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A rational divide-and-conquer relation, which is a natural generalization of the classical divide-
and-conquer relation, is a recursive equation of the form f(bn) = R(f(n), f(n), . . . , f(b−1)n)+g(n),
where b is a positive integer ≥ 2; R a rational function in b − 1 variables and g a given function.
Closed-form solutions of certain rational divide-and-conquer relations which can be used to
characterize the trigonometric cotangent-tangent and the hyperbolic cotangent-tangent function
solutions are derived and their global behaviors are investigated.

1. Introduction

The classical divide-and-conquer relation is a recursive relation of the form ([1–3])

F(n) = aF
(n
b

)
+G(n), (1.1)

where a, b(≥ 2) are positive integers and G(n) is a given function. This class of recurrence
relations arises frequently in the analysis of recursive computer algorithms. Such algorithms
split a problem of size n into a subproblems each of size [n/b], with G(n) extra operations
being requiredwhen this split of a problem of size n into smaller problems is made. Although,
there are certain cases, see for example the table on page 273 of [3], where the relation (1.1)
can be solved explicitly, it is generally impossible to solve (1.1) for all values of n. However,
when a starting value F(bλ) is given, a solution for n = bk(k > λ) can be found by making
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a change of variables F(bk) = φ(k) which turns (1.1) into a first order difference equation of
the form ([1, page 137])

φ(k) = aφ(k − 1) +G
(
bk
)
, (1.2)

and this last recursive equation can be easily solved. Another aspect of importance in the
study of divide-and-conquer relations deals with the size of F(n) which is used in analyzing
the complexity of corresponding divide-and-conquer algorithms ([2, Section 5.3] ).

Generalizing the above notion, by a rational divide-and-conquer (RDAC) relation, we refer
to a recursive relation of the form

f(bn) = R
(
f(n), f(2n), . . . , f(b − 1)n

)
+ g(n), (1.3)

where b ∈ N, b ≥ 2, R(x1, . . . , xb−1) a rational function in x1, . . . , xb−1, and g(n) a given
function. Here we aim to find explicit closed form solutions of certain nonlinear divide-and-
conquer relations which is closely related to identities of the trigonometric and hyperbolic
cotangent identities. Our investigation arises from an observation that the trigonometric
cotangent function satisfies, among a number of other identities, the following identity:

cot(3A) =
cot 2AcotA − 1
cot 2A + cotA

, (1.4)

which leads to an RDAC relation of the form

x3n =
x2nxn − 1
x2n + xn

. (1.5)

This relation can be rewritten as

x3n − i

x3n + i
=
(
xn − i

xn + i

)(
x2n − i

x2n + i

) (
i =

√
−1
)
, (1.6)

which is a simpler looking RDAC relation of the form

U3n = UnU2n

(
Un :=

xn − i

xn + i

)
(1.7)

that can be immediately solved. Let usmention in passing that similar substitution techniques
have been employed earlier in [4, 5].

Our first objective here is to find, in the next section, a closed form solution of

Ubn = Uα1
n Uα2

2n · · ·Uαb−1
(b−1)n, (1.8)

an RDAC relation generalizing (1.7). Experiences from (1.7)with the cotangent function lead
us to apply the results from our first objective to use such RDAC relations to characterize the
trigonometric and hyperbolic tangent and cotangent functions, and this will be carried out in
the following section as applications.
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2. Closed Form Solutions

Before stating our main result, it is convenient to introduce a new notation. For k ∈ N, let us
write

(
α1V� + α2V2� + · · · + αb−1V(b−1)�

)∗k =
∑

i1+i2+···+ib−1=k

(
k

i1, i2, . . . , ib−1

)
αi1
1 α

i2
2 · · ·αib−1

b−1V1i1 2i2 ···(b−1)ib−1�,

(2.1)

where
(

k
i1,i2,...,ib−1

)
:= k!/i1!i2! · · · ib−1! denote the customarymultinomial coefficients. Ourmain

result is:

