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The component chemical potentials in models of solution phases with a fixed number of sites can be evaluated easily when
the Helmholtz energy is known as an analytical function of composition. In the case of ordered phases, however, the situation
is less straightforward, because the Helmholtz energy is a functional involving internal order parameters. Because of this, the
chemical potentials are usually obtained numerically from the calculated integral Helmholtz energy. In this paper, we show how
the component chemical potentials can be obtained analytically in ordered phases via the use of virtual cluster chemical potentials.
Some examples are given which illustrate the simplicity of the method.

1. Introduction

Chemical potentials for the components in alloy phases
are often required: they are useful, for example, in phase
diagram calculations. In the case of a binary substitutional
alloy model, (A,B), which uses a fixed number of sites,
NS, containing NA and NB atoms of element A and B,
respectively, functions like (∂F/∂NA)NS

are not chemical
potentials. They are equal to the difference between the
component chemical potentials, for example, (∂F/∂NB)NS

=
μB − μA. This difference is usually referred to as the diffusion
potential [1].

This problem with definition does not mean that the
individual component chemical potentials are unobtainable
in solution phases with a fixed number of sites. They can
be obtained from the partial derivative of the calculated
Helmholtz energy, F, for example, μA = (∂F/∂NA)V ,T ,NB

in circumstances where F can be expressed as a function
of NA and NB. In a completely disordered solution the
Helmholtz energy and the component chemical potentials
are well defined

ΔmixFm = RT
∑

i

xi ln xi,

Δmixμi = RT ln xi.
(1)

Analytical expressions for the chemical potentials can also be
derived for models of single lattice phases which take into
account deviations from random mixing. Results for the pair
quasichemical (Q-C) approximation [2, 3] and for a four-
point cluster in the same approximation [4, 5] have been
reported.

It is the evaluation of the component chemical potentials
in ordered (or antiferromagnet) phases which poses a
problem, because there is no longer an explicit relation
between F and NA, NB. Instead, F is a functional involving
internal order parameters. It is because of this that the
usual way of obtaining the component chemical potentials
has been to numerically differentiate the calculated integral
Helmholtz energy.

In this paper, we show how component chemical poten-
tials can be easily obtained in any cluster approximation
in either ordered or the single lattice state via the use of
virtual chemical potentials (VCPs). VCPs are defined in
Section 2. Previously, only point VCPs appear to have been
used, but cluster VCPs are also definable and, as we show,
are equally useful. The use of cluster VCPs in calculating the
equilibrium distribution of clusters and species in partially
ordered phases is discussed in Section 3. In Section 4, we
show how the component chemical potentials are simply
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Figure 1: The integral molar Helmholtz energy, Fm and the
component chemical potentials obtained from VCPs for z = 8, n.n.
WAB = −1.0 in the Q-C n.n. pair approximation.

related to the VCPs, and in Section 5, we present the results
for some example model calculations.

2. Virtual Chemical Potentials

In their original treatment for calculating the equilibrium
distribution of lattice defects in solids, Wagner and Schottky
used the law of mass action [6], but later, Schottky gave a
more formal treatment of this approach in terms of point
VCPs [7]. These point VCPs were used extensively by Kröger
[8] in discussing defect equilibria in ionic and semiconductor
compounds.

Schottky distinguished between two types of constituent
of a solution phase, building units and structural elements.
The building units can be regarded as the normal compo-
nents, while the structural elements are the majority and
defect species occurring on the sublattice sites. When a
structural element is created, the number of complementary
structural elements cannot be kept constant due to the
requirement of a definite site ratio; it is, therefore, not
possible to assign a true chemical potential to a structural
element, nor can they be accessed experimentally. It is
possible, however, to define a point VCP for a species A on
a sublattice i as

μAi =
(

∂F

∂N (i)
A

)

V ,T ,N
( j)
1

, (2)

where F is the Helmholtz energy, N (i)
A the number of species

or constituents of type A on sublattice i, and N
( j)
1 to all other

point species on all sublattices. We have used the notation μAi

here rather than μ(i)
A since the latter is often used to denote the

chemical potential of a component A in a phase i.
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Figure 2: The integral molar Helmholtz energy, Fm and the
component chemical potentials obtained from VCPs for z′ = 8;
z′′ = 6; dimensionless n.n. WAB = −1.0; n.n.n. WAB = −0.5 in
the CVM tetrahedron approximation.

