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The object of this paper is to establish some nonlinear integrodifferential integral inequalities in
n independent variables. These new inequalities represent a generalization of the results obtained
by Pachpatte in the case of a function with one and two variables. Our results can be used as tools
in the qualitative theory of a certain class of partial integrodifferential equation.

1. Introduction

It is well known that the integral inequalities involving functions of one and more than
one independent variables, which provide explicit bounds on unknown functions, play a
fundamental role in the development of the theory of differential equations. In the past few
years, a number of integral inequalities had been established by many scholars, which are
motivated by certain applications. For example, we refer the reader to (see [1–5]) and the
references therein.

The study of integrodifferential inequalities for functions of one or n independent
variables is also a very important tool in the study of stability, existence, bounds, and other
qualitative properties of differential equation solutions, integrodifferential equations, and in
the theory of hyperbolic partial differential equations (see [6–9]).

One of the most useful inequalities is given in the following lemma (see [1, 10]).

Lemma 1.1 (see [1]). Let Φ(x, y) and c(x, y) be nonnegative continuous functions defined for x ≥
0, y ≥ 0, for which the inequality

Φ
(
x, y

) ≤ a(x) + b
(
y
)
+
∫x

0

∫y

0
c(s, t)Φ(s, t)dsdt (1.1)
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holds for x ≥ 0, y ≥ 0, where a(x), b(y) > 0; a′(x), b′(y) ≥ 0 are continuous functions defined for
x ≥ 0, y ≥ 0. Then

Φ
(
x, y

) ≤
[
a(0) + b

(
y
)]
[a(x) + b(0)]

[a(0) + b(0)]
exp

(∫x

0

∫y

0
c(s, t)dsdt

)
, (1.2)

for x ≥ 0, y ≥ 0.

Wendroff’s inequality has recently evoked a lively interest, as may be seen from
the papers of Pachpatte [10]. In [10], Pachpatte considered some new integrodifferential
inequalities of the Wendroff type for functions of two independent variables. Our aim in
this paper is to establish some integrodifferential inequalities in n independent variables, an
application of our results is also given.

2. Results

Throughout this paper, we will assume that S in any bounded open set in the dimensional
Euclidean space R

n and that our integrals are on R
n (n ≥ 1).

For x = (x1, x2, . . . xn), t = (t1, t2, . . . tn), x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ S, we will denote

∫x

x0
dt =

∫x1

x0
1

∫x2

x0
2

· · ·
∫xn

x0
n

· · ·dtn · · ·dt1. (2.1)

Furthermore, for x, t ∈ R
n, we will write t ≤ x whenever ti ≤ xi, i = 1, 2, . . . , n and x ≥

x0 ≥ 0, for x, x0 ∈ S.
We note D = D1D2 · · ·Dn, where Di = ∂/∂xi, for i = 1, 2, . . . , n.
We use the usual convention of writing

∑
s∈Ψ u(s) = 0 if Ψ is the empty set.

Our main results are given in the following theorems.

Theorem 2.1. Let Φ(x) and c(x) be nonnegative continuous functions defined on S, for which the
inequality

Φ(x) ≤
n∑

i=1

ai(xi) +
∫x

x0
c(t)Φ(t)dt (2.2)

holds for all x ∈ S with x ≥ x0 ≥ 0, where ai(xi) > 0, a′
i(xi) are continuous functions defined for

xi ≥ 0 for all i = 1, 2, . . . , n. Then

Φ(x) ≤ A(x) exp
(∫x

x0
c(t)dt

)
, (2.3)

for x ∈ S with x ≥ x0 ≥ 0, where

A(x) =

[
a1(x1) + a2

(
x0
2

)
+
∑n

s=3 as(xs)
][
a1
(
x0
1

)
+ a2(x2) +

∑n
s=3 as(xs)

]

[
a1
(
x0
1

)
+ a2

(
x0
2

)
+
∑n

s=3 as(xs)
] . (2.4)
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Proof. We define the function u(x) by the right member of (2.2), Then

