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The homotopy analysis method (HAM) is employed to propose a highly accurate technique for solving strongly nonlinear
aeroelastic systems of airfoils in subsonic flow. The frequencies and amplitudes of limit cycle oscillations (LCOs) arising in the
considered systems are expanded as series of an embedding parameter. A series of algebraic equations are then derived, which
determine the coefficients of the series. Importantly, all these equations are linear except the first one. Using some routine
procedures to deduce these equations, an obstacle would arise in expanding some fractional functions as series in the embedding
parameter. To this end, an approach is proposed for the expansion of fractional function. This provides us with a simple yet efficient
iteration scheme to seek very-high-order approximations. Numerical examples show that the HAM solutions are obtained very
precisely. At the same time, the CPU time needed can be significantly reduced by using the presented approach rather than by the
usual procedure in expanding fractional functions.

1. Introduction

Predicting amplitude and frequency of flutter oscillations
of an airfoil via analytical and/or semianalytical techniques
has been an active area of research for many years. The
describing function technique [1], sometimes referred to as
the harmonic balance (HB) or as linearization method, is
a widely used method for obtaining an equivalent linear
system such that traditional linear aeroelastic methods of
analysis can then be employed [2, 3]. According to the num-
ber of considered harmonics, the HB method is called HB1
method when only the first harmonic is included, otherwise
as the high-dimensional HB method. Lee et al. [4] studied the
aeroelastic system by considering two dominant harmonics
and by an improved HB1 method, respectively. Recently,
the high-dimensional HB method was further improved
to investigate the aeroelastic motions of an airfoil [5, 6].
Essentially, the incremental harmonic balance (IHB) method
is a semianalytical method for nonlinear dynamic systems. It
was used by Shahrzad and Mahzoon [7] and Cai et al. [8],

respectively, to predict the amplitudes and frequencies of the
LCOs of an airfoil in steady impressible flow. Recently, Chung
et al. proposed a new incremental method and applied it to
solve aeroelastic problems with freeplay [9] and hysteresis
[10] structural nonlinearities, respectively. In addition, the
center manifold theory, originally developed to qualitatively
analyze nonlinear vibrations, was employed to obtain the
approximations of airfoil LCOs [11, 12].

The approximations obtained by HB1 method are rel-
atively accurate for low wind speeds. However, the errors
become larger and larger as the speed increases. In some
nonlinear flutter cases, the HB1 method may cease to be
valid. In principle, the high-dimensional HB method and
the IHB method can give approximate solutions with any
desired accuracy as long as enough harmonics are taken
into account. Unfortunately, however, it becomes more and
more difficult to implement either one of them when the
number of considered harmonics increases. Likewise, using
the center manifold theory can provide us with satisfactory
approximations for the LCOs only in a small range of
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bifurcation values. When far away from the bifurcation
points, results loose accuracy significantly or even become
completely incorrect [13]. Thus, it is necessary to develop
new easier-to-use methods which can guarantee accuracy
for high flow speeds and in more flutter cases, for example,
weakly and strongly nonlinear systems.

Over the past decades, Liao developed the homotopy
analysis method (HAM), which does not require small
parameters and thus can be applied to solve nonlinear
problems without small or large parameters [14–16]. The
main procedure is to construct a class of deformation
equations in a quite general form by introducing an auxiliary
parameter. Through these equations, nonlinear problems
can be transformed into a series of linear subproblems, which
can be solved much more easily step by step. Recently, the
HAM has been used in various nonlinear problems [17–21].

In this study, the HAM is employed to propose an effi-
cient and highly accurate approach for nonlinear aeroelastic
motions of an airfoil. A major obstacle is met when deducing
the high-order deformation equations, because the Taylor
expansion of fractal functions is rather cumbersome. An
approach is proposed to deal with this problem. This simple
yet efficient method ensures an excellent efficiency of the
HAM; hence, highly accurate solutions can be easily obtained
for both weakly and strongly nonlinear aeroelastic systems.

2. Equations of Motions

The physical model shown in Figure 1 is a two-dimensional
airfoil, oscillating in pitch and plunge, which has been
employed by many authors. The pitch angle about the
elastic axis is denoted by α, positive with the nose up; the
plunge deflection is denoted by h, positive in the downward
direction. The elastic axis is located at a distance ahb from
the midchord, while the mass center is located at a distance
xαb from the elastic axis. Both distances are positive when
measured towards the trailing edge of the airfoil.

