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We consider harvesting in the Black-Scholes Quanto Market when the exchange rate is being
modeled by the process Et = E0 exp{Xt}, where Xt is a semimartingale, and we ask the following
question: What harvesting strategy γ∗ and the value function Φ maximize the expected total
income of an investment? We formulate a singular stochastic control problem and give sufficient
conditions for the existence of an optimal strategy. We found that, if the value function is not too
sensitive to changes in the prices of the investments, the problem reduces to that of Lungu and
Øksendal. However, the general solution of this problem still remains elusive.

1. Introduction

This paper is concerned with an optimal harvesting strategy in the Black-Scholes Quanto
Market when the exchange rate is being driven by a general semimartingale. Specifically,
it is proposed that the optimal harvesting strategy can be found under certain conditions.
The paper aims to make a contribution by deriving the general formula for an optimal
harvesting strategy when the exchange rate is a semimartingale. This study could shed light
on the application of general semimartingales in optimization of harvests from investments.
Optimal harvesting is one of the crucial areas in finance because investment into stocks
and bonds can be used as a source of revenue to expand business. Therefore, making
investors happy through an optimal harvesting strategy could lead to more investments and
consequently to further expansion of business. This study will make reference to dividend
policy to illustrate an optimal harvesting strategy. Indeed a suboptimal dividend policy can
result in destruction of shareholder confidence. How much to payout and still maintain
growth of investments has been a challenge. For example, Miller andModigilliani [1] claimed
that a dividend policy was irrelevant in perfect markets because it had no impact on firm
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value. However, research on dividend policy that followed Miller and Modigilliani [1] has
further examined variousmarket imperfections and have identified the relevance of dividend
policy. A number of stochastic models for optimal dividend policy can also be found in Taksar
[2] and the references therein.

A number of these models ([1, 3], etc.) have developed an optimal harvesting strategy
as optimal stochastic control problems, and that is our approach in this paper. For example,
Asmussen and Taksar [4] applied the theory of singular control in their study of a company’s
optimal dividend policy that tries to maximize expected value of the total (discounted)
payments to the shareholders. Asmussen and Taksar [4] made an assumption that no fixed
costs are incurred during payment of dividends and that the liquid assets are modeled by
Brownian Motion with drift. Others who also contributed to this problem are Højgaard and
Taksar [5, 6], Radner and Shepp [7], Asmussen et al. [3], and Choulli et al. [8]. The studies
[5–7] treated the problem as a classical singular stochastic control problem but allowed a
control to affect both potential profits and the risks of the financial corporation. Jeanblanc-
Picqué and Shiryaev [9] investigated the problem of a company that tries to maximize
the expected total (discounted) amount of dividend payments by modeling dividends as
a stochastic impulse control problem. They [9] looked at a situation whereby the company
faced a fixed cost each time a dividendwas paid out by choosing optimally the timing and the
size of the payments. They [9] assumed that, when there is no intervention, the liquid asset
follows a Brownian Motion process with drift. Lungu and Øksendal [10] have considered the
problem of optimizing flow of dividends for a market situation with two investments and
determined an optimal harvesting strategy. They concluded that the optimal strategy was to
do nothing as long as the investments were in the nonintervention region but to harvest when
the investment reached a certain calculated value (see Lungu and Øksendal [10]). Motivated
by Lungu and Øksendal [10], this study considers a similar problem but now in the Black-
Scholes Quanto market with the exchange rate modeled by a general semimartingale. The
paper is structured as follows. Section 2 states the model and the necessary theory. Section 3
applies the theory, while Section 4 gives the conclusions.

2. The Model

In the absence of interventions, the dynamics of S(t), the value of the sterling risky
investment, can be modeled by the equation

St = S0 exp{αt + σWt}, (2.1)

where α ∈ R is the riskless interest rate, the constant σ > 0 is the volatility, andWt is Brownian
Motion. Let the sterling to dollar exchange be modeled by the equation

Et = E0 exp{Xt}, (2.2)

and suppose that these processes are on a filtered probability space (Ω,F,F,P), where F =
F
S ∪ F

E and F
S = {FS

t , t ≥ 0}, FS
t = σ (Su : 0 ≤ u ≤ t) is the natural filtration generated

by the stock price process while F
E = {FE

t , t ≥ 0}, FE
t = σ (Eu : 0 ≤ u ≤ t) is the natural

filtration generated by the exchange rate process. F describes information about prices and
the exchange rate revealed to investors. We assume that the probability space (Ω,F,F,P)
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satisfies the usual conditions, that is, the σ-field F is P-complete and every Ft contains all
P-null sets of F. Xt ∈ Sem(F,P), that is, Xt is a càdlàg process that admits the decomposition
Xt = X0 + At +Mt, t ≥ 0, where At = At ∈ V (a process of bounded variation), A0 = 0, and
M =Mt ∈ Mloc (a local martingale),M0 = 0.