Theorem 2.1. Let b ∈ N, b ≥ 2, and α1, . . . , αb−1 ∈ R. If the sequence {Un}n≥0 satisfies the RDAC
relation

Ubn = Uα1
n Uα2

2n · · ·Uαb−1
(b−1)n (n ≥ 1), (2.2)

then for � /≡ 0 (mod b), one has

Ubk�

∏
i1+i2+···+ib−1=�

U

(
k

i1,i2,...,ib−1

)
α
i1
1 α

i2
2 ···αib−1

b−1

1i1 2i2 ···(b−1)ib−1� (k ∈ N). (2.3)

Proof. Taking principal logarithms of (2.2), the relation becomes

Vbn = α1Vn + α2V2n + · · · + αb−1V(b−1)n (n ≥ 1), (2.4)

where Vi = logUi. For � /≡ 0 (mod b), evaluating (2.4) at n = b�, we get

Vb2� = α1Vb� + α2Vb2� + · · · + αb−1Vb(b−1)�

= α1
(
α1V� + α2V2� + · · · + αb−1V(b−1)�

)

+ α2
(
α1V2� + α2V22� + · · · + αb−1V2(b−1)�

)

+ · · · + αb−1
(
α1V(b−1)� + α2V2(b−1)� + · · · + αb−1V(b−1)2�

)

= α2
1V� + α2

2V22� + · · · + α2
b−1V(b−1)2�

+ 2α1α2V2� + · · · + 2αiαjVij� + · · · + 2αb−2αb−1V(b−2)(b−1)�.

(2.5)

Using the notation introduced above, we see at once that

Vb� =
(
α1V� + α2V2� + · · · + αb−1V(b−1)�

)∗1

Vb2� =
(
α1V� + α2V2� + · · · + αb−1V(b−1)�

)∗2
.

(2.6)
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To finish the proof, we need only show that for all k ∈ N

Vbk� =
(
α1V� + α2V2� + · · · + αb−1V(b−1)�

)∗k
. (2.7)

We proceed by induction. For any � /≡ 0 (mod b), assume that (2.7) holds up to k. Thus, by
(2.4) and the induction hypothesis one has

Vbk+1� = α1Vbk� + α2Vbk2� + · · · + αb−1Vbk(b−1)�

= α1
(
α1V� + α2V2� + · · · + αb−1V(b−1)�

)∗k + α2
(
α1V2� + α2V22� + · · · + αb−1V2(b−1)�

)∗k

+ · · · + αb−1
(
α1V(b−1)� + α2V2(b−1)� + · · · + αb−1V(b−1)2�

)∗k

= α1

∑
i1+i2+···+ib−1=k

(
k

i1, i2, . . . , ib−1

)
αi1
1 α

i2
2 · · ·αib−1

b−1V1i1 2i2 ···(b−1)ib−1�

+ α2

∑
i1+i2+···+ib−1=k

(
k

i1, i2, . . . , ib−1

)
αi1
1 α

i2
2 · · ·αib−1

b−1V(1i1 2)(2i2 2)···((b−1)ib−1 2)�

+ · · · + αb−1
∑

i1+i2+···+ib−1=k

(
k

i1, i2, . . . , ib−1

)
αi1
1 α

i2
2 · · ·αib−1

b−1V(1i1 (b−1))(2i2 (b−1))···(b−1)ib−1+1�

=
∑

i1+i2+···+ib−1=k+1

(
k

i1, i2, . . . , ib−1

)
αi1
1 α

i2
2 · · ·αib−1

b−1V1i1 2i2 ···(b−1)ib−1�.

(2.8)

The cases b = 2 and 3 are of particular interest and we record them here for future
reference.

