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For the first time the global dissipativity of a class of cellular neural networks with multipantograph delays is studied. On the
one hand, some delay-dependent sufficient conditions are obtained by directly constructing suitable Lyapunov functionals; on the
other hand, firstly the transformation transforms the cellular neural networks with multipantograph delays into the cellular neural
networks with constant delays and variable coefficients, and then constructing Lyapunov functionals, some delay-independent
sufficient conditions are given. These new sufficient conditions can ensure global dissipativity together with their sets of attraction
and can be applied to design global dissipative cellular neural networks with multipantograph delays and easily checked in practice
by simple algebraic methods. An example is given to illustrate the correctness of the results.

1. Introduction

In recent years, cellular neural networks (CNNs) and delayed
cellular neural networks (DCNNs) have been investigated
widely because of their extensive applications in pattern
recognition, image processing, association, synchronization
problem, and many other fields. In such applications, it is
of prime importance to ensure that the designed CNNs be
stable. Therefore, the stability of CNNs with or without
delay has received much attention (see, [1–10]). As pointed
out in [11, 12], the global dissipativity is also an important
concept in dynamical neural networks. The concept of global
dissipativity in dynamical systems is a more general concept
and it has found applications in the areas such as stability
theory, chaos and synchronization theory, system norm
estimation, and robust control [11, 12]. Liao and Wang
in [11] addressed the global dissipativity of a general class
of continuous time recurrent neural networks and derived
some sufficient conditions for the global dissipativity and
global exponentially dissipativity. Arik in [12] analyzed the
global dissipation of several classes of neural networks and
derived some sufficient conditions for the global dissipativity
of neural networks systems. To date, most research on

DCNNs has been restricted to simple cases of constant delays
[1–4]. Some Papers that considered variable or distributed
are those in [5–7, 9, 10, 13–15], and variable delays usually
are considered to bounded delays. To the best of our knowl-
edge, few authors have considered dynamical behavior for
the CNNs with pantograph delays. Pantograph delay is also
a kind of the objective existence, such as in Web quality of
service (QoS). The pantograph delay systems as important
mathematical models often arise in some fields such as
physics, biology systems, and control theory. In this paper,
our focus is on global dissipativity of multipantograph
delayed cellular neural networks. The Lipschitz continuous
activation functions are considered, and by constructing
suitable Lyapunov functionals and applying matrix theory,
some delay-dependent and delay-independent sufficient
conditions are obtained. The main contributions of this
paper include the derivations of new global attractive sets
and characterization of global dissipativity. These properties
play important roles in the design and applications of global
dissipative CNNs with multipantograph delays, and are of
great interest in many applications, such as chaos and syn-
chronization theory, and robust control.
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2. Model and Preliminaries

Consider the model of multipantograph delayed CNNs de-
scribed by the following functional differential equations:

ẋi(t) = −dixi(t) +
n∑

j=1

[
ai j f j

(
xj(t)

)
+ bi j f j

(
xj
(
q1t
))

+ ci j f j
(
xj
(
q2t
))]

+ Ii,

xi(0) = xi0, i = 1, 2, . . . ,n,

(1)

for t > 0, where xi(t) denotes the potential (or voltage) of the
cell i at time t; fi(·) denotes a nonlinear activation function;
Ii denotes the ith component of an external input source
introduced from outside the network to the cell i at time t;
di > 0 denotes the rate with which the cell i resets its potential
to the resting state when isolated from other cells and inputs
at time t; ai j , bi j , and ci j are constants which denote the
strengths of connectivity between the cells j and i at time
t, q1t, and q2t, respectively; q1, q2 are pantograph constants
and satisfy 0 < q1, q2 < 1, and q1t = t − (1 − q1)t, q2t =
t − (1− q2)t, in which (1− q1)t, (1− q2)t correspond to the
time delay required in processing and transmitting a signal
from the jth cell to the ith cell; xi0, i = 1, 2, . . . ,n is constant
which denotes initial value of xi(t), i = 1, 2, . . . ,n at initial
time t = 0. In this paper, we consider the following Lipschitz
continuous activation functions:

0 ≤ fi(xi)− fi
(
yi
)

xi − yi
≤ li, li > 0, fi(0) = 0,

∣
∣ fi(xi)

∣
∣ −→ ∞ as |xi| −→ ∞,

(2)

for all xi, yi ∈ R, i = 1, 2, . . . ,n, and denote L =
diag(l1, l2, . . . , ln).

