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The genomic grade (GG) for breast cancer is thought to be the genomic counterpart of histopathological grade (HG). The
motivation behind this study was to see whether HG retains its prognostic impact even when adjusted for GG, or whether it
can be replaced by the latter. Four publicly available gene expression datasets were analyzed. Kaplan-Meier curves, log rank test,
and Cox regression were used to study recurrence-free survival (RFS) and distant metastasis-free survival (DMFS). HG remained
a significant prognostic indicator in low GG tumors (P = 0.003 for DMFS, P < 0.001 for RES) but not in high GG tumors.
HG grade 2 tumors differed significantly from HG grade 1 tumors, underlining the prognostic role of intermediate HG tumors.
Additionally, GG could stratify HG 1 as well as HG 2 tumors into distinct prognostic groups. HG and GG add independent
prognostic information to each other. However, the prognostic effects of both HG and GG are time varying, with the hazard ratios

of high HG and GG tumors being markedly attenuated over time.

1. Introduction

The genomic grade [1] is a recently characterized grading
system for breast cancer which has shown early promise
in prognostic classification of breast cancer patients. It is a
two-tier grading system which has appealed to researchers
in doing away with an intermediate grade, ostensibly easing
the decision-making process. Furthermore, it has a strong
theoretical basis, since it is judged to be a gene expression sig-
nature of the histopathological grade, a proven independent
predictor of breast cancer survival. The genomic grade has
met with favorable academic response and has been licensed
for commercial use. Early studies suggested that it contained
most of the prognostic information of histopathological
grade [1], thus leading to suggestions that it may supplant
histopathological grading altogether [2, 3]. One study found
that the genomic grade was a better prognostic indicator
than histopathological grade [4]. However, it was not men-
tioned whether histopathological grade had any prognostic

effect in breast cancer patients when adjusted for genomic
grade. The datasets used in the last mentioned study were
put in the public domain in an easily analyzable format.
The same datasets were used in the present study to see
whether histopathological grading provides any additional
information over and above the genomic grade. This would
serve to point out whether gene expression-based signatures
could act as a competitive replacement for histopathological
grade, or whether both genomic and histopathological grade
are independently significant and complement each other.

2. Materials and Methods

An internet search was made for publicly available breast
cancer datasets containing data on the histopathological
grade, genomic grade, and survival. Four such datasets were
found based on Affymetrix microarray platform, which were
the basis for previously published papers [4].



A study on the four combined datasets was published [4]
showing that a simple gene expression-based model could
give prognostic information of the same or better quality
than more complex models. Furthermore, the authors of the
last mentioned article also put up the clinical data in conve-
nient Rdata files on the web (http://www.ulb.ac.be/di/map/
bhaibeka/survcompaper/) which immensely helped in the
final analysis of the data. The same datasets also helped in the
formation and validation of a fuzzy gene expression-based
prognostic signature known as GENIUS [5].

These datasets are publicly available from the GEO
database through accession numbers GSE2034, GSE7390,
GSE6532/GSE9195, and GSE3494, respectively. GSE2034
includes the gene expressions of 286 node-negative patients
who did not receive adjuvant therapy, and was used to build
the 76 gene expression signature [6]. It was also used as
a validation dataset for the genomic grade. GSE7390 com-
prised node-negative patients who did not have any adjuvant
therapy. It was used to demonstrate strong time dependence
of prognostic effects of the 76 gene signature [7]. Addition-
ally, it was an official validation dataset for the genomic grade
index. GSE6532/9195 has 354 ER-positive node-negative as
well as node-positive patients homogeneously treated by
tamoxifen therapy and formed the basis for two papers [8, 9].
GSE3494 was a heterogeneous dataset of 251 patients and
was used to study the genetic expression of p53 in breast
cancer patients [10]. All the datasets had information for
recurrence-free survival (RES), but GSE 3494 was missing
information on distant metastasis-free survival (DMFS). The
four datasets were combined for the present analysis. The
distribution of the clinicopathological parameters in the
combined data is given in Table 1.