For cubic restoring forces with subsonic aerodynamics,
the coupled equations for the airfoil in nondimensional form
can be written as follows:
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where the superscript denotes the differentiation with respect
to the nondimensional time t , defined as t = Ut1/b, and
t1 is the real time. ξ =h/b is the nondimensional plunge
displacement; η is the coefficient of cubic pitching stiffness;
U∗ ←− is a nondimensional flow velocity defined as U∗ =
U/(bωα), and ω is given by ω = ωξ/ωα, where ωξ and ωα
are the natural frequencies of the uncoupled plunging and
pitching modes, respectively; ζξ and ζα ψ are the damping
ratios; rα is the radius of gyration about the elastic axis.
P(t) and Q(t) are the externally applied force and moment,
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Figure 1: Sketch of a two-dimensional airfoil.

m is the airfoil mass per unit length and μ ψ is the airfoil-air
mass ratio. CL(t) and CM(t) are the lift and pitching moment
coefficients, respectively. For an incompressible flow, the
expressions for CL(t) and CM(t) are given by
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where the Wagner function φ(t) is given by Jone’s approxi-
mation, φ(t) = 1 − ψ1e−ε1t − ψ2e−ε2t with the constants as
ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3.

Due to the existence of the integral terms in (3), (1)
is a system of integrodifferential equations. In practice,
the integral and the nonlinear terms make it difficult to
analytically study the dynamic behavior of the system. In
order to eliminate the integral terms, Lee et al. [4–6]
introduced the following four new variables

w1 =
∫ t

0
e−ε1 (t−σ)α(σ)dσ , w2 =

∫ t
0
e−ε2(t−σ)α(σ)dσ ,

w3 =
∫ t

0
e−ε1(t−σ)ξ(σ)dσ , w4 =

∫ t
0
e−ε2 (t−σ)ξ(σ)dσ.

(4)
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System (1) can then be rewritten in a general form containing
only differential operators as

c0

..

ξ +c1
..
α +c2ξ̇ + c3α̇ + c4ξ + c5α + c6w1

+c7w2 + c8w3 + c9w4 + c10G(ξ) = f (t),
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α +d2 ξ̇ + d3α̇ + d4ξ + d5α + d6w1

+d7w2 + d8w3 + d9w4 + d10M(α) = g(t).

(5)

The coefficients c0, c1, . . . , c10; d0,d1, . . . ,d10 are given in the
appendix, f (t) and g(t) are functions depending on initial
conditions, Wagner’s function, and the forcing terms. The
nonlinear restoring forces, G(ξ) and M(α), are expressed as
G(ξ) = γξ3 and M(α) = ηα3, respectively, with γ and η as
coefficients.

By introducing a variable vector X = (x1, x2, . . . , x8)T,
where the superscript “T” denotes the transpose of a matrix,
with x1 = α, x2 = α̇, x3 = ξ , x4 = ξ̇, x5 = w1, x6 = w2,
x7 = w3, and x8 = w4, the coupled equations given in (5) can
be written as a set of eight first-order ordinary differential
equations written in vector form

Ẋ = Y(X, t). (6)

This approach allows existing methods suitable for the study
of ordinary differential equations to be used in the analysis.
For more details of (5) and (6), please refer to [4–6].

3. Homotopy Analysis Method

It is assumed that there is no external forces, that is, Q(t) =
P(t) = 0 in (1). For large values of t when transients are
damped out and steady solutions are obtained, we can let
f (t) = g(t) = 0. Then, (5) can be rewritten in vector form as

M
..
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where x = [ξ ,α]T, W(x) = [W1 W2 W3 W4]T,
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and F(x) =
[

0 d10ηα3 ]T.
Firstly, introduce a new time scale

τ = ωt, (9)

where ω denotes the frequency of the LCO. Then, (7) be-
comes

ω2Mx′′ + ωµx′ + Kx + CW(x,ω) + F(x) = 0, (10)

where the superscript denotes the differentiation with respect
to τ. Considering that LCOs are independent of initial
conditions, one can adopt the following initial conditions:

x(0) =
[
h a

]T
, x′(0) =

[
β 0

]T
. (11)