The model (1) can be described in a vector form:

ẋ(t) = −Dx(t) + A f (x(t)) + B f
(
x
(
q1t
))

+ C f
(
x
(
q2t
))

+ I ,

x(0) = x0,
(3)

where x = (x1, x2, . . . , xn)T is the neuron state vector, I =
(I1, I2, . . . , In)T is the bias vector, D = diag(d1,d2, . . . ,dn),
A = (ai j)n×n, B = (bi j)n×n, C = (ci j)n×n are connection

weight matrices, f (·) = ( f1(·), f2(·), . . . , fn(·))T is a vector-
valued activation function, and x0 = (x10, x20, . . . , xn0) de-
notes initial value vector at initial time t = 0.

Definition 1 (see [11]). The cellular neural network (1) is
said to be a dissipative system, if there exists a compact set
S ⊂ Rn, such that for all x0 ∈ Rn, there exist t0 > 0, when
t ≥ t0, x(t, x0) ⊆ S, where x(t, x0) denotes the solution of
(1) from initial state x0 and initial time t = 0. In this case,
S is called a globally attractive set. A set S is called positive
invariant if for all x0 ∈ S implies x(t, x0) ⊆ S for t ≥ 0.

The induced matrix norms ‖ · ‖p are displayed as fol-
lows:

‖A‖1 = max
j

n∑

i=1

∣
∣
∣ai j

∣
∣
∣, ‖A‖∞ = max

i

n∑

j=1

∣
∣
∣ai j

∣
∣
∣. (4)

The transformation yi(t) = xi(et) [16] transforms the
neural networks (1) and (3), respectively, into the following
cellular neural networks with constant time delays and var-
iable coefficients:

ẏi(t) = et
{

−di yi(t)+
n∑

j=1

[
ai j f j

(
yj(t)

)
+ bi j f j

(
yj(t − τ1)

)

+ ci j f j
(
yj(t − τ2)

)]
+ Ii

}

,

yi(s) = ϕi(s), −τ ≤ s ≤ 0, i = 1, 2 . . . ,n,
(5)

ẏ(t) = et
{−Dy(t) + A f

(
y(t)

)
+ B f

(
y(t − τ1)

)

+C f
(
y(t − τ2)

)
+ I
}

,

y(s) = φ(s), −τ ≤ s ≤ 0,

(6)

where τ1 = − log q1 > 0, τ2 = − log q2 > 0, τ = max{τ1, τ2},
φ(s) = (ϕ1(s),ϕ2(s), . . . ,ϕn(s))T , in which ϕi ∈ C([−τ, 0],R),
i = 1, 2, . . . ,n are continuous functions.

Remark 2. The models (1), (3), (5), and (6) of this paper
are different from the models in [11, 12]. The models
in [11, 12] are neural networks with constant delays, but
in this paper the model (1) or (3) is the cellular neural
network with multipantograph delays which are unbounded
functions; the model (5) or (6) is the cellular neural network
with constant delays and variable coefficients. The results in
[11, 12] cannot be applied to the models (1), (3), (5), and
(6) in this paper. Therefore, our results establish new criteria
for the global dissipativity of cellular neural networks with
multipantograph delays.

Definition 3 (see [17]). The cellular neural network (5) is
said to be a dissipative system, if there exists a compact set
S ⊂ Rn such that for any compact set φ ⊂ Rn, there exist
t0 = t0(φ), when t ≥ t0, y(t,φ) ⊆ S, where y(t,φ) denotes the
solution of (5) from initial state φ. In this case, S is called a
globally attractive set. A set S is called positive invariant if for
all φ ∈ S implies y(t,φ) ⊆ S for t ≥ t0.