Corollary 2.2. (I) Let α ∈ R. If the sequence {Un}n≥0 satisfies the RDAC relation

U2n = Uα
n (n ≥ 1), (2.9)

then for � /≡ 0 (mod 2), one has

U2k� = Uαk

� (k ∈ N). (2.10)

(II) Let α1, α2 ∈ R. If the sequence {Un}n≥0 satisfies the RDAC relation

U3n = Uα1
n Uα2

2n (n ≥ 1), (2.11)

then for � /≡ 0 (mod 3), one has

U3k� = U

(
k
0

)
αk
1α

0
2

� U

(
k
1

)
αk−1
1 α2

2� · · ·U
(
k
k

)
α0
1α

k
2

2k� (k ∈ N). (2.12)
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3. Applications

We now apply the result of Theorem 2.1 and Corollary 2.2 to several RDAC relations
including those that can be used to characterize the trigonometric and hyperbolic tangent
and cotangent functions.

Proposition 3.1. (I) Suppose that the sequence {xn}n≥0 satisfies an RDAC relation of the form

x2n =
x2
n − 1
2xn

(n ≥ 1). (3.1)

For � /≡ 0 (mod 2) and k ∈ N, if the condition 2kθ� /≡ 0 (mod 2π) is fulfilled, then

x2k� = cot

(
−2kθ�

2

)
= cot

(
2karccotx�

)
, (3.2)

where

θ� = −2 arccotx�. (3.3)

(II) Assume that the sequence {xn}n≥0 satisfies an RDAC relation of the form

x2n =
2xn

1 − x2
n

(n ≥ 0). (3.4)

For � /≡ 0 (mod 2) and k ∈ N, if 2kθ� is not an odd multiple of π , then

x2k� = tan

(
−2kθ�

2

)
= tan

(
2karctanx�

)
, (3.5)

where

θ� = −2 arctanx�. (3.6)

(III) If the sequence {xn}n≥0 satisfies

x2n =
x2
n + 1
2xn

(n ≥ 0), (3.7)

then, for � /≡ 0 (mod 2), k ∈ N, one has

x2k� = coth

(
−2kθ�

2

)
= coth

(
2karccothx�

)
, (3.8)
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where

θ� = −2 arccothx�. (3.9)

(IV) If the sequence {xn}n≥0 satisfies

x2n =
2xn

1 + x2
n

(n ≥ 0), (3.10)

then, for � /≡ 0 (mod 2), k ∈ N, one has

x2k� = tanh

(
−2kθ�

2

)
= tanh

(
2k arctanhx�

)
, (3.11)

where

θ� = −2 arctanhx�. (3.12)

Proof. (I) As seen in Section 1, the RDAC relation (3.1) is equivalent to

U2n = U2
n

(
Un =

xn − i

xn + i

)
, (3.13)

whose solution is, by virtue of Corollary 2.2,U2k� = U2k
�
. Thus,

x2k� − i

x2k� + i
=
(
x� − i

x� + i

)2k

. (3.14)

Setting eiθ� = (x� − i)/(x� + i), one has

x2k� = i

(
1 + ei2

kθ�

1 − ei2kθ�

)
= cot

(
−2kθ�

2

)
= cot

(
2karccotx�

)
, (3.15)

provided 2kθ� /≡ 0 (mod 2π).
(II) Substituting xn by 1/xn turns (3.4) into (3.1) and so the result follows at once from

part (I).
(III) Substituting xn by ixn in (3.7) turns it into a rational recursive equation of the

form (3.1) and so part (I) yields the desired result.
(IV) Replacing xn by ixn in (3.10), we get a rational recursive equation of the form (3.4)

and part (II) yields the result.
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Remark 3.2. Although the substitution xn by 1/xn employed in part (II) of Proposition 3.1
allows us to obtain a closed form solution of the RDAC relation (3.4), there remains a
difficulty should there exist integer N such that xN = 0. To overcome this shortcoming, we
may either interpret the infinite value of the two expressions on both sides of the solution as
equal or repeat the technique used in the proof of Proposition 3.1 to solve (3.4).