Du(x) = c(x)Φ(x), (2.5)

u
(
x0
1, x2, . . . , xn

)
= a1

(
x0
1

)
+ a2(x2) +

n∑

s=3

as(xs), (2.6)

u
(
x1, x

0
2, x3, . . . , xn

)
= a1(x1) + a2

(
x0
2

)
+

n∑

s=3

as(xs). (2.7)

Using Φ(x) ≤ u(x) in (2.5), we have

Du(x) ≤ c(x)u(x). (2.8)

From (2.8), we observe that

u(x)Du(x)
u2(x)

≤ c(x), (2.9)

that is

u(x)Du(x)
u2(x)

≤ c(x) +
(Dnu(x))(D1 · · ·Dn−1u(x))

u2(x)
, (2.10)

hence

Dn

(
D1 · · ·Dn−1u(x)

u(x)

)
≤ c(x). (2.11)

Integrating (2.11)with respect to xn from x0
n to xn, we have

(D1 · · ·Dn−1u(x))
u(x)

≤
∫xn

x0
n

c(x1, . . . , xn−1, tn)dtn, (2.12)

thus

u(x)D1 · · ·Dn−1u(x)
u2(x)

≤
∫xn

x0
n

c(x1, . . . , xn−1, tn)dtn +
(Dn−1u(x))(D1 · · ·Dn−2u(x))

u2(x)
, (2.13)

that is

Dn−1

(
D1 · · ·Dn−2u(x)

u(x)

)
≤
∫xn

x0
n

c(x1, . . . , xn−1, tn)dtn. (2.14)



4 ISRN Mathematical Analysis

Integrating (2.14)with respect to xn−1 from x0
n−1 to xn−1, we have

D1 · · ·Dn−2u(x)
u(x)

≤
∫xn−1

x0
n−1

∫xn

x0
n

c(x1, . . . xn−2, tn−1, tn)dtn dtn−1. (2.15)

Continuing this process, we obtain

D1D2u(x)
u(x)

≤
∫x3

x0
3

· · ·
∫xn

x0
n

c(x1, x2, t3, . . . , tn)dtn dtn−1 · · ·dt3, (2.16)

from this we obtain

D2

(
D1u(x)
u(x)

)
≤
∫x3

x0
3

· · ·
∫xn

x0
n

c(x1, x2, t3, . . . , tn)dtn dtn−1 · · ·dt3. (2.17)

Integrating (2.17)with respect to x2 from x0
2 to x2 and by (2.7), we have

D1u(x)
u(x)

≤ a′
1(x1)

a2
(
x0
0

)
+ a1(x1) +

∑n
s=3 as(xs)

+
∫x2

x0
2

· · ·
∫xn

x0
n

c(x1, t2, t3, . . . , tn)dtn dtn−1 · · ·dt2.

(2.18)

Integrating (2.18)with respect to x1 from x0
1 to x1 and by (2.6), we have

log
u(x)

u
(
x0
1, x2, . . . , xn

) ≤
∫x1

x0
1

a′
1(t1)

a2
(
x0
2

)
+ a1(t1) +

∑n
s=3 as(xs)

dt1 +
∫x

x0
c(t)dt, (2.19)

that is

u(x) ≤ A(x) exp
(∫x

x0
c(t)dt

)
. (2.20)

By (2.20) and Φ(x) ≤ u(x), we obtain the desired bound in (2.3).

Remark 2.2. We note that in the special case n = 2, x ∈ R
2
+ and x0 = (x0

1, x
0
2) = (0, 0) in

Theorem 2.1. our estimate reduces to Lemma 1.1 (see [10]).

Theorem 2.3. Let Φ(x), c(x), DiΦ(x), and DΦ(x) be nonnegative continuous functions for all
i = 1, 2, . . . , n defined for x ∈ S, Φ(x0

1, x2, x3, . . . , xn) = 0 and Φ(x1, . . . , xi−1, x0
i , xi+1, . . . xn) = 0 for

any i = 2, 3, . . . , n. If

DΦ(x) ≤
n∑

i=1

ai(xi) +
∫x

x0
c(t)[Φ(t) +DΦ(t)]dt (2.21)
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holds for x ∈ S, where ai(xi) > 0; a′
i(xi) ≥ 0 are continuous functions defined for xi ≥ 0 for all

i = 1, 2, . . . , n. Then

DΦ(x) ≤
n∑

i=1

ai(xi) +
∫x

x0
c(t)

[

A(t) exp

(∫ t

x0
[1 + c(τ)]dτ

)]

dt. (2.22)

For x ∈ S with x ≥ t ≥ τ ≥ x0 ≥ 0, where A(x) is defined in (2.4).