Lemma 4. For any vectors a, b ∈ Rn, the inequality

2aTb ≤ aTXa + bTXb (7)

holds, in which X is any matrix with X > 0.

3. Main Results

Theorem 5. If condition (2) is satisfied and the following
condition holds:

A + AT + BBT + CCT +

(
1
q1

+
1
q2

)

I ≤ 0, (8)

then the cellular neural network (3) is a dissipative system and
the set S1 = {x | | fi(xi(t))| ≤ li|Ii|/di, i = 1, 2, . . . ,n} is a
positive invariant and globally attractive set.
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Proof. The following positive definite and radially unbound-
ed Lyapunov functional will be used:

V(x(t)) = 2
n∑

i=1

∫ xi(t)

0
fi(s)ds +

n∑

i=1

∫ t

q1t

1
q1

f 2
i (xi(ζ))dζ

+
n∑

i=1

∫ t

q2t

1
q2

f 2
i

(
xi
(
η
))
dη.

(9)

The time derivative of V(x(t)) along the trajectories of the
system (1) is obtained as follows:

V̇(x(t)) = −2
n∑

i=1

di fi(xi(t))xi(t) + 2
n∑

i=1

n∑

j=1

ai j fi(xi(t)) f j
(
xj(t)

)

+ 2
n∑

i=1

n∑

j=1

bi j fi(xi(t)) f j
(
xj
(
q1t
))

+ 2
n∑

i=1

n∑

j=1

ci j fi(xi(t)) f j
(
xj
(
q2t
))

+ 2
n∑

i=1

fi(xi(t))Ii

+
n∑

i=1

1
q1

f 2
i (xi(t))−

n∑

i=1

f 2
i

(
xi
(
q1t
))

+
n∑

i=1

1
q2

f 2
i (xi(t))−

n∑

i=1

f 2
i

(
xi
(
q2t
))

≤ −2
n∑

i=1

di
li
f 2
i (xi(t)) + 2

n∑

i=1

∣
∣ fi(xi(t))

∣
∣|Ii|

+ f T(x(t))
(
A + AT

)
f (x(t))

+ 2 f T
(
x
(
q1t
))
BT f (x(t))

+ 2 f T
(
x
(
q2t
))
CT f (x(t))

+

(
1
q1

+
1
q2

)

f T(x(t)) f (x(t))

− f T
(
x
(
q1t
))

f
(
x
(
q1t
))− f T

(
x
(
q2t
))

f
(
x
(
q2t
))
.

(10)

In view of Lemma 4, we obtain

− f T
(
x
(
q1t
))

f
(
x
(
q1t
))

+ 2 f T
(
x
(
q1t
))
BT f (x(t))

≤ f T(x(t))BBT f (x(t)),

− f T
(
x
(
q2t
))

f
(
x
(
q2t
))

+ 2 f T
(
x
(
q2t
))
CT f (x(t))

≤ f T(x(t))CCT f (x(t)).

(11)

Using the above inequality in (10) results in

V̇(x(t)) ≤ −2
n∑

i=1

di
li
f 2
i (xi(t)) + 2

n∑

i=1

∣
∣ fi(xi(t))

∣
∣|Ii|

+ f T(x(t))

{

A + AT + BBT + CCT

+

(
1
q1

+
1
q2

)

I

}

f (x(t)) < 0,

(12)

for xi ∈ Rn \S1, implying that the set S1 is a positive invariant
and globally attractive set.

Theorem 6. If condition (2) is satisfied and the following
condition holds:

A + AT + BBT + CCT + 2I ≤ 0, (13)

then the cellular neural network (6) is a dissipative system and
the set S2 = {y | | fi(yi(t))| ≤ li|Ii|/di, i = 1, 2, . . . ,n} is a
positive invariant and globally attractive set.