Proposition 3.3. (I) Suppose that the sequence {xn}n≥0 satisfies an RDAC relation of the form

x3n =
x2nxn − 1
x2n + xn

(n ≥ 1). (3.16)

For � /≡ 0 (mod 3) and k ∈ N, if the condition

(
k

0

)
θ� +

(
k

1

)
θ2� + · · · +

(
k

k

)
θ2k� /≡ 0 (mod 2π) (3.17)

is fulfilled, then

x3k� = cot

(−( k0
)
θ� −

(
k
1

)
θ2� − · · · − ( kk

)
θ2k�

2

)

= cot

((
k

0

)
arccotx� +

(
k

1

)
arccotx2� + · · · +

(
k

k

)
arccotx2k�

)
,

(3.18)

where

θj = −2 arccot xj

(
j ∈
{
�, 2�, . . . , 2k�

})
. (3.19)

(II) Assume that the sequence {xn}n≥0 satisfies an RDAC relation of the form

x3n =
xn + x2n

1 − xnx2n
(n ≥ 0). (3.20)

For � /≡ 0 (mod 3) and k ∈ N, if θ� +
(
k
1

)
θ2� + · · · + ( kk

)
θ2k� is not an odd multiple of π , then

x3k� = tan

(−( k0
)
θ� −

(
k
1

)
θ2� − · · · − ( kk

)
θ2k�

2

)

= tan

((
k

0

)
arctanx� +

(
k

1

)
arctanx2� + · · · +

(
k

k

)
arctanx2k�

)
,

(3.21)

where

θj = −2 arctanxj

(
j ∈
{
�, 2�, . . . , 2k�

})
. (3.22)
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(III) If the sequence {xn}n≥0 satisfies

x3n =
xnx2n + 1
xn + x2n

(n ≥ 0), (3.23)

then, for � /≡ 0 (mod 3),k ∈ N, one has

x3k� = coth

(−( k0
)
θ� −

(
k
1

)
θ2� − · · · − ( kk

)
θ2k�

2

)

= coth

((
k

0

)
arccothx� +

(
k

1

)
arccothx2� + · · · +

(
k

k

)
arccothx2k�

)
,

(3.24)

where

θj = −2 arccothxj

(
j ∈
{
�, 2�, . . . , 2k�

})
. (3.25)

(IV) If the sequence {xn}n≥0 satisfies

x3n =
xn + x2n

1 + xnx2n
(n ≥ 0), (3.26)

then, for � /≡ 0 mod 3, k ∈ N, one has

x3k� = tanh

(−( k0
)
θ� −

(
k
1

)
θ2� − · · · − ( kk

)
θ2k�

2

)

= tanh

((
k

0

)
arctanhx� +

(
k

1

)
arctanhx2� + · · · +

(
k

k

)
arctanhx2k�

)
,

(3.27)

where

θj = −2 arctanhxj

(
j ∈
{
�, 2�, . . . , 2k�

})
. (3.28)

Proof. (I) As seen in Section 1, the RDAC relation (3.16) is equivalent to

U3n = UnU2n

(
Un =

xn − i

xn + i

)
, (3.29)

whose solution is, by virtue of Corollary 2.2,U3k� = U

(
k
0

)

�
U

(
k
1

)

2� · · ·U
(
k
k

)

2k� . Thus,

x3k� − i

x3k� + i
=
(
x� − i

x� + i

)( k
0

)(
x2� − i

x2� + i

)( k
1

)

· · ·
(
x2k� − i

x2k� + i

)( k
k

)

. (3.30)
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Setting eiθj = (xj − i)/(xj + i) (j ∈ {�, 2�, . . . , 2k�}), one has

x3k� = i

⎛
⎝1 + e

i
((

k
0

)
θ�+···+

(
k
k

)
θ2k�

)

1 − e
i
((

k
0

)
θ�+···+

(
k
k

)
θ2k�

)

⎞
⎠ = cot

(−( k0
)
θ� − · · · − ( kk

)
θ2k�

2

)

= cot

((
k

0

)
arccotx� +

(
k

1

)
arccotx2� + · · · +

(
k

k

)
arccotx2k�

)
,

(3.31)

provided
(
k
0

)
θ� + · · · + ( kk

)
θ2k� /≡ 0 (mod2π).