Kaplan-Meier survival curves, log-Rank test, and Cox
proportional hazards regression were used to assess the pro-
gnostic role of histopathological grade in predicting RFS and
DMES in both low and high genomic grade cases. The Cox
proportional Hazards regression model was assessed for fit.
Nonproportionality of hazards was checked by scaled Scho-
enfield residuals. Influential observations were checked by
plotting the dfbetas.

The datasets were prepared from different series of
patients from different centres. There were twelve separate
series of patients, some of them having different selection cri-
teria. Therefore, patients in one series could be more similar
to another patient in the same series as compared to a patient
in a different series (i.e., the data may be clustered along the
series from which the patients were selected). To compensate
for the effect of clustered data, a grouped jackknife method
for estimation of robust parameter variances was used for the
Cox proportional hazards analysis as recommended [11].

The entire analysis was carried out by the “survival” [12]
package of the R statistical environment [13].

3. Results

Histopathological grade was a significant predictor for
survival in low genomic grade (GG1) patients, for the entire
dataset (P = 0.003 for DMFS, P < 0.001 for RFS, by the log
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TaBLE 1: Clinicopathological features of all breast cancer patients
analyzed in the study.

Age
<40 years 97
41-55 years 381
56-70 years 397
>70 years 205
Missing 9
Size
<2cm 520
>2cm 560
Missing 9
Node
Positive 799
Negative 263
Missing 27
ER
Positive 896
Negative 180
Missing 13
Histopathological grade
Grade 1 168
Grade 2 404
Grade 3 356
Missing 161
Genomic grade
Low 501
High 488
Missing 100
Adjuvant treatment
None 655
Tamoxifen 425
Missing 9

rank test) but not in high genomic grade (GG3) patients (P =
0.8 and 0.9 for DMFS and REFS, respectively, by the log rank
test). Kaplan-Meier curves showed separation of the survival
curves of low, intermediate, and high histopathological grade
tumors in low genomic grade patients, but the separation
between the same was not prominent in high genomic
grade patients (Figures 1 and 2). Particular attention was
paid to ER positive tumors, as it has been shown that the
genomic grade is a particularly strong prognostic factor in ER
positive [5] but not in ER negative patients. Further tests by
Cox proportional hazards showed that the histopathological
grade was a significant predictor in the entire set of ER-
positive patients as well as node-negative, node-positive
and Stage I ER-positive patients in low genomic grade
tumors (Tables 2 and 3—compare the hazard ratios of HG3-
GGl and HG2-GGI1 tumors vs. HGI-GG1 tumors). The
continued prognostic difference between histopathological
grade 2 and grade 1 patients in the low genomic grade tumors
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FiGure 1: (a) Kaplan-Meier curve for recurrence-free survival for all the patients, showing the separation of survival curves between Grade
1, 2, and 3 low genomic grade patients and closeness of the same in high genomic grade patients. (HG = histopathological grade, GGI =
genomic grade). (b) Kaplan-Meier curve for recurrence-free survival for ER-positive patients, showing the separation of survival curves
between Grade 1, 2, and 3 low genomic grade patients and closeness of the same in high genomic grade patients. (HG = histopathological

grade, GGI = genomic grade).

for RFS suggest that contrary to early expectations, grade 2
patients remain a distinct prognostic category.

Tables 2 and 3 also show that the genomic grade was
a significant prognostic factor not just in histopathological
grade 2 (P values given in Supplementary file, Table2,
which is available online at doi:10.4061/2011/890938) but
also in histopathological grade 1 breast cancer patients.
This shows that the genomic grade is useful not just in
stratifying histopathological grade 2 cases but identifies a
bad prognostic subset in histopathological grade 1 cases as
well. Even histopathological grade 3 cases were separated
into separate groups by the genomic grade having at least
marginal statistical significance in certain groups (P values
given Supplementary file, Table 2), but the prognosis was bad
in histopathological grade 3 cases irrespective of the genomic
grade status, limiting the clinical usefulness of genomic grade
in the same. These results are illustrated in the Kaplan-Meier
curves in Figures 1 and 2, where there is a wide prognostic
separation between low and high genomic grade tumors for
both histopathological grade 1 as well as histopathological
grade 2 cases. However, there is a narrow separation between
low and histopathological grade 3 cases having a low and
high genomic grade in histopathological grade 3 tumors,
with both sets having a poor prognosis.