We consider harvesting from the investment process given (2.1) previously, and we
ask the following question: what value function Φ(s, y) and harvesting strategy γ∗(t) maximise
the total expected discounted utility harvested from a given time interval.

Since our asset is in sterling but our currency of businesses is the dollar, we need first
of all to find the dollar equivalence of this asset. To do this, we let Yt be the dollar value of the
sterling asset price given by

Yt = Et · St. (2.3)

Using (2.1) and (2.2), we obtain

Yt = E0S0 exp{αt + σWt +Xt}
= Y0 exp{Ht},

(2.4)

where

Ht = αt + σWt +Xt. (2.5)

Ht is a semimartingale since it is the sum of two semimartingales μt+σWt andXt. This in turn
implies that Yt is a semimartingale. Our approach will be probabilistic rather than statistical;
hence, it becomes reasonable to express Yt in stochastic exponential form.

Theorem 2.1 (Ito’s theorem for semimartingales [11]). LetHt be a semimartingale, and let f be
a C2 real function. Then, f(Ht) is again a semimartingale and

f(Ht) = f(H0)+
∫ t
0
f ′(Hs−)dHs+

1
2

∫ t
0
f ′′(Hs−)d〈Hc〉s+

∑
0≤s≤t

[
f(Hs) −f(Hs−)−f ′(Hs−)ΔHs

]
,

(2.6)

where ΔHs = Hs −Hs− and 〈Hc〉t is the quadratic characteristic of the continuous martingale part
Hc

t ofHt, that is, a predictable process such that (Hc)2t − 〈Hc〉t ∈ Mloc.

For the proof of Theorem 2.1, the reader is referred to Protter [11].
In this study, we use Theorem 2.1 to rewrite Yt in stochastic exponential form.
Let

Yt = f(Ht) = Y0 exp(Ht), (2.7)
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then, using Theorem 2.1, we have

Yt = Y0

[
eH0 +

∫ t
0

(
eHs−

)′
dHs +

1
2

∫ t
0

(
eHs−

)′′
d〈Hc〉s +

∑
0≤s≤t

(
eHs − eHs− −

(
eHs−

)′
ΔHs

)]

= Y0

[
eH0 +

∫ t
0
eHs−dHs +

1
2

∫ t
0
eHs−d〈Hc〉s +

∑
0≤s≤t

(
eHs − eHs− − eHs−ΔHs

)] (2.8)

and, in differential form, this can be expressed as

dYt = Y0

[
eHt−dHt +

1
2
eHt−d〈Hc〉t + eHt − eHt− − eHt−ΔHt

]

= Y0

[
eHt−dHt +

1
2
eHt−d〈Hc〉t + eHt−+ΔHt − eHt− − eHt−ΔHt

]

= eHt−dHt +
1
2
eHt−d〈Hc〉t + eHt−

(
eΔHt − 1 −ΔHt

)

= eHt−d

[
Ht +

1
2
〈Hc〉t +

∑
0<s≤t

(
eΔHs − 1 −ΔHs

)]

= Yt−dĤt,

(2.9)

where

Ĥt = Ht +
1
2
〈Hc〉t +

∑
0<s≤t

(
eΔHs − 1 −ΔHs

)
. (2.10)

We associate with this semimartingale Yt an integer-valued random measure defined as

μn(A;ω) = IA(ΔXn(ω)), A ∈ B
(
R
d
)
, (2.11)

where I is an indicator function, that is,

μn(A;ω) =

{
1 if ΔXn(ω) ∈ A,
0 if ΔXn(ω) /∈ A,

(2.12)

(see Shiryaev [12], for details). We define the integral-valued random measures of jumps
μX = (μX(0,n](·))n≥1, where μX(0,n](A;ω) =

∑n
k=1 μ

X
k (A,ω) and μXk (A;ω) = I(ΔXk(ω) ∈ A, A ∈

B(Rd \ {0}) and by ν = ν(ω, ds, dx) the compensator of μ, that is, the predictable measure
νn(A : ω) = P(ΔXn ∈ A | Fn−1)(ω) (P-a.s.) with the property that μ − ν is a local martingale
measure. This means that, for each A ∈ B(R \ {0}), (μ(w : (0, t] ×A) − ν(ω; (0, t] ×A))t>0 is a
local martingale with value 0 for t = 0.
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Let ϕ be a truncation function, for example, ϕ(x) = xI(|x| ≤ 1). Then ΔXs −
ϕ(ΔXs)/= 0 ⇔ |ΔXs| > α for some α > 0. We now denote the jump part of X corresponding to
big jumps by

X̌ =
∑
0<k≤t

(
(ΔXk) − ϕ(ΔXk)

)
. (2.13)

Using random measure of jumps, (2.9) can be written in canonical form as

dYt = Yt−dHt

= Y−

(
αdt + dC

(
ϕ
)
t +

1
2
d〈Hc〉 + σdWt + dXc

t + d(e
x − 1) �

(
μ − ν)