(II) Substituting xn by 1/xn turns (3.20) into (3.16) and so the result follows at once
from part (I).

(III) Substituting xn by ixn in (3.23) turns it into a rational recursive equation of the
form (3.16), and so part (I) yields the desired result.

(IV) Replacing xn by ixn in (3.26), we get a rational recursive equation of the form
(3.20), and part (II) yields the result.

Remark 3.4. As in the remark following Proposition 3.1, the substitution xn by 1/xn in part
(II) causes no harm should there exists integer N such that xN = 0 by either interpreting the
infinite value of the expressions on both sides of the solution as equal. Alternately, we may
repeat the technique used in the proof of Proposition 3.3 to solve (3.20).

As for the case of general b, an entirely analogous proof as that in Proposition 3.3,
which we omit here, leads to Proposition 3.5.

Proposition 3.5. Let b ∈ N, b ≥ 2.
(I) Suppose that the sequence {xn}n≥0 satisfies an RDAC relation of the form

xbn =
x(b−1)nxn − 1
x(b−1)n + xn

(n ≥ 1). (3.32)

For � /≡ 0 (mod b) and k ∈ N, if the condition

(
k

0

)
θ� +

(
k

1

)
θ(b−1)� + · · · +

(
k

k

)
θ(b−1)k� /≡ 0 mod 2π (3.33)

is fulfilled, then

xbk� = cot

(−( k0
)
θ� −

(
k
1

)
θ(b−1)� − · · · − ( kk

)
θ(b−1)k�

2

)

= cot

((
k

0

)
arccot x� +

(
k

1

)
arccotx(b−1)� + · · · +

(
k

k

)
arccotx(b−1)k�

)
,

(3.34)
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where

θj = −2 arccotxj

(
j ∈
{
�, (b − 1)�, . . . , (b − 1)k�

})
. (3.35)

(II) Assume that the sequence {xn}n≥0 satisfies an RDAC relation of the form

xbn =
xn + x(b−1)n
1 − xnx(b−1)n

(n ≥ 0). (3.36)

For � /≡ 0 (mod b) and k ∈ N, if θ� +
(
k
1

)
θ(b−1)� + · · · + ( kk

)
θ(b−1)k� is not an odd multiple of π , then

xbk� = tan

(−( k0
)
θ� −

(
k
1

)
θ(b−1)� − · · · − ( kk

)
θ(b−1)k�

2

)

= tan

((
k

0

)
arctanx� +

(
k

1

)
arctanx(b−1)� + · · · +

(
k

k

)
arctanx(b−1)k�

)
,

(3.37)

where

θj = −2 arctanxj

(
j ∈
{
�, (b − 1)�, . . . , (b − 1)k�

})
. (3.38)

(III) If the sequence {xn}n≥0 satisfies

xbn =
xnx(b−1)n + 1
xn + x(b−1)n

(n ≥ 0), (3.39)

then, for � /≡ 0 (mod b), k ∈ N, one has

xbk� = coth

(−( k0
)
θ� −

(
k
1

)
θ(b−1)� − · · · − ( kk

)
θ(b−1)k�

2

)

= coth

((
k

0

)
arccothx� +

(
k

1

)
arccothx(b−1)� + · · · +

(
k

k

)
arccothx(b−1)k�

)
,

(3.40)

where

θj = −2 arccothxj

(
j ∈
{
�, (b − 1)�, . . . , (b − 1)k�

})
. (3.41)

(IV) If the sequence {xn}n≥0 satisfies

xbn =
xn + x(b−1)n
1 + xnx(b−1)n

(n ≥ 0), (3.42)
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then, for � /≡ 0 (mod b), k ∈ N, one has

xbk� = tanh

(−( k0
)
θ� −

(
k
1

)
θ(b−1)� − · · · − ( kk

)
θ(b−1)k�

2

)