While checking the models by Schoenfeld residuals, a
significant time-varying prognostic effect of histopatholog-
ical grade and genomic grade was observed, with high

histopathological and genomic grade tumors showing a
strong prognostic effect initially, but becoming attenuated
on the long term (Table 4). For further demonstration of
the marked time-varying covariate effects, the data was
partitioned at 7 years, and Cox regression was carried out
separately in different time intervals (0-7 years, and 7 years
to end of study). In the time interval from 0 to 7 years,
both histopathological and genomic grade showed strong
and statistically significant information; however, in the
time interval from seven years to the end of the study,
the hazard ratios were markedly reduced, and not a single
combination of high genomic and histopathological grade
showed statistically superior prognostic effect compared to
the lowest grading category (Table 5). In fact, the highest
combined grade showed a reversal of the hazard ratio over
the lowest grading combination. It may be noted that for
this particular analysis, time was partitioned at seven years
just for illustrative purposes, and decreasing hazard ratios
over time will be noted even if the study is partitioned
at other time intervals. The time-varying prognostic effect
of histopathological grade and genomic grade can also be
deduced from the converging Kaplan-Meier curves for RFS
and DMFS in Figures 1 and 2. This did not affect the
conclusion in the present study that histopathological grade
is an important factor in low genomic grade but not in high
genomic grade patients. However, it is important to be aware
of this property of breast cancer grade so that the attenuation
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FIGURE 2: (a) Kaplan-Meier curve for distant metastasis-free survival for all the patients, showing the separation of survival curves between
Grade 1, 2, and 3 low genomic grade patients and closeness of the same in high genomic grade patients. (HG = histopathological grade,
GGI = genomic grade). (b) Kaplan-Meier curve for distant metastasis-free survival for ER-positive patients, showing the separation of
survival curves between Grade 1, 2, and 3 low genomic grade patients and closeness of the same in high genomic grade patients. (HG =
histopathological grade, GGI = genomic grade).
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FIGURE 3: (a) and (b) showing the hazard ratios of the different combinations of histopathological grade and genomic grade for recurrence-
free survival and distant metastasis-free survival. The solid columns represent the hazard ratios, and the lines with whiskers represent the
95% confidence intervals of the same.
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TaBLE 2: Showing the hazard ratios for recurrence-free survival for each combination of histopathological and genomic grade. (HG =
histopathological grade, GG1 = low genomic grade, and GG3 = high genomic grade). Values marked with an asterisk (*) are unstable due to

scanty number of cases.

All tumors ER+ve tumors ER+ve Node —ve tumors ER+ve Stage I tumors ER+ve Node +ve tumors

HR 95‘;/;)CI HR 95‘;/;»(:1 HR 9501/;)(:1 HR 95‘1/;)CI HR 95‘;/;)(:1
\I?e?sh_sGGa 5.1 2.6-10.0 55 2.4-12.8 3.4 1.5-8.0 37 1.1-12.4 19.6* 3.5-110*
HOLGGI (<0.001) (<0.001) (0.004) (0.04) (<0.001)
\P’Ie?il_sGGl 28 1.7-4.7 26 1.5-4.4 1.9 1.3-2.7 17 1.1-2.7 6.8 1.4-33.2
HOLGGL (<0.001) (<0.001) (0.001) (0.02) (0.02)
‘Iifsi_sGGs 58 3.9-8.5 5.6 3.8-8.2 45 3.4-6.0 6.0 3.5-10.3 1.4 2.8-46.9
HGI1-GG1 (<0.001) (<0.001) (<0.001) (<0.001) (0.001)
‘Iier_:)l-sGGl 36 1.9-6.6 3.4 1.7-6.7 )8 1.3-6.4 45 1.9-10.4 3.9 2.0-39*
HG1-GG1 (<0.001) (<0.001) (0.01) (<0.001) (0.004)
\Ije?j;SGGs 4.9 3.2-7.6 59 3.7-7.4 48 3.2-7.4 6.1 2.9-12.8 79 2.3-27.7
HOLGGL (<0.001) (<0.001) (<0.001) (<0.001) (0.001)

TaBLE 3: Showing the hazard ratios for distant metastasis-free survival for each combination of histopathological and genomic grade (HG =
histopathological grade, GG1 = low genomic grade, and GG3 = high genomic grade). Values marked with an asterisk (*) are unstable due to

scanty number of cases.