Proof. We define the function

u(x) =
n∑

i=1

ai(xi) +
∫x

x0

c(t)[Φ(t) +DΦ(t)]dt, (2.23)

u
(
x0
1, x2, x3, . . . , xn

)
= a1

(
x0
1

)
+

n∑

i=2

ai(xi). (2.24)

Then, (2.21) can be restated as

DΦ(x) ≤ u(x). (2.25)

Differentiating (2.23),

Du(x) = c(x)[Φ(x) +DΦ(x)]. (2.26)

Integrating both sides of (2.26) to x from x0 to x, we have

Φ(x) ≤
∫x

x0

u(t)dt. (2.27)

Now, using (2.27) and (2.25) in (2.26) we obtain

Du(x) ≤ c(x)
(
u(x) +

∫x

x0
u(t)dt

)
. (2.28)

If we put

v(x) = u(x) +
∫x

x0
u(t)dt, (2.29)

v
(
x1, . . . , xi−1, x0

i , xi+1, . . . , xn

)
= u

(
x1, . . . , xi−1, x0

i , xi+1, . . . , xn

)
, (2.30)

then by (2.29), we have

Dv(x) = Du(x) + u(x). (2.31)



6 ISRN Mathematical Analysis

Using the facts that Du(x) ≤ c(x)v(x) and u(x) ≤ v(x), we have

Dv(x) ≤ [1 + c(x)]v(x). (2.32)

Which, by following an argument similar to that in the proof of Theorem 2.1, yields the
estimate for v(x) such that

v(x) ≤ A(x) exp
(∫x

x0
[1 + c(t)]dt

)
. (2.33)

By (2.33) and (2.28), we have

Du(x) ≤ c(x)A(x) exp
(∫x

x0
[1 + c(t)]dt

)
, (2.34)

D1D2 · · ·Dn−1u
(
x1, . . . , xn−1, x0

n

)
= 0. (2.35)

Integrating both sides of (2.34) to xn from x0
n to xn and by (2.35), we have

D1D2 · · ·Dn−1u(x) ≤
∫xn

x0
n

c(x1, . . . xn−1, tn)A(x1, . . . xn−1, tn) exp

(∫ t

x0
[1 + c(τ)]dτ

)

dtn.

(2.36)

By (2.23), we have

D1D2u
(
x1, x2, x

0
3, x4, . . . , xn

)
= 0. (2.37)

Continuing this process, and by (2.37), we obtain

D1D2u(x) ≤
∫x3

x0
3

· · ·
∫xn

x0
n

c(x1, x2, t3, . . . , tn)A(x1, x2, t3, . . . , tn) exp

(∫ t

x0
[1 + c(τ)]dτ

)

dtn · · ·dt3.

(2.38)

By (2.23), we have

D1u
(
x1, x

0
2, x3, x4, . . . , xn

)
= a′

1(x1). (2.39)

Integrating both sides of (2.38) to x2 from x0
2 to x2 and by (2.39), we have

D1u(x) ≤ a′
1(x1) +

∫x2

x0
2

∫x3

x0
3

· · ·
∫xn

x0
n

c(x1, t2, . . . , tn)A(x1, t2, . . . , tn)

× exp

(∫ t

x0
[1 + c(τ)]dτ

)

dtn · · ·dt2.
(2.40)
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Integrating (2.40)with respect to x1 from x0
1 to x1, and by (2.24), we have

u(x) ≤
n∑

i=1

ai(xi) +
∫x

x0
c(t)A(t) exp

(∫ t

x0
[1 + c(τ)]dτ

)

dt. (2.41)

By (2.41) and (2.25), we obtain the desired bound in (2.22).

Remark 2.4. We note that in the special case n = 2, x ∈ R
2
+ and x0 = (x0

1, x
0
2) = (0, 0) in

Theorem 2.3, then our result reduces to Theorem 1 obtained in [10].