The LCOs of system (10), (11) are periodic motions with
frequency ω; thus, x can be expressed in a Fourier series

x =
∞∑
k=0

(ck coskτ + sk sin kτ), (12)

where ck , sk are the coefficients in 2× 1 vector form.
Let a0,h0,ω0,β0, and x0(τ) denote the initial approxi-

mations of a,h,ω,β, and x(τ), respectively. Due to solution
expression (12) and initial conditions (11), the initial guess
of solution can be chosen as

x0(τ) =
[
h0 cos τ + β0 sin τ a0 cos τ

]T
. (13)

The homotopy analysis method is based on such contin-
uous variations, A(p), H(p), Ω(p), B(p), and u(τ, p), that,
as the embedding parameter p increases from 0 to 1, u(τ, p)
varies from the initial guess x0(τ) to the exact solution, so
do A(p), H(p), Ω(p), B(p) from the initial approximations
a0,h0,ω0,β0 to a,h,ω,β, respectively.

Based on (12), one may choose the linear auxiliary
operator as
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One may define the nonlinear operator according to (10),

N
[
u
(
τ, p

)
, Ω
(
p
)] = Ω2(p)M

∂2u
(
τ, p

)
∂τ2

+ Ω
(
p
)
µ
∂u
(
τ, p

)
∂τ

+ Ku
(
τ, p

)
+ CW

(
u
(
τ, p

)
, Ω
(
p
))

+ F
(

u
(
τ, p

))
.

(16)

Using the two operators, a family of equations can then be
constructed as
(
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where the auxiliary parameter λ is a nonzero constant. Equa-
tions (17) and (18) are called the zeroth-order deformation
equation.
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When p = 0, (17) and (18) have the solution

u(τ, 0) = x0(τ). (19)

When p = 1, they are exactly the same as (10) and (11)
provided that

u(τ, 1) = x(τ), A(1) = a, H(1) = h,

Ω(1) = ω, B(1) = β.
(20)

Expand A(p), H(p), Ω(p), B(p), and u(τ, p) as the
series

u
(
τ, p

) =
∞∑
k=0

uk(τ)pk , A
(
p
) =

∞∑
k=0

ak p
k ,

H
(
p
) =

∞∑
k=0

hk pk , Ω
(
p
) =

∞∑
k=0

ωkpk ,

B
(
p
) =

∞∑
k=0

βk pk.

(21)

As long as the parameter λ is properly chosen, all of these
series are convergent at p = 1. Then, the nth-order HAM
solutions can be given as

x(τ) =
n∑
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k=0
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Substituting (21) into (17) and (18), differentiating (17)
and (18) k times, dividing the differentiations by k! and
then letting p = 0, one can obtain the kth-order (k ≥ 1)
deformation equation

L
[

uk+1(τ)− χk−1uk(τ)
]
= λRk(τ) (23)

subject to the initial conditions
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[
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1, k ≥ 2.
(26)

Due to the rule of solution expression and the linear
operator L, the right hand side of (23) should not contain
the first harmonics sin τ and cos τ, because they can result in
the so-called secular terms as τ cos τ and τ sin τ, respectively.
To this end, let

Γck
(
ak,hk ,ωk,βk

) = 1
π

∫ 2π

0
Rk(τ) cos τdτ = 0,

Γsk
(
ak,hk ,ωk,βk

) = 1
π
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0
Rk(τ) sin τdτ = 0.

(27)

Solving (27), ak,hk ,ωk, and βk are determined step by step as
k increases.

Note that when k = 0, Rk+1(τ) is essentially the right
hand side of (10) with x = x0, and the integrations in
essence correspond to a harmonic balancing procedure.
Therefore, (27) is actually the algebraic equation deduced by
the HB1 method. It is nonlinear and independent upon λ.
The solutions of a0,h0,ω0, and β0 can be obtained by using
the Newton-Raphson method. Importantly, (27) is always
linear as k ≥ 1, which implies it is rather easy to obtain high-
order approximations [22].

4. Expansion of Fractional Functions

A key procedure of implementing the HAM is to deduce the
high-order deformation equation, that is, to obtain Rk(τ) in
our study. In most literature about the HAM, authors suggest
differentiating the zeroth-order deformation equations (i.e.,
(17) and (18) in this paper) k times, dividing them by k!, and
then setting p = 0. This kind of approach is based on the
classical theories of the Taylor series. In our study, however,
using this method to expand CW(u(τ, p), Ω(p)) will cost
a large amount of computational resources. For example,
substitution of α = cos τ into w1 =

∫ t
0 e
−ε1 (t−σ)α(σ)dσ yields

a simple illustration

∫ t
0
e−ε1(t−σ) cos(iωσ)dσ = ε1 cos(iωt) + iω sin(iωt)

ε2
1 + i2ω2

− ε1

ε2
1 + i2ω2

e−ε1t .

