of two automata has as its upper bound the
product of the number of states in each of the two. One way
to avoid the classical problem of state space explosion is to
minimize the number of states generated by the negation
of the specification. This will reduce the number of states
generated by the automaton of the intersection, and as a
result, it will reduce the time required to model check a
software system.

The Property Specification (Prospec) [5–7] builds on the
Property Specification Patterns system (SPS) [8, 9], and it
uses property pattern and scope to assist in the specification
of formal properties in LTL as well as other languages.
Patterns are high-level abstractions that provide descriptions
of common properties, and scopes describe the extent of
program execution over which the property holds. Prospec
also introduces the notion of composite propositions to allow



2 Advances in Software Engineering

for the definition of more complex behavior to represent the
behaviors for patterns and scopes.

This paper introduces more efficient LTL formulas for
patterns and scopes than those originally generated by
Prospec. In defining the new formulas, we tried to limit
the number of temporal operators in a formula because
we believe this reduces the number of states in the never-
claim. The formulas are compared in terms of the number
of states in the never-claim generated by the negation of
these formulas since it is actually the complement of a
formula that the model checker uses. To generate Büchi
automata, we used the model checker SPIN, and the LTL to
BA translators: LTL2BA [10], the Temporal Message Parlor
[11], and LTL2NBA [12], all of which efficiently convert
LTL specifications into BAs. Notice that some of these tools
produce a BA in the form of a never-claim, which is a
specific representation of BA used by the model checker
Spin. In this article we use the terms Büchi automata
and never-claims interchangeably. This paper also shows
an approach for proving the equivalence of different LTL
formulas. Finally, this paper describes the impact that more
efficient formulas have when using composite propositions
[6] to define pattern and scope limits.

The paper first presents a background on LTL and Büchi
automata (BA), including the semantics of the languages.
The Prospec tool is introduced in Section 3. Section 4
describes the new formulas and the process used to verify the
semantic equivalence of the two sets of formulas. Section 4
also provides the results of the comparisons of the formulas.
Finally, the impact of the work on composite propositions
is presented in Section 5 followed by brief discussion and
references.

2. Background

2.1. Linear Temporal Logic. This section briefly describes
Linear Temporal Logic (LTL) and its semantics. A more
detailed description of LTL can be found in Manna [13].

Temporal Logic has been used to verify concurrent
systems. There are three well used types of temporal Logic:
Linear Temporal Logic (LTL), Computational Tree Logic
(CTL), and CTL∗ [3]. Both LTL and CTL are subsets of
CTL∗. While CTL allows for branching type of behavior (i.e.,
semantically, formulas are defined both using the universal
and existential quantifiers), LTL formulas describe specific
path behavior (i.e., semantically, formulas are defined only
using the universal quantifier). Formulas in this paper deal
only with LTL.

LTL is used in various model checkers such as SPIN [4],
NUSMV [14], and Java Path-Finder [15] and is also used in
runtime verification of Java programs [16].

In LTL, a temporal formula is constructed inductively
from a set of propositions P by applying Boolean connectives
¬ and ∨ and temporal operators next (X) and until (U) as
follows.

(i) A proposition is a temporal formula.

(ii) If p and q are temporal formulas, then the followings
are also temporal formulas:

(i) ¬p,

(ii) p ∨ q,

(iii) Xp,

(iv) pUq.

A temporal formula that makes use only of Boolean
connectives ¬ and ∨ is called a state formula, whereas a
formula that makes use of temporal operators X and U is
called a temporal formula.

Let P be a set of propositions; let σ be an infinite sequence
of states or computation, denoted by σ : s0, s1, . . ., let

∑
be

a set of states; let I(s) be an interpretation such that for all
s ∈ ∑

, I(s) ⊆ P specifies the propositions that are true
in state s. For a state formula, the satisfaction relation � is
defined as follows: for a state s ∈∑ and a proposition p in P,
s satisfies p, denoted s � p, if and only if p ∈ I(s). In addition,
an inductive definition for the notion that a computation σ
satisfies formula p at i > 0, denoted (σ , i) � p, follows [1, 13]:

(i) (σ , i) � p if and only if si � p, where p is a state
formula,

(ii) (σ , i) � ¬p if and only if (σ , i) � p,

(iii) (σ , i) � p ∨ q if and only if (σ , i) � p or (σ , i) � q,

(iv) (σ , i) � Xp if and only if (σ , i + 1) � p,

(vi) (σ , i) � pUq if and only if (σ , k) � q for some k ≥ i,
and (σ , j) � p for all j, i ≤ j < k.

Additionally, the temporal operators (eventually, always, and
weak-until) are derived as follows:

(i) �p ≡ trueU p,

(ii) []p ≡ ¬�¬p,

(iii) pWq ≡ []p ∨ (p U q).

2.2. Büchi Automata. Classical LTL model checking is based
on a variation of the classic theory of finite automata [4].
While a finite automaton accepts only terminating execu-
tions, model checking requires a different type of machines
that can handle executions that might not terminate. Such
machines are necessary to model nonterminating systems
such as operating systems, traffic lights, or ATMs. One such
machine is a Büchi automaton. A Büchi automaton (BA) is a
tuple (Q,

∑
, δ, Q0, F), where

(i) Q is a finite set of states,

(ii) Q0 ⊆ Q is a set of initial states,

(iii)
∑

is an alphabet,

(iv) δ : Q ×∑ → 2Q is a transition function,

(v) F ⊆ Q is a set of accepting states.

An execution is a sequence s0, s1, . . ., where for all isi ∈ Q
and for all i ≥ 0, (si, si+1) ∈ δ. A finite execution is an
accepting execution if it terminates in a final state s f ∈ F.
An infinite execution, also called an w-execution or w-run, is
accepting if it passes through a state s f ∈ F infinitely often.
An empty BA (accepts no words) is one that either terminates



Advances in Software Engineering 3

FinalInitial

a

b

1

Figure 1: BA for “a∪ b”.

in a state that is not an accepting state or has no accepting
state that is reachable from the initial state and that is visited
infinitely often. The set of executions accepted by a BA is
called the language of the BA.

Languages of BAs represent a superset of those of LTL;
every LTL formula can be represented by a BA. When a BA
is generated from an LTL formula, the language of the BA
represents only the traces accepted by the LTL formula. For
example, the BA in Figure 1 represents the language accepted
by the LTL formula (a ∪ b). This formula specifies that b
holds in the initial state of the computation, or a holds until
b holds. The language of the BA in Figure 1 accepts the set of
traces {b. . ., ab. . ., aab. . ., . . ., aaab}. Notice that each of these
traces passes through the accepting state Final. This state is
both reachable from the initial state and is visited infinitely
often (by virtue of the self-transition marked 1).