Theorem 2.5. Let Φ(x), c(x), DiΦ(x), and DΦ(x) be nonnegative continuous functions for all
i = 1, 2, . . . , n defined for x ∈ S, Φ(x0

1, x2, x3, . . . , xn) = 0 and Φ(x1, . . . , xi−1, x0
i , xi+1, . . . xn) = 0 for

any i = 2, 3, . . . , n. If

DΦ(x) ≤
n∑

i=1

ai(xi) +M

[
Φ(x) +

∫x

x0
c(t)[Φ(t) +DΦ(t)]dt

]
(2.42)

holds for x ∈ S, where ai(xi) > 0; a′
i(xi) ≥ 0 are continuous functions defined for xi ≥ 0 for all

i = 1, 2, . . . , n. and M ≥ 0 is constant. Then

DΦ(x) ≤ A(x) exp
(∫x

x0
[M + c(t) +Mc(t)]dt

)
, (2.43)

for x ∈ S, with x ≥ t ≥ x0 ≥ 0, where A(x) is defined in (2.4).

Proof. We define the function

u(x) =
n∑

i=1

ai(xi) +M

[
Φ(x) +

∫x

x0
c(t)[Φ(t) +DΦ(t)]dt

]
(2.44)

with

u
(
x0
1, x2, x3, . . . , xn

)
= a1

(
x0
1

)
+

n∑

i=2

ai(xi). (2.45)

Differentiating (2.44), we have

Du(x) = M[DΦ(x) + c(x)[Φ(x) +DΦ(x)]]. (2.46)

Using the fact that DΦ(x) ≤ u(x) and MΦ(x) ≤ u(x), we have

Du(x) ≤ [M + c(x) +Mc(x)]u(x), (2.47)
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by (2.47), we have

u(x) ≤ A(x) exp
(∫x

x0
[M + c(t) +Mc(t)]dt

)
, (2.48)

where A(x) is defined in (2.4).
By (2.48) and using the fact that DΦ(x) ≤ u(x) from (2.42), we obtain the desired

bound in (2.43).

Remark 2.6. We note that in the special case n = 2, x ∈ R
2
+ and x0 = (x0

1, x
0
2) = (0, 0) in

Theorem 2.5, then our result reduces to Theorem 2 obtained in [10].

Theorem 2.7. Let Φ(x), p(x), and q(x) be nonnegative continuous functions defined for x ∈ S. If

Φ(x) ≤
n∑

i=1

ai(xi) +
∫x

x0
p(t)Φ(t)dt +

∫x

x0
p(t)

(∫ t

x0
q(s)Φ(s)ds

)

dt (2.49)

holds for x ≥ x0 ≥ 0, where ai(xi) > 0; a′
i(xi) ≥ 0 are continuous functions defined for xi ≥ 0 for all

i = 1, 2, . . . , n. Then

Φ(x) ≤
n∑

i=1

ai(xi) +
∫x

x0
p(t)Q(t)dt, (2.50)

for all x ≥ x0 ≥ 0, where

Q(x) = A(x) exp
(∫x

x0

(
p(t) + q(t)

)
dt

)
, (2.51)

with A(x) defined in (2.4).

Proof. The proof of this Theorem follows by an argument similar to that in Theorem 2.1, We
omit the details.

Remark 2.8. We note that in the special case n = 2, x ∈ R
2
+ and x0 = (x0

1, x
0
2) = (0, 0) in

Theorem 2.7, our result reduces to Theorem 2 obtained in [10].

3. Nonlinear Integrodifferential in n Independents Variables

In this section, we will give some new nonlinear integrodifferential inequalities for the
functions of n-independent variables.

We can also give the following lemma.