All tumors ER+ve tumors ER+ve Node —ve tumors ER+ve Stage I tumors ER+ve Node +ve tumors
95%CI 95%ClI 95%CI 95%CI 95%CI
HR P HR P HR p HR P HR P

\I,{e(rjwsh—sGG3 48 2.1-10.8 47 1.8-12.5 25 0.8-7.6 21 0.4-10.6 29 3% 3.1-162*
HGI-GG1 (<0.001) (0.002) (0.1) (0.4) (0.002)
HG2GGI 1.0-42 1.04-3.8 0.8-2.3 0.4-2.2 0.8-73.1
versus 2.2 (0.01) 2.0 (0.04) 1.3 (0.3) 0.9 (0.8) 7.5 (0.08)
HG1-GG1 ’ ’ ’ ' ’
‘I;I;}Si—SGGS 56 3.7-8.7 53 3.2-8.6 3.9 2.3-6.8 47 2.2-10.3 14.1 1.8-110
HG1-GG1 (<0.001) (<0.001) (<0.001) (<0.001) (0.01)
HG3-GGI 1.9-7.5 1.7-7.9 1.2-6.4 1.5-10.0 % 2.8-183*
versus 3.8 (<0.001) 3.7 (<0.001) 2.8 (0.02) 3.9 (0.005) 22.6 (0.003)
HG1-GGl ’ ' ' ’ '
‘I;Ie?jl_sGCB 50 2.7-9.2 51 3.1-8.5 42 2.3-7.8 6.0 2.3-15.4 3.7 1.7-43.5
HOLGGL (<0.001) (<0.001) (<0.001) (<0.001) (0.008)

of prognostic effect is not mistaken for absence of the same
in studies with a long followup.

4. Discussion

The results in the study on this publicly available dataset
emphasizes the continued importance of histopathological
grade in breast cancer prognostication, even when adjusted
for recently discovered genetic expression-based analogue
of grading. This study confirms the prognostic importance
of the intermediate histopathological grade and additionally
suggests a prognostic role for genomic grade even in

histopathological grade cases. Both histopathological and
genomic grade add prognostic information to one another
and should be seen as complementary rather than competi-
tive techniques.

The “old fashioned” histopathological grade remains an
important prognosticator in breast cancer in spite of the
presence of newer gene expression grade. The importance
of the old school indicators have been emphasized in
other studies (comparing other gene expression-based pro-
files) as well. The supplementary information provided
by Fan et al. [14] shows that the histopathological grade
retains either prognostic significance or a high hazard
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TaBLE 4: Showing the correlation of scaled Schoenfeld residuals for each combination of histopathological and genomic grade with time
for histopathological and genomic grade (rho = correlation coefficient, HG = histopathological grade, GG1 = low genomic grade, and GG3
= high genomic grade). A significant correlation shows time-dependent covariate effects. Negative correlation means that the prognostic
effects get attenuated over time, and a positive correlation means that the prognostic effects get strengthened over time.

Alldata ER+ve ER+ve Node —ve ER+ve Stage |
rho P rho P rho P rho P
RFS
HGI1-GG3 0.04 0.5 -0.07 0.3 -0.09 0.2 —-0.09 0.4
HG2-GGl1 0.11 0.6 —-0.01 0.9 0.08 0.4 0.04 0.8
HG2-GG3 0.12 0.02 0.01 0.9 0.11 0.1 —-0.21 0.2
HG3-GG1 -0.18 <0.001 —0.08 0.2 -0.14 0.007 -0.12 0.2
HG3-GG3 - 0.30 <0.001 - 0.16 0.05 - 0.22 <0.001 - 0.23 0.01
DMES
HGI1-GG3 0.08 0.3 0.00 1 0.12 0.2 —-0.08 0.6
HG2-GGl1 —-0.01 0.9 0.02 0.8 -0.05 0.7 -0.02 0.9
HG2-GG3 —-0.03 0.7 —-0.04 0.7 —-0.28 0.02 —-0.38 0.03
HG3-GG1 -0.21 <0.001 —-0.09 0.3 -0.17 0.07 -0.30 0.09
HG3-GG3 -0.29 <0.001 -0.17 0.06 - 0.29 0.003 - 0.39 0.01