+d
(
ex − 1 − ϕ(x)) � μ

)
,

(2.14)

where C(ϕ) is a predictable process and Xc is the continuous martingale part of Xt [13].
Adopting the definition of harvesting strategy from Lungu and Øksendal [10], we

define a harvesting strategy as a stochastic process with the following properties: γ(t, ω) ∈
R, t > s, ω ∈ Ω,

(1) γ(t) is measurable with respect to σ-algebra Ft generated by X(s, ·); s ≤ t (i.e.,
{γ(t)}γ≥0 is adapted);

(2) γ(t, ω) is nondecreasing with respect to t for almost all (a.a.) ω;

(3) γ(t, ω) is right continuous as a function of t for a.a. ω;

(4) γ(s,ω) = 0 for a.a. ω.

γ(t, ω) represents the total amount harvested from an initial time s up to time t. We let Γ
represent a set of all harvesting strategies. If we apply the harvesting strategy γ(t, ω), then
the corresponding process Yγ satisfies the equation

dY
γ
t = Yγ

−

(
αdt + dC

(
ϕ
)
t +

1
2
d〈Hc〉t + σdWt + dXc

t + d(e
x − 1) �

(
μ − ν)

+d
(
ex − 1 − φ(x) � μ)) − dγ(t),

Y γ(s−) = y1.
(2.15)

It is important to note that the difference between Yγ(s) and Yγ(s−) : Yγ(s−) is the state
before harvesting starts at time t = swhile Yγ(s) is the state immediately after. If γ consists of
an immediate harvest of size γ at t = s, then

Y (s) = Y
(
s−
) −Δγ. (2.16)
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Let the prices/utilities per unit investment when harvested at time t be given by a constant
nonnegative function π . The expected total discounted payoff in this case is given by

Jγ
(
s, y

)
= E

y

[∫T
0
πe−ρ(s+t) · dγ(t)

]
, (2.17)

where E
s,y denotes expectation with respect to probability law Qs,y of Ys,y(t) = (t, Y γ(t)) for

t ≥ s, assuming that Ys,y(0) = (s, y),

T = inf{t > 0; πY (t) /∈ S},

S =
{(
s, y

)
: πe−ρ(s+t)y ≥ 0

} (2.18)

are the time of bankruptcy and S is the solvency region, respectively. The optimal harvesting
problem is then to find the value function Φ(s, y) and an optimal dividend strategy γ∗(t) such
that

Φ
(
s, y

)
= sup

γ∈Γ
Jγ
(
s, y

)
= Jγ

∗(
s, y

)
. (2.19)

We let 0 < t1 < t2 · · · denote the jumping times of the given strategy γ ∈ Γ, and we let
Δ(tk) = γ(tk) − γ(t−k) be the jump of γ(tk). We also let

γc(t) = γ(t) −
∑
s≤tk≤t

Δγ(tk) (2.20)

be the continuous part of γ(t). We formulate the sufficient conditions for the given function
φ(s, y) to be the value function Φ(s, y) of (2.19) and for a given strategy γ̂ ∈ Γ to be optimal
in the following theorem.

Theorem 2.2 (extended Lungu and Øksendal [10]). Suppose that φ ≥ 0 is twice continuously
differentiable on S with the following properties:

(1) One has

∂φ

∂y
≥ πe−ρ(s+t). (2.21)

(2) One has

Lφ
(
t, y
)
=
∂φ

∂t
+
(
αt + C

(
ϕ
)
t +

1
2

(
σ2 + 〈Hc〉t

)
+ (ey − 1) � μ

)
∂φ

∂y
+
1
2
σ2 ∂φ

2

∂y2

≤ 0 on S.

(2.22)
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Then

φ
(
s, y

) ≥ Φ
(
s, y

)
on S. (2.23)

(3) Define the nonintervention region as

D =
{(
t, y
) ∈ S; ∂φ

∂y

(
t, y
)
> πe−ρ(s+t) ∀i = 1 · · ·n

}
. (2.24)

Suppose

Lφ = 0 in D, (2.25)

and there exists a harvesting strategy γ̂ such that the following hold:

Y γ̂(t) ∈ D ∀t > s,(
∂φ

∂y

(
t, Y γ̂(t)

)
− πe−ρ(s+t)

)
γ̂ c(t) = 0 ∀i = 1 · · ·n,

(
i.e., γ̂ c increases only when

∂φ

∂y
= πe−ρ(s+t)

)
,

(2.26)

where D is the closure of D, that is, D = D ∪ ∂D, where ∂D is the boundary of D.

(4) One has

∂φ

∂y

(
t, Y γ̂(s)

)(
αdt + dC

(
ϕ
)
t +

1
2
d〈Hc〉 +

∫∞

−∞

(
ey − 1 − ϕ(y)dμ)

)

−
(
αt + C

(
ϕ
)
t +

1
2

(
σ2 + 〈Hc〉t

)
+
∫∞

−∞

(
ey − 1 − ϕ(y))dμ

)
dt ≤ 0.