The concept of VCPs is readily extended to consider
larger clusters than the point. For example, the following can
be defined for pair and four-point clusters:

μA1B2 =
(

∂F

∂N (12)
AB

)

V ,T ,N (12)
2

,

μP1Q2R3S4 =
⎛
⎝ ∂F

∂N (1234)
PQRS

⎞
⎠
V ,T ,N (1234)

4

,

(3)

where N (12)
2 and N (1234)

4 refer to all other pairs and four-point
clusters, respectively.

3. Equilibrium Distribution of
Species in Ordered Phases

Schottky showed that the value of point VCPs lies in their
computational convenience in a modeling context. This can
be illustrated by considering a model for an ordered phase
comprising two elements, A and B, distributed between two
sublattices, 1 and 2. If the sublattices are assumed to be of
equal size, then this ordered phase can be represented as (A,
B) : (A, B).

We will consider this phase in the nearest neighbor
pair Q-C approximation. If we consider a closed system,
Lagrangian multipliers can be assigned to the mass balances

λA zNA = 2N (12)
AA + N (12)

AB + N (12)
BA ,

λB zNB = 2N (12)
BB + N (12)

BA + N (12)
AB .

(4)

Minimization of the Lagrangian

L = A + λA
(
zNA − 2

(
N (12)

AA + N (12)
AB + N (12)

BA

))

+ λB
(
zNB − 2

(
N (12)

BB + N (12)
BA + N (12)

AB

))
,

(5)
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followed by the elimination of the Lagrangian multipliers
gives the following equilibrium relations between the pair
VCPs

μA1A2 + μB1B2 = μA1B2 + μB1A2 ,

μA1B2 = μB1A2 .
(6)

The solution of these equations, subject to normalization and
mass balance constraints, leads to the equilibrium values for
the pair probabilities.

In the Q-C approximation the relation between the VCPs
and the pair probabilities can be obtained from

ΔmixUm = z

2

∑

i /= j

p(12)
i j W (12)

i j , (7)

ΔmixSm = z

2
S2 − (z − 1)S1, (8)

where Wij = εi j−0.5(εii+εj j) is the pair exchange energy (the

ε(12)
i j are the bond energies), z is the coordination number,

and p(12)
i j is the mean pair probability.

The dimensionless pair and point entropies in (8), S2,
and S1 are given by

S2 = −
∑

i j

p(12)
i j ln p(12)

i j ,

S1 = −
∑

A

∑

i

1
2
p(i)
A ln p(i)

A ,

(9)

where p(i)
A is the mean probability or sublattice mole fraction

of the species A on sublattice i.
The pair VCPs may then be obtained from the Helmholtz

energy minimization (dimensionless) Fm = Um − Sm. For
example,

μB1B2 = ε(12)
BB + ln p(12)

BB −
(
z − 1
z

)(
ln p(1)

B p(2)
B

)
. (10)

Substitution of such expressions for the VCPs into (6) then
leads to the solution for the equilibrium pair distribution.

It should be noted that this use of VCPs is not the only,
nor necessarily the most convenient, method to calculate
equilibrium cluster distributions. Many using the CVM, for
example, use the natural iteration method [9] to calculate
these distributions.

4. Component Chemical Potentials

A principal advantage of VCPs lies in their relation to the
component chemical potentials. We will first consider the
same example as was used in the previous section and then
present analogous relations for other examples.

Consider a system which is open to the component B. We
lose the mass balance constraint for B and must now consider
a Lagrangian based on the grand potential, Ω = A− μBNB:

L = A− λA
(
zNA −

(
2N (12)

AA + N (12)
AB + N (12)

BA

))

− μB
(
N (1)

B + N (2)
B

)

= A− λA
(
zNA −

(
2N (12)

AA + N (12)
AB + N (12)

BA

))

− μB

(
1
z

(
2N (12)

BB + N (12)
AB + N (12)

BA

))
,

(11)

from which we can obtain,

∂L

∂N (12)
BB

= μB1B2 −
2
z
μB = 0, (12)

so that in this case, the component chemical potential is
related to just the one pair VCP

μB = z

2
μB1B2 . (13)

Similar simple expressions are readily obtained for other
cluster models. The following lists some examples (n.n. refers
to nearest neighbor interactions and n.n.n. to next nearest
neighbor interactions).