Various work has been done on the translation of LTL to
BA to reduce the number of states in the resulting BA and
to speed up the process of the BA generation. This paper
compares three LTL to BA translators (along with the SPIN
model checker) in the number of states in the BA generated
from those LTL formulas for patterns and scopes.

(i) Temporal Message Parlor (TMP) [11] is the work of
Kousha Etessami at Lucent Technologies.

(ii) LTL2BA [10] is the work of Denis Oddoux and Paul
Gastin at the University of Paris 7, France.

(iii) LTL2NBA [12] is the work of Carsten Fritz of
the Department of Computer Science at Christian-
Albrechts University.

3. Prospec

The Property Specification tool (Prospec) [5–7] builds on the
Specification Patterns System (SPS) [8, 9] by facilitating the
identification of SPS patterns and scopes as well as validation
of specifications. SPS defines patterns and scopes to assist
the practitioner in formally specifying software properties.
Patterns capture the expertise of developers by describing
solutions to recurrent problems [17]. Each pattern describes
the structure of specific behavior, defines the pattern’s
relationship with other patterns, and defines the scope over
which the property holds.

The main patterns defined by SPS are universality,
absence, existence, precedence, and response. Universality P
states that property P is true at every point of the execution;
absence P states that P is never true during the execution;

existence P states that P is true at some point in the execution;
precedence (T , P) states that P holds before T holds; response
(P,T) states that if P holds, thenT must hold at a future state.
Response properties represent a temporal relation called
cause-effect between two propositions. Prospec displays
traces of computation to illustrate the subtle issues that exist
within the different patterns and scopes, and it displays a
decision tree to guide the user through a series of decisions
in selecting the appropriate pattern and/or scope. Given a
computation represented as a sequence of states, and a finite
set of events E, a trace of computation is a list indicating, for
each moment of time t, which events from the set E occur at
t. Figure 2 shows the Prospec window for selecting a pattern
and the traces of computation that are given to elucidate
each pattern. Prospec enhances the definition of patterns and
scope characteristics provided in the SPS website [18] by
explicitly defining the relationships among the proposition
that define a pattern and/or a scope and the boundaries
defined by each scope. Tables 1 and 2 give those character-
istics for pattern and scope, respectively, as they appear in
the Prospec tool. These are the characteristics that were used
by Salamah et al. [19] to verify the correctness of the LTL for-
mulas for patterns and scopes. Prospec extends SPS by intro-
ducing a classification for defining sequential and concurrent
behavior. This is accomplished by including composite
propositions (CPs) as shown in Figure 3. Section 4 discusses
composite propositions in more detail. While Prospec builds
on SPS in defining the mapping of patterns and scopes into
LTL, it makes some changes to those LTL formulas for pat-
terns and scopes defined in SPS. (Comparing the new formu-
las in Section 4 with the original SPS formulas showed that
the new formulas were at least as efficient in all cases with the
exception of the case of the Response pattern within the After
L Until R scope in which SPS formula produced one fewer
state in the never-claim as produced by LTL2BA, LTL2NBA,
and TMP). Salamah et al. [19] provide a listing of those mod-
ifications and the justification behind the changes. Table 3
presents Prospec’s LTL mappings for each pattern and scope
combination. These formulas along with the ones defined in
Section 3 are the ones being compared in this paper.

Note that Prospec added the definition of strict prece-
dence, which is not available in SPS. This pattern describes
the situation where S strictly precedes P, where S and P are
events or conditions. Unlike the regular precedence pattern,
S and P cannot hold at the same state in this pattern. Use
of Strict Precedence enforces that S and P cannot hold at the
same state.

4. New Pattern Formulas

The goal of the work presented by this paper is to improve
the efficiency of the LTL specifications generated by Prospec.
The efficiency is measured by the number of states in the BA
corresponding to the negation of LTL specification. The BAs
were produced using the SPIN model checker Version 4.2.7,
and the LTL to BA translation tools LTL2BA, LTL2NBA,
and the Temporal Message Parlor (TMP), all of which are
available at a website maintained by Carsten Fritz [20].



4 Advances in Software Engineering

Figure 2: Prospec’s pattern screen.

Figure 3: Prospec’s composite proposition screen.

In order to reduce the number of states in the BA, our
goal is to reduce the number of temporal operators within
each formula. We were able to achieve this in 17 out of
30 formulas originally defined by Prospec. Table 4 lists the
new improved formulas, and Table 5 lists the results of the
comparison between Prospec’s original formulas and the
new ones. In all the cases where we were able to reduce
the number of temporal operators, the BAs generated by
SPIN contained fewer states. Only in the case of the Response
pattern with an After L Until R scope did the new formula
generate more states when used by the three BA generators.
All the translation tools produced BAs with the same number
of states for each new formula except in the case of the strict
precedence with the after L until R scope. In this case, the
generated BAs by LTL2BA, TMP, and LTL2NBA produced

one fewer state than the one generated by SPIN. This is
significant, as it allows SPIN users to use the new formulas
without having to use the other translators to produce never-
claims that have to be inserted into the Promela code.

4.1. Equivalence of LTL Formulas. An approach to demon-
strating the equivalence of two LTL formulas is to compare
the languages of the BAs generated from them. If the
languages are identical, then the two LTL formulas are equiv-
alent. To show this, we show that the first language is a subset
of the second, and that the second is a subset of the first.

Given two LTL formulas F1 and F2, let B1 = (Q1,Σ, δ1,
Q01,F1) be the BA for F1 and let B2 = (Q2,Σ, δ2,Q02,F2) be
the BA for F2. Label each transition in δ1 and δ2 with the



Advances in Software Engineering 5

Table 1: Summary of characteristics for patterns in Prospec.