(2.27)

(5) One has

Δφ(tk) := φ
(
tk, Y

γ̂(tk)
)
− φ

(
tk, Y

γ̂(t−k)
)
= −π ·Δγ̂(tk) (2.28)

at all jumping times tk ≥ s of γ̂(tk) and

E
s,y
[
φ
(
TR, Y

γ̂(TR)
)]

−→ ∞, (2.29)

where

TR = T ∧ R ∧ inf
{
t > s;

∣∣∣Y γ̂(t)
∣∣∣ ≥ R}. (2.30)



8 International Journal of Stochastic Analysis

Then

φ
(
s, y

)
= Φ

(
s, y

) ∀(s, y) ∈ S (2.31)

and γ = γ∗ is an optimal harvest strategy.

Proof. Consider the following:

ΔYt = αΔt + ΔC
(
ϕ
)
t + Δ〈Hc〉t + σΔWt + ΔXc

t + Δ(ex − 1) �
(
μ − ν) + Δ

(
ex − 1 − ϕ) � ν

= Δ(ex − 1) �
(
μ − ν) + Δ

(
ex − 1 − ϕ) � ν,

(2.32)

dYt = αdt + dC
(
ϕ
)
t +

1
2
d〈Hc〉 + σdWt + dXc

t + d(e
y − 1) �

(
μ − ν)

+ d
(
ex − 1 − ϕ(x) � μ) − dγ(t)

= αdt + dC
(
ϕ
)
t +

1
2
d〈Hc〉 + σdWt + dXc

t +
∫∞

−∞

(
ex − 1 − ϕ(y))d(μ − ν)

+
∫∞

−∞

(
ex − 1 − ϕ(y))dμ − dγ(t).

(2.33)

Choose γ ∈ Γ, and assume that φ ∈ C2 satisfies (2.21)-(2.22). Then, by Ito’s formula for
semimartingales and then computing the expectation throughout the equation

E
sy[φ(TR, Y γ(TR))

]

= E
s,y[φ(s, Y γ(s))

]
+ E

s,y

[∫TR
s+

∂φ

∂t
(t, Y γ(s))dt

]

+ E
s,y

[∫TR
s+

{
∂φ

∂y
(t, Y γ(s))

(
αdt + dC

(
ϕ
)
t +

1
2
d〈Hc〉t + σdWt + dXc

t

+
∫∞

−∞
(ex − 1)d

(
μ − ν) +

∫∞

−∞

(
ex − 1 − ϕ(y))dμ

)
− dγ(t)

}]

+ E
s,y

[∫TR
s+

1
2
σ2(t, Y γ(t))

∂2φ

∂y2 (t, Y
γ)

]

+ E
s,y

[ ∑
s<tk≤TR

{
φ(tk, Y γ(tk)) − φ

(
tk, Y

γ
(
t−tk
))

− ∂φ

∂y

(
tk, Y

φ(tk)
)
ΔYγ

i (tk)
}]

.

(2.34)

From the theory of martingales for integrals,

E
s,y

[∫TR
s+
σ
∂φ

∂y
dWt

]
= E

s,y

[∫TR
s+
σ
∂φ

∂y
dXc

t

]
= E

s,y

[∫TR
s+

∫∞

−∞
(ey − 1)d

(
μ − ν)

]
= 0. (2.35)
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Substituting (2.28), (2.32), and (2.35) in (2.34), we have

E
sy[φ(TR, Y γ(TR))

]

= E
sy[φ(s, y)] + E

s,y

[∫TR
s+

∂φ

∂t
(t, Y γ(s))dt

]

+ E
s,y

[∫TR
s+

{
∂φ

∂y
(t, Y γ(s))

(
αdt + dC

(
φ
)
t+

1
2
d〈Hc〉t +

∫∞

−∞

(
ex− 1 −ϕ(x))dμ

)
−dγ(t)

}]

+ E
s,y

[∫TR
s+

1
2
σ2(t, Xγ(t))

∂2φ

∂y2 (t, Y
γ)

]

+ E
s,y

[ ∑
s<tk≤TR

{(
Δφ(tk, Y γ(tk))−

∂φ

∂y

(
tk, Y

φ(tk)
)(
Δ(ex−1) � (μ − ν)+ Δ

(
ex−1−ϕ) � ν)

)}]
.

(2.36)

Now from (2.22),

∂φ

∂t
= Lφ(t, x) −

(
αt + C

(
ϕ
)
t +

1
2

(
σ2 + 〈Hc〉t

)
+
(
ex − 1 − ϕ(y)) � μ

)
∂φ

∂y

− 1
2
σ2(t, x)

∂2φ

∂y2
.