Proof. The following positive definite and radially unbound-
ed Lyapunov functional will be used:

V
(
t, y(t)

) = 2
n∑

i=1

e−t
∫ yi(t)

0
fi(s)ds +

n∑

i=1

∫ t

t−τ1

f 2
i

(
yi(ζ)

)
dζ

+
n∑

i=1

∫ t

t−τ2

f 2
i

(
yi
(
η
))
dη.

(14)

The time derivative of V(y(t)) along the trajectories of the
system (5) is obtained as follows:

V̇
(
t, y(t)

) = −2
n∑

i=1

e−t
∫ yi(t)

0
fi(s)ds− 2

n∑

i=1

di fi
(
yi(t)

)
yi(t)

+ 2
n∑

i=1

n∑

j=1

ai j fi
(
yi(t)

)
f j
(
yj(t)

)

+ 2
n∑

i=1

n∑

j=1

bi j fi
(
yi(t)

)
f j
(
yj(t − τ1)

)

+ 2
n∑

i=1

n∑

j=1

ci j fi
(
yi(t)

)
f j
(
yj(t − τ2)

)

+ 2
n∑

i=1

fi
(
yi(t)

)
Ii +

n∑

i=1

f 2
i

(
yi(t)

)

−
n∑

i=1

f 2
i

(
yi(t − τ1)

)
+

n∑

i=1

f 2
i

(
yi(t)

)

−
n∑

i=1

f 2
i

(
yi(t − τ2)

)
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≤ −2
n∑

i=1

di
li
f 2
i

(
yi(t)

)
+ 2

n∑

i=1

∣
∣ fi
(
yi(t)

)∣
∣|Ii|

+ f T
(
y(t)

)(
A + AT

)
f
(
y(t)

)

+ 2 f T
(
y(t − τ1)

)
BT f

(
y(t)

)

+ 2 f T
(
y(t − τ2)

)
CT f

(
y(t)

)

+ 2 f T
(
y(t)

)
f
(
y(t)

)

− f T
(
y(t − τ1)

)
f
(
y(t − τ1)

)

− f T
(
y(t − τ2)

)
f
(
y(t − τ2)

)

≤ −2
n∑

i=1

di
li
f 2
i

(
yi(t)

)
+ 2

n∑

i=1

∣
∣ fi
(
yi(t)

)∣
∣|Ii|

+ f T
(
y(t)

)

×
(
A + AT + BBT + CCT + 2I

)
f
(
y(t)

)

< 0, for yi ∈ Rn \ S2.

(15)

So the set S2 is a positive invariant and globally attractive
set.

Corollary 7. If condition (2) is satisfied and the following
condition holds:

A + AT + BBT + CCT + 2I ≤ 0, (16)

then the cellular neural network (3) is a dissipative system and
the set S3 = {x | | fi(xi(et))| ≤ li|Ii|/di, i = 1, 2, . . . ,n} is a
positive invariant and globally attractive set.

Theorem 8. If condition (2) is satisfied and the matrix Q given
by

Q = P
(
A− L−1D

)
+
(
A− L−1D

)T
P + PBBTP

+ PCCTP +

(
1
q1

+
1
q2

)

I
(17)

is negative definite, then the cellular neural network (3) is a
dissipative system and the set

S4 =
⎧
⎨

⎩
x |

n∑

i=1

(

fi(xi(t)) +
piIi

λM(Q)

)2

≤
n∑

i=1

(
piIi

λM(Q)

)2

,

i = 1, 2, . . . ,n

⎫
⎬

⎭

(18)

is a positive invariant and globally attractive set, where L =
diag(l1, l2, . . . , ln), P = diag(p1, p2, . . . , pn), and λM(Q) is the
maximum eigenvalue of the matrix Q.

Proof. Let us employ the following positive definite and
radially unbounded Lyapunov functional:

V(x(t)) = 2
n∑

i=1

pi

∫ xi(t)

0
fi(s)ds +

n∑

i=1

∫ t

q1t

1
q1

f 2
i (xi(ζ))dζ

+
n∑

i=1

∫ t

q2t

1
q2

f 2
i

(
xi
(
η
))
dη.