Pattern Characteristics

(1) Event or condition P does not hold within the states defined by the scope of interest

(2) The absence property is also known as alarm

Existence of (P)
(1) Event or condition P holds at least once within the states defined by the scope of interest

(2) The existence property is also known as eventually

Universality of (P)
(1) Event or condition P holds in every state of the scope of interest

(2) The universality property is also known as safety or invariant

(T) Precedes (P)

(1) T holds before P holds, where T and P are events or conditions

(2) T may hold several times before P holds

(3) P does not hold before T holds

(4) P may hold at the same state as T

(5) If T holds, then P may or may not hold

(6) If T holds, then T may or may not hold when P holds

(7) The precedence property represents a cause-effect relation, where T denotes a cause and P
denotes an effect

(8) There is no effect P without a cause T

(9) T precedes P is also known as T before P

(T) Strictly Precedes (P)

(1) T holds before P holds, where T and P are events or conditions

(2) T may hold several times before P holds

(3) P does not hold before T holds

(4) P does not hold at the same state at which T holds

(5) If T holds, then P may or may not hold

(6) If T holds, then T does not hold when P holds

(7) The precedence property represents a cause-effect relation, where T denotes a cause and P
denotes an effect

(8) There is no effect P without a cause T

(9) T precedes P is also known as T before P

(T) Responds to (P)

(1) P must be followed by T , where P and T are events or conditions

(2) Some T follows each time that P holds

(3) The same state at which T holds may follow two or more states at which P holds

(4) T may hold at the same state as P holds

(5) If T holds, then P may or may not hold at a previous state

(6) The response property represents a cause-effect relation, where P denotes a cause and T
denotes an effect

(7) If cause P holds, then at some future state effect T holds

(8) T responds to P is also knows as T follows P

names of the propositions that are true in the state entered by
the transition. Let Σ be the union of all the transition labels
in B1 and B2. Let L1 be the language accepted by B1 and let
L2 be the language accepted by B2. To show that F1 and F2

are equivalent, we show that L1 ∩ ¬L2 ≡ L2 ∩ ¬L1 ≡ ∅.
(Since L1 ∩¬L2 is empty, ¬L2 must not contain any element
of L1. Since L1 and L2 are both subsets of Σ∗, L2 must contain
every element of L1. Thus, L1 ⊂ L2. Similarly, L2 ⊂ L1. Thus,
L2 ≡ L1. B1 and B2 are equivalent if they accept the same
language, thus B1 ≡ B2, and F1 ≡ F2.)

Given two formulas FP and FN , where FP is the original
Prospec formula and FN is the new formula, we used LTL2BA
to generate a BA1 for (FP ∧¬FN ) and a BA2 for (¬FP ∧ FN ).
To assert that FP ≡ FN we have to check that BA1 and BA2 are

both empty. To do this we developed a simple computer tool
that checks the emptiness of a BA.

4.1.1. Tool for Checking Emptiness. By definition a BA is
empty if it does not contain a reachable accepting state that
is visited infinitely often [3]. The LTL Validation Tool is
designed to ensure that a given LTL formula is valid (i.e.,
its BA contains at least one reachable accepting state that is
visited infinitely often). In this work, the tool is used to prove
the equivalence of two formulas. As discussed above we show
equivalence of two LTL formulas FP and FN by checking that
resulting BAs for (FP∧¬FN ) and (¬FP∧FN ) are both empty.

This validation tool makes use of LTL2BA’s Java interface
(JLTL2BA) to translate the formulas (FP ∧ ¬FN ) and



6 Advances in Software Engineering

Table 2: Summary of characteristics for scopes in Prospec.

Scope Characteristics

Global
(1) The scope denotes the entire computation

(2) The scope includes all the states in the computation

(3) The interval defined by the scope occurs once in a computation

Before R

(1) The scope denotes a subsequence of states or events (an interval) that begins with the start of
computation and ends with the state or event immediately preceding the event or state at which R
holds for first time in the computation

(2) The interval does not include the state or event associated with R

(3) The interval defined by the scope occurs once in a computation

(4) One or more events (conditions) may be associated with R; a condition is a proposition and
an event is a change in value of the proposition from one state to the next

After L

(1) The scope denotes a subsequence of states or events (an interval) that begins with the first
event or state at which L holds and ends with termination of computation

(2) The interval includes the state or event associated with L

(3) The interval defined by the scope occurs once in a computation

(4) One or more events (conditions) may be associated with L; a condition is a proposition and
an event is a change in value of the proposition from one state to the next

Between L and R

(1) The scope denotes a subsequence of states or events (an interval) that begins when L holds
and ends with the state or event immediately preceding the event or state at which R holds

(2) Event or condition L must hold and, at a different event or state in the future, R must hold

(3) The interval includes the state or event associated with L

(4) The interval does not include the state or event associated with R

(5) The interval defined by the scope may occur more than once in a computation

(6) Multiple intervals may be defined within an interval when L holds more than once before R
holds

(7) One or more events (conditions) may be associated with L and R

After L Until R

(1) The scope denotes a subsequence of states or events (an interval) that begins when L holds
and ends either with the state or event immediately preceding the event or state at which R holds,
or begins when L holds and ends with the termination of computation

(2) The interval includes the state or event associated with L

(3) The interval does not include the state or event associated with R

(4) The interval may repeat during a computation

(5) If L holds and R does not hold, the interval ends with termination of a computation

(6) The interval defined by the scope may occur more than once in a computation

(7) Multiple intervals may be defined within an interval when L holds more than once before R
holds

(8) One or more events (conditions) may be associated with L and R

(¬FP ∧ FN ) into the corresponding BAs. Once the BAs are
available, the tool tries to assert that there are no reachable
accepting states that are visited infinitely often. This is done
by first finding all states reachable from every given state,
then by linking these together to form cycles. Should the
tool find a single acceptance cycle, that is, an acceptance state
which is within a cycle then we declare that the BA is not
empty.

Figure 4 shows the never-claim generated by the LTL
Validation tool (through interfacing with LTL2BA) for the
LTL formula “[]p → q” and the result generated by the
tool to check for the emptiness of the BA (never-claim).
Obviously the BA for this formula is not empty, and as a
result the tool states that the formula is Valid (i.e., there is a
reachable acceptance state that is within a cycle). Figure 5, on

the other hand, shows the never-claim and the tool’s result
for the formula (¬([]((l ∧ ¬r) → (([]p) ∨ (pUr))))) ∧
([]((l∧¬r) → (¬((p∧¬r)U((¬p)∧¬r))))). This formula
is the result of ANDing the negation of Prospec’s original
LTL formula for Universality of P within the After L Until R
scope with the new LTL formula for the same pattern/scope
combination. The result returned by the tool specify that
there is no reachable acceptance state that is within a cycle
(i.e., the BA is empty). Figure 6 shows the graph of the never-
claim in Figure 5.