(2.37)

Using (2.37) in (2.36) gives

E
sy[φ(TR, Y γ)

]
= E

sy[φ(TR, Y γ)
]

+ E
s,y

[∫TR
s+
Lφ(t, x)dt

]

+ E
s,y

[∫TR
s+

{
∂φ

∂y
(t, Y γ(s)

(
αdt + dC

(
ϕ
)
t +

1
2
d〈Hc〉 +

∫∞

−∞

(
ey − 1 − ϕ(y)dμ)

)

−
(
αt + C

(
ϕ
)
t +

1
2

(
σ2 + 〈Hc〉t

)
+
∫∞

−∞

(
ey − 1 − ϕ(y))dμdt

}]

− E
s,y

[∫TR
s+

∂φ

∂y
(t, Y γ(s))dγ(t)

]

+ E
sx

[ ∑
s<tk≤TR

{(
Δφ(tk, Y γ(tk))−

∂φ

∂y

(
tk, Y

φ(tk)
)(
Δ(ex − 1)�

(
μ − ν)+Δ(ex−1−ϕ)� ν)

)}]

(2.38)
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Using the fact that E
sy[φ(TR, Y γ)] ≤ φ(s, x) and that Lφ(s, x) ≤ 0 (refer to (2.27)) yields the

inequality

E
sy[φ(TR, Y γ)

]

≤ φ(s, y) − E
s,y

[∫TR
s+

∂φ

∂y
(t, Y γ(s))dγ(t)

]

+ E
sx

[ ∑
s<tk≤TR

{(
Δφ(tk, Y γ(tk))−

∂φ

∂y

(
tk, Y

φ(tk)
)
(Δ(ex−1) � (μ−ν)+Δ(ex−1−φ) � ν)

)}]
.

(2.39)

From the relation

γc(t) = γ(t) −
∑
s≤tk≤t

Δγ(tk), (2.40)

we deduce that

dγ(t) = dγc(t) + Δ(t),

ΔY (t) = −Δγ(t). (2.41)

Using (2.41), the right-hand side of (2.32) becomes

Δ(ex − 1) �
(
μ − ν) + Δ

(
ex − 1 − φ) � ν = −Δγ(t). (2.42)

Furthermore, using (2.42) we can achieve the simplification of (2.34) as follows: taking the
last three terms in (2.39) and using the fact that

∑
s≤tk≤TR

f(tk) =
∑

s<tk≤TR
f(tk) + Δf(s), (2.43)

we have

E
sy

[ ∑
s<tk≤TR

{(
Δφ(tk, Y γ(tk)) −

∂φ

∂y

(
tk, Y

φ(tk)
)(

Δ(ex − 1) �
(
μ − ν) + Δ

(
ex − 1 − φ) � ν)

)}]

= E
sy

[ ∑
s≤tk≤TR

{(
Δφ(tk, Y γ(tk))−

∂φ

∂y

(
tk, Y

φ(tk)
)(

Δ(ex−1) � (μ−ν) + Δ
(
ex−1−φ) � ν)

)}]

− E
s,y[Δφ(s, Y γ(s))

] − E
s,y

[
∂φ

∂y

(
s, Yφ(s)

)(
Δ(ex − 1) �

(
μ − ν) + Δ

(
ex − 1 − φ) � ν)

]

= E
sy

[ ∑
s≤tk≤TR

{
Δφ(tk, Y γ(tk)) −

∂φ

∂y
(tk, Y γ(tk))Δγ(t)

}]

− E
s,y[Δφ(s, Y γ(s))

]
+ E

s,y

[
∂φ

∂y
(s, Y γ(s))Δγ(s)

]
.

(2.44)
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Substituting (2.44) into (2.39), inequality (2.39) becomes

E
sy[φ(TR, Y γ)

] ≤ φ(s, y) − E
s,y

[∫TR
s+

∂φ

∂y
(t, Y γ(s))dγ(t)

]
− E

s,y

[ ∑
s≤tk≤TR

∂φ

∂y
(t, Y γ(s))Δγ(t)

]

+ E
sy

[ ∑
s≤tk≤TR

Δφ(tk, Y γ(tk))

]
+ E

sy

[ ∑
s≤<tk≤TR

∂φ

∂y

(
tk, Y

φ(tk)
)
Δγ(t)

]

− E
s,y[Δφ(s, Y γ(s))

]
+ E

s,y

[
∂φ

∂y
(s, Y γ(s))Δγ(s)

]
.

(2.45)

This will then lead to the inequality

E
sy[φ(TR, Y γ(TR))

] ≤ φ(s, y) − E
s,y

[∫TR
s+

∂φ

∂y
(t, Y γ(s))dγc(t)

]

+ E
sy

[ ∑
s≤tk≤TR

Δφ(tk, Y γ(tk))

]
.