= tanh

((
k

0

)
arctanhx� +

(
k

1

)
arctanhx(b−1)� + · · · +

(
k

k

)
arctanhx(b−1)k�

)
,

(3.43)

where

θj = −2 arctanhxj

(
j ∈
{
�, (b − 1)�, . . . , (b − 1)k�

})
. (3.44)

When all the exponents αj in (2.2) are equal to 1, RDAC relations, even more general
than those in Proposition 3.5 which can be explicitly solved by our device, are given in the
next proposition.

Proposition 3.6. Let b ∈ N, b ≥ 2, w ∈ C \ {0}. If the sequence {xn}n≥0 satisfies

xbn

w
=

(xn +w)(x2n +w) · · · (x(b−1)n +w
)
+ (xn −w)(x2n −w) · · · (x(b−1)n −w

)

(xn +w)(x2n +w) · · · (x(b−1)n +w
) − (xn −w)(x2n −w) · · · (x(b−1)n −w

) , (3.45)

then for � /≡ 0 (mod b) and k ∈ N one has

xbk� = w

(
A+ +A−
A+ −A−

)
, (3.46)

provided the values exist, where

A+ :=
∏

i1+i2+···+ib−1=�

(
x1i1 2i2 ···(b−1)ib−1� +w

)( k

i1,i2,...,ib−1

)

A− :=
∏

i1+i2+···+ib−1=�

(
x1i1 2i2 ···(b−1)ib−1� −w

)( k

i1,i2,...,ib−1

)

.

(3.47)

Proof. Rewriting (3.45), we get

xbn −w

xbn +w
=
(
xn −w

xn +w

)(
x2n −w

x2n +w

)
· · ·
(
x(b−1)n −w

x(b−1)n +w

)
(3.48)

or

Ubn = UnU2n · · ·U(b−1)n

(
Uj =

xj −w

xj +w
, j ∈ {n, 2n, . . . , (b − 1)n}

)
. (3.49)
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Theorem 2.1 thus yields for � /≡ 0 (mod b) and k ∈ N

Ubk� =
∏

i1+i2+···+ib−1=�
U

(
k

i1,i2,...,ib−1

)

1i1 2i2 ···(b−1)ib−1�, (3.50)

that is,

xbk� −w

xbk� +w
=

∏
i1+i2+···+ib−1=�

(
x1i1 2i2 ···(b−1)ib−1� −w

x1i1 2i2 ···(b−1)ib−1� +w

)( k
i1,i2,...,ib−1

)

, (3.51)

and the result follows.

4. Global Behaviors

It is often desirable to know about global behaviors of the solutions of recursive equations,
such as those in [6]. Using the explicit forms found above, this question is easily solved for
RDAC relations in Proposition 3.5 with b = 2.

Proposition 4.1. Let the notation be as in Proposition 3.1.
(I) Suppose that the sequence {xn}n≥0 satisfies an RDAC relation of the form

x2n =
x2
n − 1
2xn

(n ≥ 1). (4.1)

For each fixed � /≡ 0 (mod 2) and k ∈ N,

(a) if θ� is a rational multiple of π , then either {x2k�}k∈N
diverges in finitely many steps or

{x2k�} is periodic;
(b) if θ� is not a rational multiple of π , then x2k� exists for all k ∈ N and the sequence {x2k�}k∈N

is never periodic.

(II) Suppose that the sequence {xn}n≥0 satisfies an RDAC relation of the form

x2n =
2xn

1 − x2
n

(n ≥ 0). (4.2)

For each fixed � /≡ 0 (mod 2),

(a) if θ� is a rational multiple of π , then either {x2k�}k∈N
diverges in finitely many steps or

{x2k�} is periodic;
(b) if θ� is not a rational multiple of π , then x2k� exists for all k ∈ N and the sequence {x2k�}k∈N

is never periodic.