Similarly, we used the LTL Validation tool to generate
the BA for the LTL formula of ANDing Prospec’s original
LTL formula for Universality of P within the After L Until
R scope with the negation of new LTL formula for the
same pattern/scope combination. Figure 7 shows the graph



Advances in Software Engineering 7

Table 3: Prospec’s original LTL formulas for pattern and scope.

Pattern Scope LTL Formula

Absence

Global ¬(�P)

Before R �R → ¬(¬(R)UP)

After L ¬(L)W(L∧¬(�P))

Between L and R []((L∧¬(R)∧�R) → ¬(¬(R)UP))

After L Until R [](L∧¬(R) → ¬(¬(R)UP))

Existence

Global (�P)

Before R �R → (¬(R)U(P ∧¬(R)))

After L ¬(L)W(L∧ (�P))

Between L and R []((L∧¬(R)∧�R) → (¬(R)U(P ∧¬(R))))

After L Until R []((L∧¬(R)) → (¬(R)U(P ∧¬(R))))

Universality

Global []P

Before R �R → (PUR)

After L ¬(L)W(L∧ []P)

Between L and R []((L∧¬(R)∧�R) → (PUR))

After L Until R []((L∧¬(R)) → (PWR))

Precedence

Global ¬(P)WT

Before R �R → (¬(P)U(T ∨ R))

After L ¬(L)W(L∧ (¬(P)W(T)))

Between L and R []((L∧¬(R)∧�R) → (¬(P)U((T ∨ R))))

After L Until R [](L∧¬(R) → (¬(P)W(T ∨ R)))

Response

Global [](P → �T)

Before R �R → ((P → (¬(R)U(T ∧¬(R))))UR)

After L (¬L)W(L∧ [](P → �T))

Between L and R []((L∧¬(R)∧�R) → (P → (¬(R)U(T ∧¬(R))))UR

After L Until R []((L∧¬(R) → (P → (¬(R)U(T ∧¬(R))))WR)

Strict Precedence

Global ¬(P)W(T ∧¬(P))

Before R �R → (¬(P)U((T ∧¬(P))∨ R))

After L ¬(L)W(L∧ (¬(P)W(T ∧¬(P))))

Between L and R []((L∧¬(R)∧�R) → (¬(P)U((T ∧¬(P))∨ R)))

After L Until R [](L∧¬(R) → (¬(P)W((T ∧¬(P))∨ R)))

Figure 4: LTL validation tool’s output for the formula []p → q.



8 Advances in Software Engineering

Table 4: Prospec’s new LTL formulas.

Pattern Scope LTL Formula

Absence
After L ¬((¬L)U(L∧�P))

After L Until R [](L∧¬(R) → ¬(¬(R)UP))

Existence
Before R ¬((¬P)UR)

After L ¬((¬L)U(L∧¬� P))

Between L and R []((L∧¬R) → (¬((¬P)UR)))

Universality
After L ¬((¬L)U(L∧�¬P))

After L Until R []((L∧¬R) → (¬((P ∧¬R)U((¬P)∧¬R))))

Precedence
Global ¬((¬T)U(P ∧¬T))

After L ¬((¬L)U(L∧ ((¬T)U(P ∧¬T))))

After L Until R []((L∧¬R) → (¬(((¬T)∧¬R)U(P ∧ (¬T)∧¬R)))

Response

Before R ¬((¬R)U(P ∧ (¬R)∧ ((¬T)UR)))

After L ¬((¬L)U(L∧ (¬[](P → �T))))

Between L and R []((L∧¬R) → ¬((¬R)U(P ∧ (¬R)∧ ((¬T)UR))))

After L Until R
[]((L∧¬R) →
¬((¬R)U(P∧(¬R)∧(([]((¬T)∧¬R))∨((¬T)UR))))))

Strict Precedence

Global ¬((¬(T ∧¬P))UP))

After L ¬((¬L)U(L∧ ((¬(T ∧¬P))UP)))

Between L and R
[]((L∧¬R) → (¬(((¬(T ∧¬P))∧¬R)U(P ∧ (¬(T ∧
¬P))∧ (¬R)∧�R))))

After L Until R ¬� (L∧ (¬R)∧ (((¬T)∧¬R)U(P ∧¬R)))

Table 5: Comparison results 1.

Pattern/Scope SPIN LTL2NBA TMP LTL2BA

Old, New Old, New Old, New Old, New

Absence After L 14, 3 6, 3 3, 3 4, 3

Existence Before R 6, 2 2, 2 2, 2 2, 2

Existence After L 7, 2 3, 2 3, 2 3, 2

Existence Between L and R 7, 3 3, 3 3, 3 3, 3

Universality After L 14, 3 4, 3 3, 3 4, 3

Universality After L Until R 6, 3 3, 3 3, 3 3, 3

Precedence Global 5, 2 2, 2 2, 2 2, 2

Precedence After L 29, 3 6, 3 4, 3 4, 3

Precedence After L Until R 6, 3 3, 3 3, 3 3, 3

Response Before R 7, 3 3, 3 3, 3 3, 3

Response After L 22, 3 10, 3 3, 3 7, 3

Response Between L and R 8, 4 4, 4 4, 4 4, 4

Response After L Until R 9, 5 4, 5 4, 5 4, 5

S-Precedence Global 6, 3 2, 2 2, 2 2, 2

S-Precedence After L 27, 4 6, 3 4, 3 4, 3

S-Precedence Between L and R 5, 4 4, 4 4, 4 4, 4

S-Precedence After L Until R 7, 3 3, 3 3, 3 3, 3

of the never-claim for the formula (([]((l ∧ ¬r) → (([]p) ∨
(pUr)))))∧¬([]((l∧¬r) → (¬((p∧¬r)U((¬p)∧¬r))))).
This BA obviously does not contain a cycle that passes
through an accepting state. The only accepting state in the BA
is accept-S3. Although this state is reachable from the initial
state, it is not visited infinitely often (i.e., there is no cycle
that contains this state). As expected, the LTL Validation tool
returned the message “There’s no reachable acceptance cycle

within this BA”. Since both the BAs for ANDing the negation
of Prospec’s original LTL with the new LTL formula and for
ANDing Prospec’s original LTL formula with the negation of
the new LTL formula are both empty, we conclude that both
formulas are equivalent.

In our work we performed the above mentioned pro-
cedure for all the new and original formulas in Tables 3
and 4, and the results showed in every case that the



Advances in Software Engineering 9

Table 6: CP semantics in LTL (subscripts C and E stand for condition and event, resp.).