(2.46)

By the Mean-Value property, we have

Δφ
(
tk, Ŷ

γ(tk)
)
=
∂φ

∂y

(
tk, Ŷ

γ

k

)
ΔŶ γ

i (tk) (2.47)

for some point Ŷ γ

k on the line connecting the points Yγ(t−k) and Y
γ(tk), and, using (2.41), we

have

Δφ
(
tk, ŷ

γ(tk)
)
=
∂φ

∂y

(
tk, Ŷ

γ

k

)
ΔŶ γ

i (tk) = −∂φ
∂y

(
tk, X̂

γ

(k)

)
Δγ
(
t(k)
)

(2.48)

which leads to

E
sy[φ(TR, Y γ(TR))

] ≤ φ(s, y) − E
s,y

[∫TR
s+

∂φ

∂y
(t, Y γ(s))dγc(t)

]

− E
sy

[ ∑
s≤tk≤TR

∂φ

∂y

(
tk, X̂

γ

(k)

)
Δγ
(
t(k)
)]
.

(2.49)

From (2.21), we obtain

φ
(
s, y

) −
∫TR
s+

∂φ

∂y
(t, Y γ(s))dγc(t) ≤ φ(s, x) −

∫TR
s+
π · e−(ρ+s)tdγc(t). (2.50)
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Equation (2.21) can also be expressed in discrete form as

∑
s≤tk≤TR

∂φ

∂y

(
tk, X̂

γ

(k)

)
Δγ
(
t(k)
) ≥ ∑

s≤tk≤TR
πe−(ρ+s)tΔγ

(
t(k)
)

(2.51)

Combining (2.50) and (2.51) gives the inequality

φ
(
s, y

) −
∫TR
s+

∂φ

∂y
(t, Y γ(s))dγc(t) −

∑
s≤tk≤TR

∂φ

∂y

(
tk, Ŷ

γ

(k)

)
Δγ
(
t(k)
)

≤ φ(s, y) −
∫TR
s+
π · e−(ρ+s)tdγc(t) −

∑
s≤tk≤TR

πe−(ρ+s)tΔγ
(
t(k)
)
.

(2.52)

Taking the expectation of (2.52) yields the inequality

E
s,y[φ(TR, Y γ(TR))

] ≤ φ(s, y) − E
s,y

[∫TR
s+

∂φ

∂y
(t, Y γ(s))dγc(t)

]

− E
sy

[ ∑
s≤tk≤TR

∂φ

∂y

(
tk, X̂

γ

(k)

)
Δγ
(
t(k)
)]

≤ φ(s, y) − E
sy

[∫TR
s+
π · e−(ρ+s)tdγc(t)

]
− E

s,y

[ ∑
s≤tk≤TR

πe−(ρ+s)tΔγ
(
t(k)
)]
,

(2.53)

from which we obtain

φ
(
s, y

) ≥ E
s,y

[∫TR
s+
π · e−(ρ+s)tdγc(t)

]
+ E

sy

[ ∑
s≤tk≤TR

πe−(ρ+s)tΔγ
(
t(k)
)]

+ E
sy[φ(TR, Y γ(TR))

]

≥ E
sy

[∫TR
s

π · e−(ρ+s)tdγ(t)
]
+ E

sy[φ(TR, Y γ(TR))
]
.

(2.54)

Since R <∞, γ ∈ Γ were arbitrary and φ ≥ 0, this proves that

φ
(
s, y

) ≥ Φ
(
s, y

)
and γ̂ is optimal. (2.55)
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Let us now assume thatD is given by (2.24) and that (2.25)–(2.28) hold. If we replace γ in the
above calculation by γ̂ , then equality holds everywhere and we end up with the relation

φ
(
s, y

)
= E

s,y

[∫TR
s

π · e−(ρ+s)tdγ̂ + Eφ
(
TR, Y

γ̂(TR)
)]
. (2.56)

Letting R → ∞ and using (2.29), we get

φ
(
s, y

)
= E

s,y

[∫∞

s

π · e−(ρ+s)tdγ̂
]
. (2.57)

Combining (eqntawina) with (2.23), we have

φ
(
s, y

)
= Φ

(
s, y

)
, γ̂ is optimal. (2.58)

The strategy γ̂ can be found by solving the Skorohod stochastic differential equations (see
Lungu and Øksendal [10]).