Tasre 5: Illustrating the time changing prognostic effects of histopathological grading. The table compares the hazard ratios of
histopathological and genomic grading for the first seven years to the hazard ratios of the same from seven years onwards. This analysis
was performed on the entire dataset.(HR = hazard ratio, HG = histopathological grade, GG1 = low genomic grade, and GG3 = high genomic

grade).

Recurrence-free survival
HR(7 yrs-EOS) (95% CI)

HR(0-7 yrs) (95% CI)

Distant metastasis-free survival
HR(0-7yrs) (95% CI)  HR(7yrs-EOS) (95% CI)

HG1-GG3 versus HG1-GG1 10.0 (4.0-24.9) 1.4 (0.2-9.0) 26.5 (4.7-149) 1.1 (0.2-5.6)
HG2-GG1 versus HG1-GG1 4.6 (1.9-11.4) 1.5 (0.8-2.6) 9.6 (1.4-66.2) 0.9 (0.4-2.1)
HG2-GG3 versus HG1-GG1 11.0 (5.3-22.7) 1.8 (0.9-3.8) 32.1(5.1-202) 1.2 (0.3-4.3)
HG3-GG1 versus HG1-GG1 7.4 (3.6-14.8) 0.5 (0.1-3.9) 22.7 (3.6-144) 0.4 (0.05-3.7)
HG3-GG3 versus HG1-GG1 10.3 (5.3-20.1) 0.7 (0.3-1.9) 31.6 (5.6-179) 0.5 (0.2-1.3)

ratio even when adjusted for different gene expression-
based signatures like the Agendia 70 gene signature or the
Oncotype Dx signature. Studies on the prognostic efficiency
of the Oncotype Dx signature [15, 16] have repeatedly
thrown upgrade as an independent prognostic factor in
multivariate analysis. Recently, it was shown that clinical
data inclusive of histopathological grade added significantly
to the prognostic ability of gene expression signatures [17].
A review of the role of histopathological grading in the
molecular era also concluded that gene expression signatures
and histopathological grading play a complementary role
in breast cancer prognostication [18]. The genomic grade,
analyzed in this study, was obtained as the genetic analogue
of histopathological grade, and thus was likely to be the
most significant competitor to the latter; however, the
additional prognostic information given by histopathological
grade in this study shows that these techniques should
be treated as complementary rather than competitive. The
genomic grade was created using ER-positive tumors only
[1] and does not have a strong prognostic effect in ER-
negative tumors [5, 19]. Therefore, this study paid par-
ticular attention to ER-positive tumors in pointing out
the independent prognostic role of histopathological grade.
Histopathological grade retained its prognostic significance

in ER-positive, ER-positive node negative, as well as ER-
positive Stage I tumors, showing its prognostic strength in-
dependent of nodal status and size in addition to genomic
grade.

The present study analyzes different datasets graded by
different pathologists. It is possible that there may have been
a loss in prognostic effect of histopathological grading due
to interobserver variability between centres, but the contin-
ued prognostic significance of histopathological grade shows
that it remains a strong prognostic factor in spite of the sub-
jectivity of grading. In other words, the “signal” provided by
the histopathological grade more than compensates for the
“noise” due to interobserver variation. Centralized grading
may have improved the observed prognostic strength of
histopathologic grading even further, but it would not have
reflected the “real-world” effect of histopathological grading,
taking interobserver variation in account. The lack of inter-
observer reliability of histopathological grade is a constant
criticism against its inclusion as a treatment deciding factor.
In the light of strong evidence of the prognostic strength
of the histopathological grading, steps should be taken to
improve the interobserver reliability of the same rather than
throw it out altogether. Strict adherence to the grading
guidelines [18, 20] as well as double reporting [21] has
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been shown to result in high interobserver reproducibility of
breast cancer histopathological grading.