(28)

For large values of t, the second term in (28) approaches to
zero and is neglected since only steady solutions (LCOs) are
taken into account. Therefore, the integrations W(cos(iωt))
and W(sin(iωt)) can be expressed as follows, respectively:

W1(cos(iωt)) =W3(cos(iωt))

= ε1 cos(iωt) + iω sin(iωt)
ε2

1 + i2ω2
,

W2(cos(iωt)) =W4(cos(iωt))

= ε2 cos(iωt) + iω sin(iωt)
ε2

2 + i2ω2
,

W1(sin(iωt)) =W3(sin(iωt))

= −iω cos(iωt) + ε1 sin(iωt)
ε2

1 + i2ω2
,

W2(sin(iωt)) =W4(sin(iωt))

= −iω cos(iωt) + ε2 sin(iωt)
ε2

2 + i2ω2
,

(29)

where W j , j = 1, 2, 3, 4 correspond to the jth component of
vector W, and i = 1, 2, . . ., Differentiating k times 1/[ε2

1 +
(
∑n

i=0 ωip
i)2] with respect to p will result in a complicated

term (i.e., [ε2
1 + (

∑n
i=0 ωip

i)2]
k
) in the denominator. Thereby,
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Figure 2: Comparisons of the 50th-order HAM solutions for LCO amplitudes with HB1 results and numerical ones. Dots denote the HAM
solutions obtained with λ = −1, dashed lines represent HB1 results, and real lines denote numerical solutions.

the expression of ∂kW/∂pk becomes more and more com-
plex as k increases, which makes it quite tough to deduce
high-order deformation equations.

We take 1/[ε2
1 +(

∑n
i=0 ωip

i)2] as an illustrative example to
propose a means for expanding fractional functions. First of
all, denote the denominator as

ε2
1 +
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2
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(30)

where σ0 = ε2
1 + ω2

0 and σk =
∑k

i=0 ωiωk−i, 1 ≤ k ≤ n. Taking
the nth-order Taylor series of 1/(

∑n
k=0 σk p

k) as
∑n

k=0 θk p
k ,

then one has

1∑n
k=0 σk pk

=
n∑
k=0

θk p
k +O

(
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Rewrite (31) as

⎛
⎝ n∑
k=0

σk pk

⎞
⎠
⎡
⎣ n∑
k=0

θk pk +O
(
pn+1)

⎤
⎦
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⎛
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i=0

σiθk−i
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(
pk+1

)
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(32)

Equating the coefficients of pk results in

σ0θ0 = 1,
k∑
i=0

σiθk−i = 0, k = 1, 2, . . . ,n. (33)

Interestingly, (33) is always linear. That means it is rather easy
to determine θk if σi are all known, i = 0, 1, 2, . . . , k.

5. Numerical Examples

5.1. Main Results. The system parameters under considera-
tion are μ = 100, rα = 0.5, ah = −0.5, ζα = ζξ = 0, ω = 0.25,
xα = 0.25, γ = 0, and η = 80.

Numerical solutions of (6) can be obtained by the
fourth-order Runge-Kutta method. Without special state-
ment, the numerical solutions in this paper are obtained
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Figure 3: Comparisons of the 50th-order HAM solutions for LCO
frequencies with HB1 results and numerical ones. Dots denote the
HAM solutions obtained with λ = −1, dashed lines represent HB1
results, and real lines denote numerical solutions.

subject to the initial conditions as α(0) = 1◦ and α̇(0) =
ξ(0) = ξ̇(0) = 0.

Using analytical techniques developed for nonlinear
dynamical systems, the linear flutter speed is found at U∗ =
U∗L = 6.0385 [4, 5]. As U∗ increases beyond U∗L , LCO arises,
and thusU∗L is a Hopf bifurcation point. Note that the flutter
boundary U∗L is independent of the nonlinear coefficient η.
Lee et al. [4] found a secondary Hopf bifurcation as U∗

increases further, where a jump of the amplitudes is detected
(see Figures 2 and 3). Liu et al. [6] used the high- dimensional
HB method to study the secondary Hopf bifurcation and
found that to capture the secondary bifurcation, as many as
9 (or 5 dominant) harmonics have to be considered.