3. Application of the Theory

From the form of our discounted utility function (2.17), it becomes reasonable to look for the
function Φ of the form

Φ
(
s, y

)
= e−ρsΨ

(
y
)
. (3.1)

Let

φ
(
s, y

)
= e−ρsψ

(
y
)
. (3.2)

Equations (2.21), (2.22) become

∂ψ

∂y
≥ π, (3.3)

Lψ
(
t, y
)
= −ρψ +

(
αt + C

(
ϕ
)
t +

1
2

(
σ2 + 〈Hc〉t

)
+ (ex − 1) � μ

)
∂ψ

∂y

+
1
2
σ2 ∂

2ψ

∂y2
≤ 0 on S,

(3.4)

respectively. We try a solution ψ of the form

ψ
(
y
)
= F(z), where z = πy. (3.5)
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Equations (3.2) and (3.3) become

πF ′(z) ≥ π or F ′(z) ≥ 1, (3.6)

AF(z) = −ρF(z) +
(
αt + C

(
ϕ
)
t +

1
2

(
σ2 + 〈Hc〉t

)
+ (ex − 1) � μ

)
πF ′(z)

+
1
2
σ2π2F ′′(z)

= −ρF(z) + κF ′(z) + βF ′′(z) < 0,

(3.7)

where

κ =
(
αt + C

(
ϕ
)
t +

1
2

(
σ2 + 〈Hc〉t

)
+ (ex − 1) � μ

)
π,

β =
1
2
σ2π2.

(3.8)

Inequality (3.7) is similar to inequality (3.11) in Lungu and Øksendal [10]. The major
difference is that in Lungu and Øksendal [10] the coefficients are constants whereas in our
case the coefficient κ is not a constant. Since κ(t, z) is a process with jumps, the general
solution of

βF ′′(z) + κF ′(z) − ρF(z) = 0 (3.9)

is elusive. We still try to explore the behavior of the solution after fixing the value of t; that is,
we want to see the general behavior of the solution with respect to z.

3.1. Examples

3.1.1. Example 1 (κ Constant with respect to z)

The case κ is a constant that reduces to the problem in Lungu and Øksendal [10]. The
auxiliary equation for (3.9) is

βm2 + κm − ρ = 0. (3.10)

The solutions are

m1,2 =
−κ ±

√
κ2 − 4ρβ

2β
. (3.11)

Let us suppose the nonintervention region B to be of the form

B = {z; 0 < z < z∗} (3.12)
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for some z∗ > 0. From (2.21) and (2.22), we try a solution of the form

F(z) =

{
z +G, for z ≥ z∗,
α1e

m1z + α2em2z, 0 < z < z∗,
(3.13)

for G ∈ R. We want to determine parameters α1, α2, G, and z∗ such that F becomes a C2 at
z = z∗. Using the continuity and differentiability of F(z) at z = z∗ and taking α = α1 = −α2,
we obtain

z∗ =
2 ln[m2/m1]
(m1 −m2)

> 0,

α = (m1e
m1z∗ +m2e

m2z∗)−1,

G = α(em1z∗ − em2z∗) − z∗.

(3.14)

With this choice of parameters, all the conditions of Theorem 2.2 are satisfied, and we have

Φ
(
s, y

)
=

{
α1e

−ρs(em1z + em2z), for 0 ≤ z < z∗,
e−ρs(z +G), z∗ ≤ z.

(3.15)

Similarly, as discussed in Lungu andØksendal [10], the optimal strategy is obtained by doing
nothing as long as Y (t) ∈ (0, z∗) (i.e., Y (t) ∈ B) and to harvest a total amount γ∗ = γ̂ of the
reflected process Y γ̂ in the direction of −π .

3.1.2. Example 2 (When κ Is Not a Constant)

We now look at a more general case corresponding to κ not a constant. Suppose that we can
write F(z) as

F(z) = V (z) exp
(
−1
2

∫
κ

β
dz

)
, (3.16)

then (3.9) can be transformed into its canonical form given by

V ′′(z) + η(z)V (z) = 0, (3.17)

where

η = −ρ
β
− 1
4

(
κ

β

)2

− 1
4

(
κ

β

)′

z

(3.18)

and the jumps are embedded in η(z).
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To solve (3.17), we use the jump transfer matrix method [14]. The auxiliary equation
of (3.17) is

m2 + η(z) = 0 (3.19)

with solutions

m1 = im(z), m2 = −im(z), where m(z) =
√
η(z). (3.20)

The general solution for V (z) can be written as

V (z) = h1(z) exp(imz) + h2(z) exp(−imz), (3.21)

where h1(z) and h2(z) are functions to be determined. The solution (3.21) can be expressed
as

V (z) = exp[Φ(z)]tH(z), (3.22)

where

H(z) =
[
h1(z)
h2(z)

]
, Φ(z) =

[
im(z)
−im(z)

]
(3.23)

and the superscript t denotes transpose of a matrix. F is the solution of the equation

dH(z) = U(z)H(z)dz, (3.24)

where

U = −zK′(z) − exp[−zK(z)]
[
D(z)−1C(z)K′(z) exp[zK(z)]

]
, (3.25)

C(z) =
[(
p − 1

)
m
p−2
q

]
n×n

, D(x) =
[
m(z)p−1q (z)

]
n×n

,

K(z) =
[
mp(z)δpq

]
n×n, K′(x) =

[
m′
p(z)δpq

]
n×n

(3.26)

(cf. [14]).
Clearly, for the case corresponding to n = 2, the matrices (3.26) are given by

C =
(
0 0
1 1

)
, D =

(
1 1
m1 m2

)
,

K =
(
m1 0
0 m2

)
, hence K′ =

(
m′

1 0
0 m′

2

)
.