Intermediate histopathological grade tumors showed a
significantly raised hazard ratio for recurrence-free survival
in low genomic grade tumors, emphasizing the prognostic
importance of the intermediate grading category. One of the
potential attractions of the genomic grade was the absence of
the intermediate category; it was hoped that this would help
give a clearer picture of prognostic strength of breast cancers.
The genomic grade challenged the existence of intermediate
histological grade [3]. However, the continued importance of
the intermediate category suggests that breast cancer grade
is inherently a continuous prognostic indicator, something a
surgical pathologist observing the microscopic sections will
attest to. It should be noted that the present aggregated
dataset contained the validation dataset of the genomic
grade, which may bias the results against histopathological
grade as a competitor to genomic grade. That the interme-
diate category still retains its prognostic significance testifies
for the inherent prognostic strength of histopathological
grading.

One of the main motivations behind the genomic
grade was to classify histopathological grade 2 tumors into
separate prognostic groups resembling grade 1 and grade
3 tumors [1]. However, the present study also showed that
the genomic grade has a significant prognostic effect in
histopathological grade 1 tumors, a finding which, to the best
of the author’s knowledge, has not been reported yet. This
suggests that the genomic grade may have a wider clinical
applicability in identifying bad prognosis tumors. Both low
histopathological and genomic grade may be subclassified
into heterogeneous prognostic categories. In contrast, high-
grade tumors seem to be more prognostically homogeneous,
and there is as yet no evidence for a clinically significant
role of genomic grade in histopathological grade 3 tumors
or histopathological grade in high genomic grade tumors.

The prognostic strength of both histopathological as well
as genomic grading is most marked in the short to mid-term,
but lose their prognostic power for predicting late events.
The loss of prognostic efficiency is a well-known attribute
of intrinsic prognostic factors of breast cancer. Hormone
receptor status, markers of proliferation, histopathological
grade, size, and lymph node status [22, 23] all have been
shown to lose their prognostic strength over time. There
may be a few explanations for the loss of prognostic strength
of known factors: (i) late survival events may depend on
further genetic changes that take place after diagnosis as a
result of the varied natural course of breast cancer, in which
case the early genetic changes, as reflected in grade and
proliferation at the time of diagnosis may not hold relevance
for late events, (ii) the late events may be the result of subtle
genetic changes as yet not discovered, or (iii) there is a
process of “natural selection” of high grade cases, where the
long-term survivors, who have as yet unknown favourable
characteristics, survive.

The analysis of the data was complicated by the presence
of heterogeneity due to different selection criteria among the
different constituent datasets, forming clustered data leading
to a potential violation of the assumption of independence

of cases in Cox regression. To overcome this complication,
two types of models may have been used depending on the
purpose of the study: (i) a marginal model or (ii) a frailty
model [11]. In studies where the primary focus of interest
lies in estimating the prognostic effects of covariates in the
general population across clusters, and the relation between
the correlated data is of little interest (as in this study), it
is simpler to use a marginal model. In frailty models, the
effects of the correlated clusters are modeled as a random
effect along with the fixed effects of the other covariates of
interest (forming what is known as a mixed effects model).
Frailty models are used if there is interest in estimating
the correlation between the clustered data. However, frailty
models are complicated, and there are various frailty models
depending on the assumed distributional properties of the
random effect. For the reasons given above, marginal models
were used in the present study.

The findings of this study need to be cautiously inter-
preted due to the large amounts of missing data. The data
was not missing at random, and therefore, the final models
may be biased. However, the consistently raised hazard ratio
for histological grade in the analysis carried out in the
component datasets suggests strongly that histopathological
grade continues giving prognostic information over its
genomic counterpart.

To conclude, both “old-fashioned” traditional and “mod-
ern” gene expression-based prognosticators give additional
information over one another. These techniques need to
coexist rather than compete for optimal patient management
at the present time.
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