Four-sublattices, Bragg-Williams (B-W) approxn.

ΔmixμB = μ1(B), (14)

bcc, n.n., Q-C approxn.

ΔmixμB = 4μ2(B)− 7μ1(B), (15)

bcc, n.n. & n.n.n, Q-C approxn.

ΔmixμB = 4μ′2(B) + 3μ′′2 (B)− 13μ1(B), (16)

fcc CVM-T approxn.

ΔmixμB = 2μ4(B) + 6μ2(B)− 5μ1(B), (17)

bcc CVM-T approxn.

ΔmixμB = 6μ4(B)− 12μ3(B) + 4μ′2(B) + 3μ′′2 (B)− μ1(B),
(18)

where

μ4(B) =
n∑

i jkl

1
n

ln p
(i jkl)
BBBB,

μ3(B) =
n∑

i jk

1
n

ln p
(i jk)
BBB ,

μ2(B) =
n∑

i j

1
n

ln p
(i j)
BB ,

μ1(B) =
n∑

i

1
n

ln p(i)
B .

(19)
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Here, n is the number of different types of cluster or
subcluster; for example, n = 4 and n = 2, respectively, for the
number of types of n.n. and n.n.n. clusters in the bcc n.n. and
n.n.n. Q-C approximation.

It should be noted that there is no relation similar
to those given for chemical potentials which permit the
analytical calculation of partial molar energies or entropies.

5. Example Calculations

In the examples shown in Figures 1 and 2 for a solution phase
A-B, the molar integral Helmholtz mixing energy, ΔmixFm,
has been calculated from the integral mixing energy and
integral mixing entropy. For example, in the Q-C n.n. two-
sublattice approximation, the following equations have been
used:

ΔmixUm = z

2

∑

i /= j

pi jWij ,

ΔmixSm = −
∑

i j

pi j ln pi j + (z − 1)
2∑

i

1
2
y(i)
A ln y(i)

A .

(20)

The chemical potentials shown in the figures have been
obtained from (14) and (18). Explicitly, the chemical poten-
tials of A shown in Figure 2 have been obtained from

μA = 6 ln p(1234)
AAAA

− 12
4

(
ln p(123)

AAA + ln p(124)
AAA + ln p(134)

AAA + ln p(234)
AAA

)

+
4
4

(
ln p(13)

AA + ln p(14)
AA + ln p(23)

AA + ln p(24)
AA

)

+
3
2

(
ln p(12)

AA + ln p(34)
AA

)

− 1
4

(
ln p(1)

A + ln p(2)
A + ln p(3)

A + ln p(4)
A

)
.

(21)

Here, the n.n.n. have been taken to involve the sublattices 1-2
and 3-4.

The chemical potentials calculated from the VCPs agree
well with those obtained numerically from the independently
calculated integral quantity from CVM. Slight difference is
due to the n.n. approximation in the VCP calculation, which
can obviously be overcome by a straightforward employment
of the n.n.n. approximation in the present method.

Besides the simplicity in definition, the use of VCPs
also reduces the number of independent variables in the
calculation of chemical potentials. In the CVM calculations
for n-component alloy, there are necessarily 2n independent
variables, whereas it is significantly decreased to 2n through
the definition of VCPs.

6. Conclusion

Component chemical potentials are easily obtained in ana-
lytical forms by virtue of cluster VCPs in ordered alloy
phases, instead of the usual numerical calculations from the

integral Helmholtz energy. The example calculation based
on pair quasichemical approximation is compared with the
CVM calculation with a four-point cluster in the same
approximation, illustrating the simplicity of the method.

Furthermore, the use of VCPs benefits direct compar-
isons with simulation results, in which systems are always
restricted to a fixed number of total sites.
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