(3.27)
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Using power series expansion for exponential square matrices and truncating the
expansion at second-order terms, we have

exp[zK] = exp
[(

zm1 0
0 zm2

)]

=
(
1 0
0 1

)
+
(
zm1 0
0 zk2

)
+O(2) terms

=
(
1 + zm1 0

0 1 + zm2

)
+O(2) terms.

(3.28)

Similarly,

exp[−zK] =
(
1 − zm1 0

0 1 − zm2

)
. (3.29)

From (3.25) and (3.28), we obtain an approximation for U(z) as

U(z) =

⎡
⎢⎢⎢⎣

−
(
z +

1
m1 −m2

)
m′

1

m′
2

m2 −m1
exp[−z(m1 −m2)]

m′
1

m1 −m2
exp[+z(m1 −m2)] −

(
z +

1
m2 −m1

)
m′

2

⎤
⎥⎥⎥⎦. (3.30)

From (3.19) and (3.20), we obtain

V(z) =
m′(z)
2m(z)

[ −1 + i2m(z)z exp[i2zm(z)]
exp[−2izm(z)] −1 − i2m(z)z

]
. (3.31)

The jump transfer matrix from region 1 to region 2 across the interface z = ς in our case takes
the form

Q1→ 2 =

⎡
⎢⎢⎣
m1 +m2

2m2
e+iς(m2−m1) m2 −m1

2m2
e+iς(m1+m2)

m2 −m1

2m2
e−iς(m1+m2) m2 +m1

2m2
e−iς(m2−m1)

⎤
⎥⎥⎦. (3.32)
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This jump transfer matrix over singularities given by Qς−δz→ ς+δz is simplified as in [14] to

Qς−δz→ ς+δz =

⎡
⎢⎢⎣
1 + i
2

1 − i
2

1 − i
2

1 + i
2

⎤
⎥⎥⎦ type A,

Qς−δz→ ς+δz =

⎡
⎢⎣
1 − i
2

1 + i
2

1 + i
2

1 − i
2

⎤
⎥⎦ type B,

Qς−δz→ ς+δz =
[
1 0
0 1

]
type C.

(3.33)

The reader is referred to [14] and the references therein for details regarding classification of
singularities.

3.1.3. Analysis of the Results

Let z0 = 0 and our solutions (3.21) have jumps at points z1, z2, z3, . . . , zn, and we define

Wj =
{
z : zj−1 < z < zj

}
for i = 1, 2, 3, . . . , n,

Bj =
{
z : zj−1 < z < z∗j

} (3.34)

for some z∗i, and we define

B =
n⋃
j=1

Bj. (3.35)

For z ∈Wi, we define

Fj(z) =

{
z +Gj, for z ≥ zj∗,
hj1(z)emj1z + hj2emj2z, 0 < z < zj∗,

F = {F0, F1, F2, . . . , Fn},

Φ(s, z)j =

{
hj(z)e−ρs(emj1z + emj2z), for 0 ≤ z < zj∗,
e−ρs

(
z +Gj

)
, zj∗ ≤ z,

Φ(s, z) = {Φ1(s, z),Φ2(s, z), . . . ,Φn(s, z)}.

(3.36)

3.1.4. Conjecture

The optimal strategy is achieved by doing nothing during jumps and as long as Y (t) ∈ Bj but
to harvest according to local time γ∗j = γ̂ at the boundary ∂Bj .

Remarks. In each nonintervention region Bj , Y γ̂ is a reflected process at ∂Bj , since, as
Y γ̂ hits the boundary, a certain amount is harvested thereby forcing the process to go below
zj∗.
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4. Conclusion

Most of the conditions in Theorem 2.2 are extensions from Lungu and Øksendal [10] with
exception of condition (2.5), that is,

∂φ

∂y
(t, Y γ(s))

(
αdt + dC

(
φ
)
t +

1
2
d〈Hc〉 +

∫∞

−∞

(
ey − 1 − φ(y)dμ)

)

−
(
αt + C

(
φ
)
t +

1
2

(
σ2 + 〈Hc〉′t

)
+
∫∞

−∞

(
ey − 1 − φ(y))dμ

)
dt ≤ 0.

(4.1)

We note that this condition is achieved if ∂φ/∂y is small. It is found under additional
condition (2.27) that our problem can be reduced to a second-order differential equation
similar to that in Lungu and Øksendal [10] though with some jumps. What is observed is
that if the investment process is being modeled by a semimartingale in general, optimal value
function Φ(s, y) and the optimal dividend strategy can be found if the rate of change of the
value function φ(s, y) with respect to the investment process itself, that is, ∂φ/∂y, is small
enough. In other words, φ(s, y) should not be too sensitive to variations in investments. Our
results further show that the general solution to this problem is still elusive.
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