(19)

The time derivative of V(x(t)) along the trajectories of the
system (1) is obtained as follows:

V̇(x(t)) = −2
n∑

i=1

pidi fi(xi(t))xi(t)

+ 2
n∑

i=1

n∑

j=1

piai j fi(xi(t)) f j
(
xj(t)

)

+ 2
n∑

i=1

n∑

j=1

pibi j fi(xi(t)) f j
(
xj
(
q1t
))

+ 2
n∑

i=1

n∑

j=1

pici j fi(xi(t)) f j
(
xj
(
q2t
))

+ 2
n∑

i=1

pi fi(xi(t))Ii +
n∑

i=1

1
q1

f 2
i (xi(t))

−
n∑

i=1

f 2
i

(
xi
(
q1t
))

+
n∑

i=1

1
q1

f 2
i (xi(t))−

n∑

i=1

f 2
i

(
xi
(
q2t
))

≤ −2
n∑

i=1

pi
di
li
f 2
i (xi(t)) + 2

n∑

i=1

pi fi(xi(t))Ii

+ f T(x(t))
(
PA + ATP

)
f (x(t))

+ 2 f T
(
x
(
q1t
))
BTP f (x(t))

+ 2 f T
(
x
(
q2t
))
CTP f (x(t))

+

(
1
q1

+
1
q1

)

f T(x(t)) f (x(t))

− f T
(
x
(
q1t
))

f
(
x
(
q1t
))− f T

(
x
(
q2t
))

f
(
x
(
q2t
))

= 2
n∑

i=1

pi fi(xi(t))Ii + f T(x(t))

×
(
P
(
A− L−1D

)
+
(
A− L−1D

)T
P
)
f (x(t))
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+ 2 f T
(
x
(
q1t
))
BTP f (x(t))

+ 2 f T
(
x
(
q2t
))
CTP f (x(t))

+

(
1
q1

+
1
q1

)

f T(x(t)) f (x(t))

− f T
(
x
(
q1t
))

f
(
x
(
q1t
))− f T

(
x
(
q2t
))

f
(
x
(
q2t
))
.

(20)

By Lemma 4, we obtain

− f T
(
x
(
q1t
))

f
(
x
(
q1t
))

+ 2 f T
(
x
(
q1t
))
BTP f (x(t))

≤ f T(x(t))PBBTP f (x(t)),

− f T
(
x
(
q2t
))

f
(
x
(
q2t
))

+ 2 f T
(
x
(
q2t
))
CTP f (x(t))

≤ f T(x(t))PCCTP f (x(t)).
(21)

Using the above inequality in (20) results in

V̇(x(t)) ≤ 2
n∑

i=1

pi fi(xi(t))Ii + f T(x(t))

×
(
P
(
A− L−1D

)
+
(
A− L−1D

)T
P
)
f (x(t))

+

(
1
q1

+
1
q1

)

f T(x(t)) f (x(t))

+ f T(x(t))PBBTP f (x(t))

+ f T(x(t))PCCTP f (x(t))

= 2
n∑

i=1

pi fi(xi(t))Ii + f T(x(t))Q f (x(t))

≤ 2
n∑

i=1

pi fi(xi(t))Ii +
n∑

i=1

λM(Q) f 2
i (xi(t))

= λM(Q)
n∑

i=1

{(

fi(xi(t)) +
piIi

λM(Q)

)2

−
(

piIi
λM(Q)

)2
}

< 0, when fi(xi) ∈ Rn \ S4,
(22)

implying that the set S4 is a positive invariant and globally
attractive set.