(III) Suppose that the sequence {xn}n≥0 satisfies

x2n =
x2
n + 1
2xn

(n ≥ 0). (4.3)
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For each fixed � /≡ 0 (mod 2),

(a) if θ� = 0, then the sequence {x2k�}k≥1 does not exist;
(b) if θ� > 0, the sequence {x2k�} is strictly decreasing in the interval [coth(θ�), 1);

(c) if θ� < 0, then {x2k�}k≥1 is strictly increasing in the interval [coth(θ�),−1).
(IV) Suppose that the sequence {xn}n≥0 satisfies

x2n =
2xn

1 + x2
n

(n ≥ 0). (4.4)

For each fixed � /≡ 0 (mod 2),

(z) if θ� = 0, then {x2k�}k∈N
is the zero sequence;

(b) if θ� > 0, then the sequence {x2k�} is strictly increasing in [tanh(θ�), 1);

(c) if θ� < 0, the sequence is strictly decreasing in [tanh(θ�),−1).

Proof. (I) From part (I) of Proposition 3.1, we know that

x2k� = cot
(
−2k−1θ�

)
(4.5)

provided 2kθ� /≡ 0 (mod 2π). Consider the case where θ� is a rational multiple of π , say,

θ� =
mπ

t
with m, t(> 0) ∈ Z, gcd(m, t) = 1. (4.6)

If t is a multiple of 2, then it is easily checked that {x2k�}k∈N
diverges in finitely many steps.

If t ≥ 2 is not a multiple of 2, let t = 2vT , where 2v || t, T ≥ 3. Observe that for all large n ∈ N,
when evaluating the values of cotangent, we need only look at

2nθ� =
2nmπ

t
=

2n−vmπ

T
(mod 2π), (4.7)

which is equivalent to looking at

Gn := 2n−vm (mod 2T). (4.8)

Since eachGn takes at most 2T values and the sequence {x2k�}k∈N
is infinite, there are positive

integers N1 < N2 such that GN1 = GN2 , which in turn implies that {x2k�}k∈N
is periodic.

Finally, if θ� is not a rational multiple of π , then 2k−1θ� is not a multiple of π showing
that the sequence {x2k�}k∈N

is well defined and never periodic.
The proof of part (II) is similar to that of part (I).
(III) If θ� = 0, then the values x2k� = coth(2kθ�) become infinite for all k ∈ N and part

(a) follows. Since x2k� = coth(2kθ�) is a strictly decreasing (resp. increasing) function of k
according as θ� > 0 (resp. θ� < 0), the results in (b) and (c) are immediate.
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(IV) If θ� = 0, then x2k� = tanh(θ�) = 0. Arguments for the other two cases θ� > 0 and
θ� < 0 are similar to those in part (III).

Note from Proposition 4.1 that global behaviors of solutions in the case b = 2 depend
solely on the single value θ� . The situation when b ≥ 3 is more complex since their global
behaviors depend heavily on the variable k as we see in the following illustration. Keeping
the notation of Proposition 3.5, suppose that the sequence {xn}n≥0 satisfies an RDAC relation
of the form

xbn =
x(b−1)nxn − 1
x(b−1)n + xn

(n ≥ 1). (4.9)

From part (I) of Proposition 3.5, we know that

xbk� = cot

(−( k0
)
θ� −

(
k
1

)
θ(b−1)� − · · · − ( kk

)
θ(b−1)k�

2

)
. (4.10)

This explicit form shows that, for each fixed � /≡ 0 (mod b), the behavior of xbk� considered as
a function of k ∈ N depends on all θ�, . . . , θ(b−1)k� , and we can merely infer that the values xbk�

are well defined (i.e., finite) if and only if

(
k

0

)
θ� +

(
k

1

)
θ(b−1)� + · · · +

(
k

k

)
θ(b−1)k� /≡ (mod 2π). (4.11)
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