CP Class Semantics in LTL

(1) AtLeastOneC P1 ∨ P2 ∨ · · · ∨ Pn

(2) AtLeastOneE (¬P1 ∧ · · · ∧ ¬Pn)∧ ((¬P1 ∧ · · · ∧ ¬Pn) U (P1 ∨ · · · ∨ Pn))

(3) ParallelC P1 ∧ P2 ∧ · · · ∧ Pn

(4) ParallelE (¬P1 ∧¬P2 ∧ · · · ∧ ¬Pn)∧ ((¬P1 ∧¬P2 ∧ · · · ∧ ¬Pn)U(P1 ∧ P2 ∧ · · · ∧ Pn))

(5) ConsecutiveC P1 ∧ X(P2 ∧ X(· · · ∧ X(Pn)) · · · )))

(6) ConsecutiveE
(¬P1 ∧¬P2 ∧ · · · ∧ ¬Pn)∧ ((¬P1 ∧¬P2 ∧ · · · ∧ ¬Pn)U((P1 ∧¬P2 ∧¬P3 ∧ · · · ∧ ¬Pn)∧ X((P2 ∧¬P3 ∧
· · · ∧ ¬Pn)∧ · · · ∧ X(Pn) · · · ))

(7) EventualC P1 ∧ (¬P2 U (P2 ∧ · · · ∧ (¬Pn U Pn)) · · · )

(8) EventualE (¬P1∧· · ·∧¬Pn)∧((¬P1∧· · ·∧¬Pn) U (P1∧((¬P2∧· · ·∧¬Pn) U (P2∧(· · ·∧(Pn−1∧(¬Pn U Pn)) · · · )))))

(9) Strict EventualC P1 ∧ X(¬P2 U (P2 ∧ · · · ∧ X(¬Pn U Pn)) · · · )

(10) Strict EventualE
(¬P1 ∧ · · · ∧ ¬Pn)∧ ((¬P1 ∧ · · · ∧ ¬Pn) U (P1 ∧¬P2 ∧ · · · ∧ ¬Pn ∧ ((¬P2 ∧ · · · ∧ ¬Pn) U (P2 ∧¬P3 ∧
· · · ∧ ¬Pn ∧ (· · · ∧ (Pn−1 ∧¬Pn ∧ (¬Pn U Pn)) · · · )))))

Table 7: Comparison results 2.

Pattern/Scope SPIN LTL2NBA TMP LTL2BA

Old, New Old, New Old, New Old, New

Absence of P4 After L 25, 4 10, 4 4, 4 6, 4

Absence of P7 After L∗ 26, 4 12, 4 17, 4 8, 4

Absence of P9 After L∗ 33, 5 12, 4 20, 4 8, 4

Absence of P After L4
∗ 40, 6 15, 5 4, 5 14, 6

Absence of P After L∗7 45, 6 14, 4 9, 4 10, 6

Absence of P After L∗9 51, 8 14, 5 43, 4 9, 6

Existence of P4 After L 15, 5 5, 3 5, 3 5, 3

Existence of P7 After L 29, 9 7, 4 7, 4 9, 5

Existence of P9 After L 29, 9 7, 4 7, 4 9, 5

Existence of P After L4 23, 5 9, 4 6, 4 6, 5

Existence of P After L∗7 22, 5 7, 3 11, 3 7, 5

Existence of P After L∗9 27, 7 6, 3 9, 3 7, 5

Universality of P After L4 40, 6 13, 5 4, 5 14, 6

Universality of P After L∗7 44, 6 17, 4 9, 4 10, 6

Universality of P After L∗9 51, 8 14, 4 45, 4 9, 6

Q Responds to P4 After L∗ 35, 7 19, 5 4, 4 11, 4

Q Responds to P7 After L∗ 20, 7 9, 6 14, 9 8, 6

Q Responds to P9 After L∗ 25, 8 8, 6 23, 9 8, 6

Q4 Responds to P After L∗ 32, 4 16, 4 4, 4 11, 4

Q7 Responds to P After L 43, 10 15, 5 5, 5 20, 6

Q9 Responds to P After L 65, 10 22, 5 5, 5 19, 6

Q Responds to P After L∗4 63, 8 25, 5 4, 5 23, 6

Q Responds to P After L∗7 68, 6 28, 4 15, 4 18, 6

Q Responds to P After L∗9 104, 8 25, 4 6, 4 17, 6

new formula is semantically equivalent to the original
one.

5. Impact on the Use of CP

Mondragon et al. [7, 21] introduced composite propositions
(CPs) classes to define the structure of multiple propositions
to capture sequential and concurrent behavior. The work
provided a CP taxonomy that can be used in the property

elicitation and specification process. The taxonomy guides
practitioners in formally specifying properties, illuminating
the subtleties associated with multiple events and conditions.
When relations have not been carefully analyzed, CP classes
can expose incompleteness or ambiguities.

CP classes defined as conditions are used to describe
concurrency, and those defined as events are used to describe
activation or synchronization of processes or actions. Table 6
presents the semantics of the CP classes in LTL.



10 Advances in Software Engineering

Table 8: LTL formulas generated using the original Prospec’s formulas.

Formulas

(1) ((�(¬l))∨ ((¬l) U (l ∧¬� (((¬p ∧¬pp ∧¬ppp)∧ ((¬p ∧¬pp ∧¬ppp) U (p ∧ pp ∧ ppp)))))))

(2) ((�(¬l))∨ ((¬l) U (l ∧¬� ((p ∧ ((¬pp) U pp))))))

(3) ((�(¬l))∨ ((¬l) U (l ∧¬� ((p ∧ X(¬pp U pp))))))

(4)
((�(¬((¬l ∧¬ll)∧ ((¬l ∧¬ll) U (l ∧ ll)))))∨ ((¬((¬l ∧¬ll)∧ ((¬l ∧¬ll)
U (l ∧ ll)))) U ((((¬l ∧¬ll)∧ ((¬l ∧¬ll) U ((l ∧ ll)∧¬� (p))))))))

(5) ((�(¬(l ∧ ((¬ll) U ll))))∨ ((¬(l ∧ ((¬ll) U ll))) U (((l ∧ ((¬ll) U (ll ∧¬� (p))))))))

(6) ((�(¬(l ∧ X(¬ll U ll))))∨ ((¬(l ∧ X(¬ll U ll))) U (((l ∧ X(¬ll U (ll ∧¬� (p))))))))

(7) ((�¬l)∨ ((¬l) U (l ∧�(((¬p ∧¬pp ∧¬ppp)∧ ((¬p ∧¬pp ∧¬ppp) U (p ∧ pp ∧ ppp)))))))