In the proposed method, the zeroth-order HAM approx-
imation is essentially given by the HB1 method. The higher-
order approximations only contribute a higher precision.
Thus, it is not capable of detecting the second bifurcation
at the present state. Even so, validity and high efficiency
of the proposed method can be observed when U∗ is in
[U∗L , 2U∗L ] or so. Figures 2 and 3 show the comparisons
of the 50th-order HAM solutions with the HB1 and the
numerical results. The HAM solutions are almost the same as
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Figure 5: The time history responses of system (1) withU∗ = 1.5U∗L . Dots denote the 50th-order HAM solutions with λ = −1 and real lines
the numerical results.

the numerical ones, while the differences of the HB1 results
increase rapidly with increasing U∗.

The HAM approximation is based on the first HB
method, because the first HAM approximation is the HB1
solution. Since the HB1 method is incapable of tracking
the LCOs when U∗ is larger than the secondary bifurcation
value, about 2U∗L , so is the presented approach, as shown in
Figures 2 and 3.

Figures 4 and 5 show the phase planes of LCOs and the
time history responses of the nonlinear aeroelastic system,
respectively. Again, the accuracy of the HAM solution can be
demonstrated. Even though the phase plane is very complex,
for example, the pitch LCO, the HAM is still capable of
tracking it. Note that the numerical solution plotted in
Figure 5 is obtained using the fourth-order Runge-Kutta
method with initial values given by the HAM solution.

More precisely, the 120th-order HAM solutions shown
in Table 1 are compared with the numerical ones. Excellent
agreement can also be observed. The higher the order the
HAM approximations are obtained to, the more accurate

the solution is. For example, the relative difference between
the 120th-order HAM solution and the numerical one is less
than 0.001%. As shown in Figure 6, the residues of (6) with
HAM solutions converge rapidly to 0. The absolute errors
of residues with respect to the 40th-order, 80th-order, and
120th-order HAM solutions are at the order of 10−8, 10−12,
and 10−16, respectively. Furthermore, as n >120, an,hn,ωn,
and βn are all small quantities compared with 10−16. Roughly
speaking, the 120th-order HAM solution can be considered
to be correct to 15 decimal places. Note that it is tough to
obtain such a highly accurate solution using some numerical
techniques, including the RK method.

Very interestingly, it is found that ωi is independent
of η, while ai, βi, and hi are in inverse proportion to √η.
Thus, the convergence of series (21) is independent of
η, and the proposed method can work for both weakly
and strongly nonlinear problems. Furthermore, it is proved
that the frequency of the LCOs of aeroelastic system (5)
is independent of η, while the amplitudes are in inverse
proportion to √η.
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Table 1: Comparisons of the amplitudes and frequencies obtained by the HAM (λ = −1) with numerical solutions.

U∗ U∗ = 1.5U∗L U∗ = 2U∗L
HAM Frequency Pitch Plunge Frequency Pitch Plunge

N = 40 0.077563656128 0.13738145786 0.356858 0.0658609 0.2184836 0.6945022

N = 80 0.077563606476 0.13738151172 0.35685814 0.0657867 0.2185646 0.6964279

N = 120 0.07756360647090 0.13738151173 0.35685815 0.0657833 0.2185685 0.6965209

Numerical 0.0775635 0.1373816 0.3568590 0.0657829 0.2185689 0.6965298

t

R
es

id
u

es

−2

0

2
×10−8

0 10 20 30 40 50 60 70 80 90 100

(a)

×10−12

t

R
es

id
u

es

−2

0

2

0 10 20 30 40 50 60 70 80 90 100

(b)

×10−16

t

R
es

id
u

es

−2

0

2

0 10 20 30 40 50 60 70 80 90 100

(c)

Figure 6: Residues of (6) (U∗ = 1.5U∗L ) with HAM solutions
attained with λ = −1, (a): N = 40; (b): N = 80; (c): N = 120,
where the real and dash lines denote the residues of the first and the
second equations, respectively.