Lemma 3.1 (see [2, 11]). Let u(x), a(x), and b(x) be nonnegative continuous functions, defined for
x ∈ S.
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Assume that a(x) is a positive, continuous function and nondecreasing in each of the variables
x ∈ S. If

u(x) ≤ a(x) +
∫x

x0
b(t)u(t)dt (3.1)

holds for all x ∈ S, with x ≥ x0 ≥ 0. Then

u(x) ≤ a(x) exp
(∫x

x0
b(t)dt

)
. (3.2)

Theorem 3.2. Let Φ(x), a(x), b(x), c(x), f(x), DiΦ(x), and DΦ(x) be nonnegative
continuous functions for all i = 1, 2, . . . , n defined for x ∈ S, Φ(x0

1, x2, x3, . . . , xn) =
0 and Φ(x1, . . . , xi−1, x0

i , xi+1, . . . xn) = 0 for any i = 2, 3, . . . , n. Let K(Φ(x)) be a real-valued,
positive, continuous, strictly nondecreasing, subadditive, and submultiplicative function for Φ(x) ≥
0, and let H(Φ(x)) be a real-valued, continuous positive, and nondecreasing function defined for
x ∈ S. Assume that a(x) and f(x) are positive and nondecreasing in each of the variables x ∈ S. If

DΦ(x) ≤ a(x) + f(x)H
(∫x

x0
c(t)K(Φ(t))dt

)
+
∫x

x0
b(t)DΦ(t)dt (3.3)

holds, for x ∈ S with x ≥ x0 ≥ 0. Then

DΦ(x) ≤
{

a(x) + f(x)H

(

G−1
[

G(ξ) +
∫x

x0

c(t)K
(
p(t)f(t)

)
dt

])}

exp
(∫x

x0
b(t)dt

)
, (3.4)

for x ∈ S, where

p(x) =
∫x

x0
exp

(∫ t

x0
b(s)ds

)

dt,

ξ =
∫∞

x0

c(t)K
(
a(t)p(t)

)
dt,

G(z) =
∫z

z0

ds

K(H(s))
, z ≥ z0 > 0,

(3.5)

where G−1 is the inverse function of G, and

G(ξ) +
∫x

x0

c(t)K
(
p(t)f(t)

)
dt (3.6)

is in the domain of G−1 for x ∈ S.
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Proof. We define the function

z(x) = a(x) + f(x)H
(∫x

x0
c(t)K(Φ(t))dt

)
, (3.7)

then (2.4) can be restated as

DΦ(x) ≤ z(x) +
∫x

x0
b(t)DΦ(t)dt. (3.8)

Clearly, z(x) is a positive, continuous function and nondecreasing in each of the variables
x ∈ S, using (3.1) of Lemma 3.1 to (3.8), we have

DΦ(x) ≤ z(x) exp
(∫x

x0
b(t)dt

)
. (3.9)

Integrating to x from x0 to x, we have

Φ(x) ≤ z(x)p(x), (3.10)

where

p(x) =
∫x

x0
exp

(∫ t

x0
b(s)ds

)

dt. (3.11)

By (3.7), we have

z(x) = a(x) + f(x)H(v(x)), (3.12)

where

v(x) =
∫x

x0
c(t)K(Φ(t))dt. (3.13)

By (3.10) and (3.13), we have

Φ(x) ≤ {
a(x) + f(x)H(v(x))

}
p(x). (3.14)
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From (3.14) and (3.13) and sinceK is a subadditive and submultiplicative function, we notice
that

v(x) ≤
∫x

x0
c(t)K

[{
a(t) + f(t)H(v(t))

}
p(t)

]
dt,

≤
∫x

x0
c(t)K

(
a(t)p(t)

)
dt +

∫x

x0
c(t)K

(
f(t)p(t)

)
K(H(v(t)))dt,

≤
∫∞

x0
c(t)K

(
a(t)p(t)

)
dt +

∫x

x0
c(t)K

(
f(t)p(t)

)
K(H(v(t)))dt.