(8) ((�¬l)∨ ((¬l) U (l ∧�((p ∧ ((¬pp) U (pp ∧ ((¬ppp) U ppp))))))))

(9) ((�¬l)∨ ((¬l) U (l ∧�((p ∧ X(¬pp U (pp ∧ X(¬ppp U ppp))))))))

(10)
((�¬(((¬l ∧¬ll ∧¬lll)∧ ((¬l ∧¬ll ∧¬lll) U (l ∧ ll ∧ lll)))))∨ ((¬((¬l ∧¬ll ∧¬lll)
∧((¬l ∧¬ll ∧¬lll) U (l ∧ ll ∧ lll)))) U ((((¬l ∧¬ll ∧¬lll)∧ ((¬l ∧¬ll ∧¬lll) U ((l ∧ ll ∧ lll)∧�p)))))))

(11) ((�¬((l ∧ ((¬ll) U ll))))∨ ((¬(l ∧ ((¬ll) U ll))) U (((l ∧ ((¬ll) U (ll ∧�p)))))))

(12) ((�¬((l ∧ X(¬ll U ll))))∨ ((¬(l ∧ X(¬ll U ll))) U (((l ∧ X(¬ll U (ll ∧�p)))))))

(13)
((�(¬((¬l ∧¬ll ∧¬lll)∧ ((¬l ∧¬ll ∧¬lll) U (l ∧ ll ∧ lll)))))∨ ((¬((¬l ∧¬ll ∧¬lll)∧ ((¬l ∧¬ll ∧¬lll)
U (l ∧ ll ∧ lll)))) U ((((¬l ∧¬ll ∧¬lll)∧ ((¬l ∧¬ll ∧¬lll) U ((l ∧ ll ∧ lll)∧�p)))))))

(14) ((�(¬(l ∧ ((¬ll) U ll))))∨ ((¬(l ∧ ((¬ll) U ll))) U ((((l ∧ ((¬ll) U (ll ∧Wp))))))))

(15) ((�(¬(l ∧ X(¬ll U ll))))∨ ((¬(l ∧ X(¬ll U ll))) U ((((l ∧ X(¬ll U (ll ∧Wp))))))))

(16)
((�(¬l))∨ ((¬l) U (l ∧ (�((((¬p)∧ (¬pp))∧ (((¬p)∧ (¬pp)) U (p ∧ pp))) → (((¬p)∧ (¬pp))

∧(((¬p)∧ (¬pp)) U (p ∧ pp ∧�q))))))))

(17) ((�(¬l))∨ ((¬l) U (l ∧ (�((p ∧ ((¬pp) U (pp)))) → (p ∧ ((¬pp) U (pp ∧�q)))))))

(18) ((�(¬l))∨ ((¬l) U (l ∧ (�((p ∧ X((¬pp) U (pp)))) → (p ∧ X((¬pp) U (pp ∧�q)))))))

(19) ((�(¬l))∨ ((¬l) U (l ∧�(p → �(((¬q)∧ (¬qq))∧ (((¬q)∧ (¬qq)) U (q ∧ qq)))))))

(20) ((�(¬l))∨ ((¬l) U (l ∧�(p → �(q ∧ ((¬qq) U (qq ∧ ((¬qqq) U qqq))))))))

(21) ((�(¬l))∨ ((¬l) U (l ∧�(p → �(q ∧ X((¬qq) U (qq ∧ X((¬qqq) U qqq))))))))

(22)
((�(¬(((¬l)∧ (¬ll))∧ (((¬l)∧ (¬ll)) U (l ∧ ll)))))∨ ((¬(((¬l)∧ (¬ll))∧ (((¬l)∧ (¬ll)) U (l ∧ ll))))

U ((((¬l)∧ (¬ll))∧ (((¬l)∧ (¬ll)) U (l ∧ ll ∧�(p → �q)))))))

(23) ((�(¬(l ∧ ((¬ll) U (ll)))))∨ ((¬(l ∧ ((¬ll) U (ll)))) U ((l ∧ ((¬ll) U (ll ∧�(p → �q)))))))

(24) ((�(¬(l ∧ X((¬ll) U (ll)))))∨ ((¬(l ∧ X((¬ll) U (ll)))) U ((l ∧ X((¬ll) U (ll ∧�(p → �q)))))))

Figure 5: LTL validation tool’s output for the formula (¬([]((l∧¬r) → (([]p)∨ (pUr)))))∧ ([]((l∧¬r) → (¬((p∧¬r)U((¬p)∧¬r))))).



Advances in Software Engineering 11

Table 9: LTL formulas generated using the New Prospec’s formulas.

Formulas

(1) (¬((¬l) U (l ∧�(((¬p ∧¬pp ∧¬ppp)∧ ((¬p ∧¬pp ∧¬ppp) U (p ∧ pp ∧ ppp)))))))

(2) (¬((¬l) U (l ∧�((p ∧ ((¬pp) U pp))))))

(3) (¬((¬l) U (l ∧�((p ∧ X(¬pp U pp))))))

(4) (¬((¬((¬l ∧¬ll)∧ ((¬l ∧¬ll) U (l ∧ ll)))) U ((((¬l ∧¬ll)∧ ((¬l ∧¬ll) U ((l ∧ ll)∧�p)))))))

(5) (¬((¬(l ∧ ((¬ll) U ll))) U (((l ∧ ((¬ll) U (ll ∧�p)))))))

(6) (¬((¬(l ∧ X(¬ll U ll))) U (((l ∧ X(¬ll U (ll ∧�p)))))))

(7) (¬((¬l) U (l ∧¬� (((¬p ∧¬pp ∧¬ppp)∧ ((¬p ∧¬pp ∧¬ppp) U (p ∧ pp ∧ ppp)))))))

(8) (¬((¬l) U (l ∧¬� ((p ∧ ((¬pp) U (pp ∧ ((¬ppp) U ppp))))))))

(9) (¬((¬l) U (l ∧¬� ((p ∧ X(¬pp U (pp ∧ X(¬ppp U ppp))))))))

(10) (¬((¬((¬l∧¬ll∧¬lll)∧((¬l∧¬ll∧¬lll) U (l∧ ll∧ lll)))) U ((((¬l∧¬ll∧¬lll)∧((¬l∧¬ll∧¬lll) U ((l∧ ll∧ lll)∧¬� p)))))))