5.2. Choosing the Auxiliary Parameter. The HAM series are
dependent upon the auxiliary parameter λ. For the choice
of the value of λ, one should think about two aspects, that
is, whether the series converge and the convergent rate.
Liao [16] suggested a technique via plotting the curves of
the attained HAM solutions versus different values of λ,
namely, the λ-curves. From Table 1, one can assume the
angular frequency of system (1) with U∗ = 1.5U∗L as � =
0.07756360647090. Denote the discrepancy between the nth-
order HAM frequency solution and � as e(n) = (

∑n
k=0 ωk)−

�. Figure 7 shows the λ-curves with respect toω. Considering
that the longitudinal coordinate refers to the logarithm of
|e(n)|, one knows the HAM solutions attained with λ =
−0.5, λ = −1, λ = −1.2, and λ = −1.3 all approach to �,
while the one with λ = −1.5 does not. As λ decreases from

−15
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−5

0

lo
g 1

0
|e(

n
)|

10 20 30 40 50 60 70 80 90

n

λ = −1.5

λ = −0.5

λ = −1.3
λ = −1

λ = −1.2

Figure 7: The λ-curves with respect to ω, where U∗ = 1.5U∗L .

−0.5 to −1 and further to −1.2, the convergent rate of the
HAM solution increases. However, as λ = −1.2 decreases
even a little, the convergent rate decreases (λ = −1.3). It
can even lead to the misconvergence of the HAM series (λ =
−1.5). Therefore, on one hand one would expect to choose
λ small enough to accelerate the convergence of the HAM
series. On the other hand, it is prone to choose an improper
one. In this study, λ = −1 is a good choice.

5.3. Homotopy-Padé Technique. In order to achieve faster
convergence of HAM series, currently, researchers intro-
duced some optimal approaches and developed the optimal
approaches [23, 24]. Also, the homotopy-Padé technique was
proposed to accelerate the convergence of HAM series, [25].
In order to obtain the [m, n] Pade approximation of the
HAM series, one should first compute all (m+n)th-order
HAM approximations. Therefore, the [m, n] Pade approx-
imations for the frequency and the pitch amplitudes are
compared with their corresponding (m+n)th-order HAM
solutions, respectively, as shown in Tables 2 and 3. Table 2
shows that the Pade approximations are more accurate
than the corresponding HAM solutions, especially when m
and n are relatively large. That implies the homotopy-Padé
technique can really accelerate the convergence of the HAM
series. As Table 3 shows, when U∗ = 2U∗L and λ = −2,
the HAM series are disconvergent at p = 1. While the
HAM-Pade approximations can still approach to the highly
accurate solution. In such a case, the convergent region of the
HAM series is enlarged by the homotopy-Padé technique.
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Table 2: Comparisons of the amplitudes and frequencies given by the HAM Pade approximations (λ = −1) with the numerical solutions,
where U∗ = 1.5U∗L .

[m, n] HAM Pade Frequency Relative error (%) Pitch Relative error (%)

[5, 5] 0.07765100977663 0.11 0.13745051052294 0.05

HAM 10 0.07770384628505 0.18 0.13726535168074 −0.08

[7, 8] 0.07756746357388 5e−3 0.13737312674052 −6e−3

15 0.07759388593952 4e−2 0.13735291378024 −2e−2

[10, 10] 0.07756394500764 4e−4 0.13738142730826 −6e−5

HAM 20 0.07757112740482 1e−2 0.13737399877222 −5e−3

HAM N = 120 0.07756360647090 0.13738151173287

Table 3: Comparisons of the amplitudes and frequencies given by the HAM Pade approximations (λ = −2) with the numerical solutions,
where U∗ = 2U∗L .

[m, n] HAM Pade Frequency Pitch

[5, 5] 0.067011196 0.221689949

HAM 10 0.0730367 0.156371061

[8, 8] 0.06595560 0.21807163

16 0.5207506 3.48085267

[10, 10] 0.0658774 0.21854332

HAM 20 7.63500 −28.477895

HAM N = 120, 0.0657829 0.2185689
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Figure 8: The ratio between the CPU times Tn and Sn, where λ =
−1 and U∗ = 1.5U∗L .

5.4. About the CPU Time. Next, we will discuss why it is
necessary and worthwhile to employ the approach for series
expansion of fractional function, as shown in Section 4. The
usually adopted procedure for deducing the higher-order
deformation equations is differentiating the zeroth-order
deformation equations k times, dividing them by k!, and
then setting p = 0. Denote the CPU time needed in seeking
the nth-order HAM approximations by Tn when using the
routine procedure, and by Sn when employing the means
presented in Section 4. Figure 8 shows the ratio between Tn
and Sn versus varying n. When n >10, Tn is more than Sn

by one order of magnitude. Moreover, it increases more and
more rapidly as n increases. The presented technique can
indeed save a large amount of computational effort. Table 4
shows the comparison of the respective CPU time needed
in obtaining the nth-order HAM solution, even seeking the
120th-order solution.