(3.15)

We define Ψ(x) as the right side of (3.14), then

Ψ
(
x0
1, x2, x3, . . . , xn

)
=
∫∞

x0
c(t)K

(
a(t)p(t)

)
dt, (3.16)

v(x) ≤ Ψ(x). (3.17)

Ψ(x) is positive and nondecreasing in each of the variables x2, . . . , xn ∈ Rn−1
+ , then

D1Ψ(x) =
∫x2

x0
2

∫x3

x0
3

· · ·
∫xn

x0
n

c(x1, t2, . . . , tn)K
(
p(x1, t2, . . . , tn)f(x1, t2, . . . , tn)

)

×K(H(v(x1, t2, . . . , tn)))dtn · · ·dt2,

≤
∫x2

x0
2

∫x3

x0
3

· · ·
∫xn

x0
n

d(x1, t2, . . . , tn)K
(
p(x1, t2, . . . , tn)f(x1, t2, . . . , tn)

)

×K(H(Ψ(x1, t2, . . . , tn)))dtn · · ·dt2,

≤ K(H(Ψ(x)))
∫x2

x0
2

∫x3

x0
3

· · ·
∫xn

x0
n

c(x1, t2, . . . , tn)

×K
(
p(x1, t2, . . . , tn)f(x1, t2, . . . , tn)

)
dtn · · ·dt2.

(3.18)

Dividing both sides of (3.18) by K(H(Ψ(x))), we get

D1Ψ(x)
K(H(Ψ(x)))

≤
∫x2

x0
2

∫x3

x0
3

· · ·
∫xn

x0
n

c(x1, t2, . . . , tn)K
(
p(x1, t2, . . . , tn)f(x1, t2, . . . , tn)

)
dtn · · ·dt2.

(3.19)

We note that

G(z) =
∫z

z0

ds

K(H(s))
, z ≥ z0 > 0. (3.20)
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Thus, it follows that

D1G(Ψ(x)) =
D1Ψ(x)

K(H(Ψ(x)))
. (3.21)

From (3.19), (3.20), and (3.21), we have

D1G(Ψ(x)) ≤
∫x2

x0
2

∫x3

x0
3

· · ·
∫xn

x0
n

c(x1, t2, . . . , tn)K
(
p(x1, t2, . . . , tn)f(x1, t2, . . . , tn)

)
dtn · · ·dt2.

(3.22)

Now, setting x1 = s in (3.22) and then integrating with respect from x0
1 to x1, we obtain

G(Ψ(x)) ≤ G
(
Ψ
(
x0
1, x2, . . . , xn

))
+
∫x

x0
c(t)K

(
p(t)f(t)

)
dt, (3.23)

by (3.23), we have

Ψ(x) ≤ G−1
[

G
(
Ψ
(
x0
1, x2, . . . , xn

))
+
∫x

x0

c(t)K
(
p(t)f(t)

)
dt

]

. (3.24)

The required inequality in (3.4) follows from the fact (3.9), (3.12), (3.17), and (3.24).

Many interesting corollaries can be obtained from Theorem 3.2.

Corollary 3.3. Let Φ(x), a(x), b(x), c(x), DiΦ(x), DΦ(x), and K(Φ(x)) be as defined in
Theorem 3.2. If

DΦ(x) ≤ a(x) +
∫x

x0
c(t)g(Φ(t))dt +

∫x

x0
b(t)DΦ(t)dt (3.25)

holds, for x ∈ R
n
+ with x ≥ x0 ≥ 0. Then

DΦ(x) ≤
{

a(x) + T−1
[

T(ξ) +
∫x

x0

c(t)K
(
p(t)

)
dt

]}

exp
(∫x

x0
b(t)dt

)
, (3.26)

for x ∈ R
n
+ with x ≥ x0 ≥ 0, where

p(x) =
∫x

x0
exp

(∫ t

x0
b(s)ds

)

dt,

ξ =
∫∞

x0

c(t)K
(
a(t)p(t)

)
dt,

T(z) =
∫z

z0

ds

K(s)
, z ≥ z0 > 0,

(3.27)
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where T−1 is the inverse function of T and

T(ξ) +
∫x

x0

c(t)K
(
p(t)

)
dt (3.28)

is in the domain of T−1 for x ∈ R
n
+.

Proof. The proof of this Corollary follows by an argument similar to that in Theorem 3.2. We
omit the details.