(11) (¬((¬(l ∧ ((¬ll) U ll))) U (((l ∧ ((¬ll) U (ll ∧¬� p)))))))

(12) (¬((¬(l ∧ X(¬ll U ll))) U (((l ∧ X(¬ll U (ll ∧¬� p)))))))

(13) (¬((¬((¬l∧¬ll∧¬lll)∧((¬l∧¬ll∧¬lll) U (l∧ ll∧ lll)))) U ((((¬l∧¬ll∧¬lll)∧((¬l∧¬ll∧¬lll) U ((l∧ ll∧ lll)∧�¬p)))))))

(14) (¬((¬(l ∧ ((¬ll) U ll))) U (((l ∧ ((¬ll) U (ll ∧�¬p)))))))

(15) (¬((¬(l ∧ X(¬ll U ll))) U (((l ∧ X(¬ll U (ll ∧�¬p)))))))

(16) (¬((¬l) U (l∧¬�((((¬p)∧(¬pp))∧(((¬p)∧(¬pp)) U (p∧pp))) → (((¬p)∧(¬pp))∧(((¬p)∧(¬pp)) U (p∧pp∧�q)))))))

(17) (¬((¬l) U (l ∧¬�((p ∧ ((¬pp) U (pp)))) → (p ∧ ((¬pp) U (pp ∧�q))))))

(18) (¬((¬l) U (l ∧¬�((p ∧ X((¬pp) U (pp)))) → (p ∧ X((¬pp) U (pp ∧�q))))))

(19) (¬((¬l) U (l ∧¬�(p → �(((¬q)∧ (¬qq))∧ (((¬q)∧ (¬qq)) U (q ∧ qq)))))))

(20) (¬((¬l) U (l ∧¬�(p → �(q ∧ ((¬qq) U (qq ∧ ((¬qqq) U qqq))))))))

(21) (¬((¬l) U (l ∧¬�(p → �(q ∧ X((¬qq) U (qq ∧ X((¬qqq) U qqq))))))))

(22) (¬((¬(((¬l)∧ (¬ll))∧ (((¬l)∧ (¬ll)) U (l ∧ ll))) U ((((¬l)∧ (¬ll))∧ (((¬l)∧ (¬ll)) U (l ∧ ll ∧¬�(p → �q))))))))

(23) (¬((¬(l ∧ ((¬ll) U (ll)))) U ((l ∧ ((¬ll) U (ll ∧¬�(p → �q)))))))

(24) (¬((¬(l ∧ X((¬ll) U (ll)))) U ((l ∧ X((¬ll) U (ll ∧¬�(p → �q)))))))

T1 S2T1 init

T0 S3

Figure 6: LTL2BA generated BA for (¬([]((l ∧ ¬r) → (([]p) ∨
(pUr)))))∧ ([]((l ∧¬r) → (¬((p ∧¬r)U((¬p)∧¬r))))).

CP classes can be used to define boundaries of scopes and
patterns with multiple propositions. For instance, an ordered
sequence can define the left boundary of an after L scope,
and multiple events can define the cause part of a response
pattern. The naı̈ve use of CP classes in LTL formulas can
result in a state explosion when using a model checker like
SPIN. It is important to start with efficient LTL formulas
such as the ones presented in Table 4 and to build on them
when using these CP classes; otherwise the BAs generated

by the LTL formulas would be too large to handle by the
model checker. For example, consider the following property
of an Automated Teller Machine (ATM): “After a user selects
a withdrawal transaction, user’s account is updated, money
is dispensed, receipt is printed, and ATM card is returned.”
Assume the following symbol assignments; “w”: withdrawal
transaction is selected, “au”: account is updated, “md”:
money is dispensed, “r p”: receipt is printed, and “cr”: card
is returned.

This property can be described using the Existence of
P pattern within the After L scope where P is the CP class
EventualC . (P might also be of type Strict EventualC depend-
ing on the specification). ((au∧(�(md∧(�(r p∧(�cr))))))),
and L is w. Using direct substitution in the original Prospec
formula to specify this property the generated formula is
((�¬w)∨((¬w)U(w∧�(au∧((¬md)U(md∧((¬r p)U(r p∧
((¬cr) U cr))))))))). The negation of this formula produces
a BA with

(i) 40 states using SPIN,

(ii) 9 states using LTL2NBA and TMP,

(iii) 17 states using LTL2BA.

On the other hand, by direct substitution in the new formula,
then the generated LTL formula is ¬((¬w)U(w ∧�¬(au ∧
((¬md)U(md ∧ ((¬r p) U (r p ∧ ((¬cr)Ucr)))))))). The



12 Advances in Software Engineering

accept S3T0 S9

T2 S2

T0 S5T0 S4

T0 init

T2 S10

T1 S3

T2 S4

T2 S1

T1 S9

Figure 7: LTL2BA generated BA for (([]((l ∧¬r) → (([]p)∨ (pUr)))))∧¬([]((l ∧¬r) → (¬((p ∧¬r)U((¬p)∧¬r))))).

negation of this formula produces a BA with

(i) 6 states using SPIN,

(ii) 5 states using LTL2NBA and TMP,

(iii) 9 states using LTL2BA.

The previous example shows that although the difference in
the number of states generated by the original LTL formulas
in Table 3 and those in Table 4 might seem negligible, this
difference becomes more significant when using the notion
of CP classes to specify properties.

To further prove this point, Table 7 provides a sample
comparison of the original and new formulas when some
propositions are replaced by certain CP classes. The table
shows the number of states generated by SPIN, LTL2NBA,
TMP, and LTL2BA for formulas of patterns and scopes using
CP. Note that these values were generated running the tools
on the negated formulas for the specified pattern and scope.
Old indicates Prospec’s original formula, and New indicates
the new formula. In Table 7 only one of the propositions was
replaced by a CP class at a time. In generating this sample,
we only used three of the CP classes: ParallelE, EventualC, and
Strict EventualC . We used these CP classes in replacing one of
the propositions in four of the pattern/scope combinations;
Absence of P After L, Existence of P After L, universality of
P After L, and Q Responds to P After L. The choice of the
CP classes and the pattern/scope combinations was based on
the fact that direct substitution of the CP classes into the
formulas for these pattern/scope formulas was possible. The

CP class replacing a proposition is indicated by the subscript
attached to the proposition. The number in the subscript
refers to the number of the CP class in Table 6. Each CP class
was comprised of two or three propositions. The goal was
to include three propositions in each CP class; however in
some cases some translation tools (mostly TMP and SPIN)
could not generate BAs for the old Prospec formulas with CP
classes containing three propositions. Those cases where CP
classes were made of only two propositions are indicated with
the symbol(∗).