Theorem 9. If condition (2) is satisfied and the matrix Q given
by

Q = P
(
A− L−1D

)
+
(
A− L−1D

)T
P + PBBTP

+ PCCTP + 2I
(23)

is negative definite, then the cellular neural network (6) is a
dissipative system and the set

S5 =
⎧
⎨

⎩
y |

n∑

i=1

(

fi
(
yi(t)

)
+

piIi
λM(Q)

)2

≤
n∑

i=1

(
piIi

λM(Q)

)2

,

i = 1, 2, . . . ,n

⎫
⎬

⎭

(24)

is a positive invariant and globally attractive set where P =
diag(p1, p2, . . . , pn), and λM(Q) is the maximum eigenvalue of
the matrix Q.

Proof. Let us employ the following positive definite and
radially unbounded Lyapunov functional:

V
(
t, y(t)

) = −2
n∑

i=1

pie
−t
∫ yi(t)

0
fi(s)ds +

n∑

i=1

∫ t

t−τ1

f 2
i

(
yi(ζ)

)
dζ

+
n∑

i=1

∫ t

t−τ2

f 2
i

(
yi
(
η
))
dη.

(25)

The time derivative of V(y(t)) along the trajectories of the
system (5) is obtained as follows:

V̇
(
t, y(t)

) = −2
n∑

i=1

pie
−t
∫ yi(t)

0
fi(s)ds

− 2
n∑

i=1

pidi fi
(
yi(t)

)
yi(t)

+ 2
n∑

i=1

n∑

j=1

piai j fi
(
yi(t)

)
f j
(
yj(t)

)

+ 2
n∑

i=1

n∑

j=1

pibi j fi
(
yi(t)

)
f j
(
yj(t − τ1)

)

+ 2
n∑

i=1

n∑

j=1

pici j fi
(
yi(t)

)
f j
(
yj(t − τ2)

)

+ 2
n∑

i=1

pi fi
(
yi(t)

)
Ii +

n∑

i=1

f 2
i

(
yi(t)

)

−
n∑

i=1

f 2
i

(
yi(t − τ1)

)
+

n∑

i=1

f 2
i

(
yi(t)

)

−
n∑

i=1

f 2
i

(
yi(t − τ2)

)

≤ −2
n∑

i=1

di
li
f 2
i

(
yi(t)

)
+ 2

n∑

i=1

pi fi
(
yi(t)

)
Ii

+ f T
(
y(t)

)(
PA + ATP

)
f
(
y(t)

)
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+ 2 f T
(
y(t − τ1)

)
BTP f

(
y(t)

)

+ 2 f T
(
y(t − τ2)

)
CTP f

(
y(t)

)

+ 2 f T
(
y(t)

)
f
(
y(t)

)

− f T
(
y(t − τ1)

)
f (x(t − τ1))

− f T(x(t − τ2)) f (x(t − τ2))

= 2
n∑

i=1

pi fi
(
yi(t)

)
Ii + f T

(
y(t)

)

×
(
P
(
A− L−1D

)
+
(
A− L−1D

)T
P
)
f
(
y(t)

)

+ 2 f T
(
y(t − τ1)

)
BTP f

(
y(t)

)

+ 2 f T
(
y(t − τ2)

)
CTP f

(
y(t)

)

+ 2 f T
(
y(t)

)
f
(
y(t)

)

− f T
(
y(t − τ1)

)
f
(
y(t − τ1)

)

− f T
(
y(t − τ2)

)
f
(
y(t − τ2)

)

≤ 2
n∑

i=1

pi fi
(
yi(t)

)
Ii + f T

(
y(t)

)

×
(
P
(
A− L−1D

)
+
(
A− L−1D

)T
P
)
f
(
y(t)

)

+ 2 f T
(
y(t)

)
f
(
y(t)

)

+ f T
(
y(t)

)
PBBTP f

(
y(t)

)

+ f T
(
y(t)

)
PCCTP f

(
y(t)

)

= 2
n∑

i=1

pi fi
(
yi(t)

)
Ii + f T

(
y(t)

)
Q f (x(t))

≤ 2
n∑

i=1

pi fi
(
yi(t)

)
Ii +

n∑

i=1

λM(Q) f 2
i

(
yi(t)

)

= λM(Q)

×
n∑

i=1

{(

fi
(
yi(t)

)
+

piIi
λM(Q)

)2

−
(

piIi
λM(Q)

)2
}

< 0, for fi
(
yi
) ∈ Rn \ S5.