6. Conclusions

Based on the HAM, we have proposed an approach
for obtaining highly accurate approximations for LCOs
of strongly nonlinear aeroelastic systems. An easy-to-use
approach is proposed to tackle the difficulty in expanding
fractional functions into the Taylor series. With the help of
this approach, the HAM approximations can be obtained to
a very high order and hence can provide solutions to any
desired accuracy. The attained HAM solutions are almost the
same as the numerical results. Since it is tough to achieve
solutions to such high precision, even via the numerical
solutions, thus our approaches can be used to validate other
solution methods. Also, numerical examples demonstrate
that the presented approaches are valid for both weakly and
strongly nonlinear aeroelastic systems. These imply that the
presented approaches could be applicable in more nonlinear
problems, especially those with fractional functions.

As mentioned above, the first HAM approximation is in
essence the HB1 solution. Note also that the HB1 method is
incapable of obtaining the LCO solutions, whenU∗ increases
beyond the secondary point, that is, U∗ = 2.1U∗L . Therefore,
the presented HAM fails in seeking the solution after the
secondary point. In order to do so, one could give the initial
solution guess (i.e., (11)) with the third harmonics, so that
the initial solution can be determined.
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Table 4: The CPU time needed in seeking the nth-order HAM approximations, the parameter values are U∗ = 1.5U∗L and λ = −1.

The nth HAM solution The CPU time needed (second)

n The routine procedure The presented approach

10 14 2.8

15 58 4.6

20 196 6.8

50 / 46

80 / 239

120 / 1393

In addition, both Figure 8 and Table 4 show that the
presented technique can indeed save a large amount of
computational effort. The HAM approximations can be
obtained to as high as 120th-order within less than half an
hour at a microcomputer. As long as the auxiliary parameter
is properly chosen, the 100th-order HAM solutions are
precise to more than 14 decimals, as implied by Figures 6
and 7, respectively. It is fair to say the presented approach
is capable of providing solution to very high precision.

As for the proposed approach for expanding fractional
functions, the problem about the robustness of the calcu-
lation should be paid special attention in practicing. For
example, the coefficient matrix of θi’s could be illconditioned
or singular, which could result in additional numerical error.

Appendix

We have the following Expressions of
the Coefficients in (5):

c0 = 1 +
1
μ

, c1 = xα − ah
μ

,

c2 = 2
μ

(
1− ψ1 − ψ2

)
+ 2ζξ

ω

U∗
,

c3 = 1
μ

(
1 + (1− 2ah)

(
1− ψ1 − ψ2

))
,

c4 = 2
μ

(
ε1ψ1 + ε2ψ2

)
,

c5 = 2
μ

(
1− ψ1 − ψ2 +

(
1
2
− ah

)(
ε1ψ1 + ε2ψ2

))
,

c6 = 2
μ
ε1ψ1

(
1− ε1

(
1
2
− ah

))
,

c7 = 2
μ
ε2ψ2

(
1− ε2

(
1
2
− ah

))
,

c8 = −2
μ
ε2

1ψ1, c9 = −2
μ
ε2

2ψ2, c10 =
(
ω
U∗

)2

,

d0 = xα
r2
α
− ah
μr2

α
, d1 = 1 +

1 + 8a2
h

8μr2
α

,

d2 = −1 + 2ah
μr2

α

(
ε1ψ1 + ε2ψ2

)
,

d3 = 1− 2ah
2μr2

α
−
(

1− 4a2
h

)(
1− ψ1 − ψ2

)
2μr2

α
+

2ζα
U∗

,

d4 = −1 + 2ah
μr2

α

(
ε1ψ1 + ε2ψ2

)
,

d5 = −1 + 2ah
μr2

α

(
1− ψ1 − ψ2

)

− (1 + 2ah)(1− 2ah)
(
ψ1ε1 − ψ2ε2

)
2μr2

α
,

d6 = − (1 + 2ah)ψ1ε1

μr2
α

(
1− ε1

(
1
2
− ah

))
,

d7 = − (1 + 2ah)ψ2ε2

μr2
α

(
1− ε2

(
1
2
− ah

))
,

d8 = (1 + 2ah)ψ1ε
2
1

μr2
α

, d9 = (1 + 2ah)ψ2ε
2
2

μr2
α

,

d10 =
(

1
U∗

)2

.
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