6. Discussion

Tools that assist in the generation of formal specifications
in LTL are important to the model checking community as
they relieve the user from the burden of writing specifications
in a language that is hard to read and write. Without
the help of tools such as Prospec, the user might create
faulty specifications. These tools must generate specifications
that correspond to the intent of the user. Prospec was
demonstrated to provide such support [19]. It is also
important that these tools generate efficient formulas, since
one of the main challenges of model checking is the state
explosion problem. The smaller the size of the automata an
LTL formula generates, the less likely that this problem will
occur. Although this might not appear significant in the basic
pattern-scope formulas as generated originally by Prospec,
an example and a sample comparison given in the previous
section show the effect on the number of states generated



Advances in Software Engineering 13

when using less efficient formulas as the base formulas when
incorporating CP classes. The sample comparison also shows
that in some cases, some translation tools could not generate
BAs for the old Prospec formulas in which one of the
propositions was replaced with CP classes containing three
propositions.

The new formulas provided by this work generate BAs
with fewer states in almost all pattern/scope combinations
regardless of LTL to BA translator used. In addition, the BAs
of the new formulas generated by SPIN seem to always be
comparable to those generated by the other more efficient
translators. This is significant to SPIN users, since those
users do not need to use different LTL to BA translators and
manually insert the resulting never-claim into the Promela
code.

Another result of this work is that we are able to provide
the user with more than one LTL mapping to the same
pattern-scope combination. In some cases we can provide
the user with three LTL formulas (considering the formulas
provided by SPS) for a specific pattern and scope (Absence of
P Before R, e.g.). This, along with the detailed descriptions
of patterns and scopes (such as timelines) provided by the
Prospec tool, enhances a user’s understanding of LTL and can
be used as an educational tool. Table 8 shows the formulas
generated using the original Prospec formulas while Table 9
provides those generated using the new formulas.

Acknowledgments

The authors would like to thank Gerard Holzmann for his
patience and help in answering many of our questions. They
also would like to thank Carsten Fritz and Bjørn Teegen
for making it possible to easily visualize and compare the
different LTL to BA translations through the development of
the website mentioned earlier in the paper. This work was
partially supported by National Science Foundation grants
HRD 0734825 and CNS 1042341.

References

[1] Z. Manna and A. Pnueli, “An anchored version of the temporal
framework,” in Proceedings of the REX Workshop, vol. 354 of
LNCS, Springer, Mook, The Netherlands, May 1989.

[2] F. Laroussinie and PH. Schnoebelen, “Specification in CTL +
past for verification in CTL,” Information and Computation,
vol. 156, no. 1-2, pp. 236–263, 2000.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking,
MIT Publishers, Cambridge, Mass, USA, 1999.

[4] G. J. Holzmann, The SPIN Model Checker: Primer and Ref-
erence Manual, Addison-Wesley Professional, Boston, Mass,
USA, 2004.

[5] O. Mondragon, A. Q. Gates, and S. Roach, “Prospec: support
for elicitation and formal specification of software properties,”
in Proceedings of the Runtime Verification Workshop, O.
Sokolsky and M. Viswanathan, Eds., vol. 89, ENTCS, Boulder,
Colo, USA, July 2003.

[6] O. A. Mondragon and A. Q. Gates, “Supporting elicitation
and specification of software properties through patterns
and composite propositions,” International Journal of Software

Engineering and Knowledge Engineering, vol. 14, no. 1, pp. 21–
41, 2004.

[7] O. Mondragon, Elucidation and specification of software prop-
erties through patterns and composite propositions to support
formal verification techniques, Ph.D. thesis, The University of
Texas, El Paso, Tex, USA, 2004.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property spec-
ification patterns for finite-state verification,” in Proceedings of
the 2nd Workshop on Formal Methods in Software Practice, pp.
7–15, Clearwater Beach, Fla, USA, March 1998.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns
in property specifications for finite state verification,” in
Proceedings of the 21st International Conference on Software
Engineering, pp. 411–420, Los Angeles, Calif, USA, May 1999.

[10] D. Oddoux and P. Gastin, “Fast LTL to Büchi automata
translation,” in Proceedings of the 13th International Conference
on Computer Aided Verification (CAV ’01), Paris, France, July
2001.

[11] K. Etessami and G. Holzmann, “Optimizing büchi automata,”
in Proceedings of the 11th International Conference on Concur-
rency Theory, August 2000.

[12] C. Fritz, “Constructing büchi automata from linear tem-
poral logicusing simulation relations for alternating büchi
automata,” in Proceedings of the Eighth Conference on Imple-
mentation and Application of Automata, Santa Barbara, Calif,
USA, July 2003.

[13] Z. Manna and A. Pnueli, “Completing the temporal picture,”
Theoretical Computer Science, vol. 83, no. 1, pp. 97–130, 1991.

[14] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri,
“NUSMV: a new symbolic model verifier,” in Proceedings of
the International Conference on Computer Aided Verification
(CAV ’99), Trento, Italy, July 1999.

[15] K. Havelund and T. Pressburger, “Model checking Java pro-
grams using Java PathFinder,” In- ternational Journal on Soft-
ware Tools for Technology Transfer, vol. 2, no. 4, pp. 366–381,
2000.

[16] V. Stolz and E. Bodden, “Temporal assertions using aspectJ,” in
Proceedings of the Fifth Workshop on Runtime Verification, The
University of Edinburgh, Scotland, UK, July 2005.

[17] E. Gamma and R. Helm, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Profes-
sional, Boston, Mass, USA, 1995.

[18] “Spec patterns,” December 2010, http://patterns.projects.cis
.ksu.edu/.

[19] S. Salamah, A. Gates, S. Roach, and O. Mondragon, “Verifying
pattern-generated LTL formulas: a case study,” in Proceedings
of the 12th International SPIN Workshop, pp. 200–220, San
Francisco, Calif, USA, August 2005.

[20] “LTL2NBA,” March 2007, http://www.ti.informatik.uni-kiel
.de/ABA-Simulation/ltl.cgi.

[21] O. Mondragon, A. Gates, and S. Roach, “Composite propo-
sitions:toward support for formal specification of system
properties,” in Proceedings of the 27th Annual IEEE/NASA
Goddard Software Engineering Workshop, Greenbelt, Md, USA,
December 2002.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