Corollary 3.4. Let Φ(x), b(x), c(x), DiΦ(x), and DΦ(x) be as defined in Theorem 3.2. If

DΦ(x) ≤ M +
∫x

x0
c(t)Φ(t)dt +

∫x

x0
b(t)DΦ(t)dt (3.29)

holds, for x ∈ R
n
+ with x ≥ x0 ≥ 0, where M > 0 is a constant, then

Φ(x) ≤ M

{

1 + exp

[

log

(∫∞

x0

c(t)p(t)dt

)

+
∫x

x0

c(t)p(t)dt

]}

p(x), (3.30)

for x ∈ R
n
+ with x ≥ x0 ≥ 0, where

p(x) =
∫x

x0
exp

(∫ t

x0
b(s)ds

)

dt. (3.31)

Proof. Setting g(x) = x and a(x) = M in Corollary 3.3, we obtain our result in this Corollary.
We omit the details.

Similarly, we can obtain many other kinds of estimates.

4. An Application

In this section, we present an immediate simple example of application of Theorem 3.2 to the
study of boundedness of the solution of a partial integrodifferential equation.

Consider the nonlinear partial integrodifferential equation

Du(x) = f(x) +
∫x

0
h(x, t, u(t), Du(t))dt,

u(. . . , xi, 0, xi+2, . . .) = 0, ∀i = 1, 2, . . . , n,

(4.1)

for x ∈ R
n
+, where h : R

n
+ × R × R → R, f(x) : R

n
+ → R are continuous functions.
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Assume that functions are defined and continuous on their respective domains of
definition, such that

∣
∣f(x)

∣
∣ ≤ M,

|h(x, t, u(t), Du(t))| ≤ c(t)|u(t)| + b(t)|Du(t)|
(4.2)

for x ∈ R
n
+, where M > 0 is a constant and c(x) and b(x) are nonnegative, continuous

functions defined for x ∈ R
n
+. If Φ(x) is any solution of boundary value problem (4.1), then

DΦ(x) = f(x) +
∫x

0
h(x, t,Φ(t), DΦ(t))dt (4.3)

for x ∈ R
n
+, by (4.2), we have

|DΦ(x)| = M +
∫x

0
c(t)|Φ(x)| + b(t)|DΦ(x)|dt. (4.4)

Now, by a suitable application of Corollary 3.4 of Theorem 3.2, we obtain the bound on the
solution Φ(x) of (4.1).

|Φ(x)| ≤ Mp(x)
{
1 + exp

[
log

(∫∞

0
c(t)p(t)dt

)
+
∫x

0
c(t)p(t)dt

]}
(4.5)

or x ∈ R
n
+, where

p(x) =
∫x

0
exp

(∫ t

0
b(s)ds

)

dt. (4.6)

Remark 4.1. Using a similar method of those in the proof of the theorems above, we can
also obtain new reversed inequalities of our results. Our results also can be generalized to
integrodifferential inequalities with a time delay for functions of one or n independent
variables, this is under study and will be addressed in a forthcoming work. Among these
integrodifferential inequalities with a delay, we can quote:

DΦ(x) ≤ a(x) +
∫α(x)

α(x0)
c(t)K(Φ(t))dt +

∫β(x)

β(x0)
b(t)DΦ(t)dt.

DΦ(x) ≤ a(x) + f(x)
∫α(x)

α(x0)
c(t)Φ(t)K(Φ(t))dt +

∫β(x)

β(x0)
b(t)DΦ(t)dt.

DΦ(x) ≤ a(x) + f(x)H

(∫α(x)

α(x0)
c(t)n(Φ(t))K(Φ(t))dt

)

+
∫β(x)

β(x0)
b(t)g(DΦ(t))dt.

(4.7)



ISRN Mathematical Analysis 15

References

[1] D. Baı̆nov and P. Simeonov, Integral Inequalities and Applications, vol. 57 of Mathematics and Its
Applications (East European Series), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.

[2] M. Denche and H. Khellaf, “Integral inequalities similar to Gronwall inequality,” Electronic Journal of
Differential Equations, vol. 2007, no. 176, pp. 1–14, 2007.

[3] T. H. Gronwall, “Note on the derivatives with respect to a parameter of the solutions of a system of
differential equations,” Annals of Mathematics, vol. 20, no. 4, pp. 292–296, 1919.

[4] B. G. Pachpatte, “On some fundamental integrodifferential and integral inequalities,” Analele
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