(26)

So the set S5 is a positive invariant and globally attractive
set.

Corollary 10. If condition (2) is satisfied and the matrix Q
given by

Q = P
(
A− L−1D

)
+
(
A− L−1D

)T
P + PBBTP

+ PCCTP + 2I
(27)

is negative definite, then the cellular neural network (3) is a
dissipative system and the set

S6 =
⎧
⎨

⎩
x |

n∑

i=1

(

fi
(
xi
(
et
))

+
piIi

λM(Q)

)2

≤
n∑

i=1

(
piIi

λM(Q)

)2

,

i = 1, 2, . . . ,n

⎫
⎬

⎭

(28)

is a positive invariant and globally attractive set, where L =
diag(l1, l2, . . . , ln), P = diag(p1, p2, . . . , pn), and λM(Q) is the
maximum eigenvalue of the matrix Q.

Remark 11. The above theorems and corollaries imply
that the equilibrium of a neural network only lies in the
positive invariant and globally attractive set, any properties
of activation function that satisfied (2) can be utilized, and
the condition using the Lasalle invariant principle is given.

4. Examples

Example 12. Consider the following system:

⎛

⎝
ẋ1(t)

ẋ2(t)

⎞

⎠ = −

⎛

⎜
⎜
⎝

1
3

0

0
1
4

⎞

⎟
⎟
⎠

⎛

⎝
x1(t)

x2(t)

⎞

⎠ +

⎛

⎝
−5 −10

10 −5

⎞

⎠

⎛

⎝
f1(x1(t))

f2(x2(t))

⎞

⎠

+

⎛

⎝
1 1

1 1

⎞

⎠

⎛

⎝
f1
(
x1
(
q1t
))

f2
(
x2
(
q1t
))

⎞

⎠

+

⎛

⎝
−1 1

1 −1

⎞

⎠

⎛

⎝
f1
(
x1
(
q2t
))

f2
(
x2
(
q2t
))

⎞

⎠ +

⎛

⎝
2

3

⎞

⎠.

(29)

The activation functions f1(x1) = sin((1/3)x1) + (1/3)x1,
f2(x2) = cos((1/2)x2) + (1/4)x2 are obviously Lipschitz con-
tinuous with Lipschitz constant l1 = 2/3, l2 = 3/4, and the
pantograph coefficient is q1 = 1/2, q1 = 3/4. By some simple
calculations, we obtain

A + AT + BBT + CCT +
(

2 +
4
3

)

I =

⎛

⎜
⎜
⎝

−8
3

0

0 −8
3

⎞

⎟
⎟
⎠ (30)

is negative definite. According to Theorem 5, the pantograph
delay cellular neural network (29) is a dissipative system with
a globally attractive set

S =
{

x | ∣∣ f1(x1)
∣
∣ ≤ l1|I1|

d1
= 4,

∣
∣ f2(x2)

∣
∣ ≤ l2|I2|

d2
= 9

}

.

(31)

5. Conclusions

The pantograph delay systems as an important mathematical
models often arise in some fields such as physics, biology sys-
tems, and control theory. In this paper, we firstly have studied
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the global dissipativity of a class of cellular neural networks
with multipantograph delays. By using Lyapunov functional
and matrix theory, we obtain some delay-dependent and
delay-independent sufficient conditions which characterize
global dissipation with their sets of attraction, which might
have an impact in studying the uniqueness of equilibria,
globally asymptotic stability, instability, and the existence of
periodic solutions. And these sufficient conditions are easily
checked in practice by simple algebraic methods. Remarkbly,
our results hold for the classes of neural networks that are
different from those considered in [11, 12]. One example is
given to illustrate the correctness of our results.
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