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The effects of illuminance and heat rays released from the light source on the photo-controlled/living radical polymerization of
methyl methacrylate were investigated with the aim of strict control of molecular weight. The bulk polymerization was performed
at room temperature using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator and (2RS,2'RS)-azobis(4-methoxy-
2,4-dimethylvaleronitrile) as the initiator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate as the accelerator by
irradiation with a high-pressure mercury lamp. The polymerization by the direct irradiation from the light source yielded polymers
containing an uncontrolled high-molecular-weight polymer and having the molecular weight distribution over 3. On the other
hand, the polymerization by the indirect irradiation with reflective light using a mirror produced polymers with controlled
molecular weights with comparatively narrow molecular weight distribution at ca. 1.4. Too high an illuminance caused an increase
in the molecular weight distribution. During the polymerization, the monomer conversion increased as the illuminance increased.
It was found that the elimination of heat rays from the illuminating light was indispensable for the molecular weight control by

the photo-controlled/living radical polymerization.

1. Introduction

Light is a desirable stimulus to manipulate the properties
and functions of materials and living organs without damage
by heat, such as thermal expansion and deactivation. Photo-
controlled systems include the environmental advantage in
utilizing solar energy, the significance of local applications,
and the use of photo-specific reactions. A significant variety
of photo-controlled systems has been created using reversible
and also irreversible photoreactions. Examples include the
photo-controlled mechanical motion of crystals through the
azobenzene photoisomerization [1], the photo-controllable
changes in surface morphology of salt crystals by enantio-
specific and enantioselective photocyclization of a benzophe-
none derivative [2], the photo-induced wetting properties on
an ultrathin ZnO-coated surface [3], the photo-responsive
loading and release of drugs on nanoparticle [4] and
nanofiber surfaces [5], self-assembly induced by photo irre-
versible reactions of photolysis [6-8], photo-rearrangement

[9], and photo onium salt formation [10] for block copoly-
mers, size change of core-shell nanogel particles through
the photodimerization and photocleavage of coumarin [11],
magnetization of CdS-modified nanoparticles by photo-
induced electron transfer from CdS to Prussian blue [12],
DNA cleavage by the combination of the photoactive Zn(II)
cooperation and the azobenzene photoisomerization [13],
the inhibition of telomerase activity by photo-cross-linking
[14], and the photoswitch to induce paralysis in a living
organism using the photocyclization of bis(pyridinium)-
dithienylethene [15].

The photo-controlled/living radical polymerization is
also a photo-controllable system that can regulate the
molecular weight of a polymer. Photo-living radical pol-
ymerization systems have been discovered using various
mediators; dithiocarbamate derivatives [16—18], N,N,N’,N’-
tetraethylthiuram disulfide [19], dibenzyl trithiocarbonate
[20], 4-thiobenzoyl sulfanylmethyl benzoate [21], bis(2,4,6-
trimethylbenzoyl)phenylphosphine oxide, bis(4-methoxybe-
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FIGURE 1: A schematic of the photopolymerization with direct irradiation.

nzoyl)diethylgermanium [22], and manganese complex [23].
In recent years, the photo-controlled/living radical polymer-
ization mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) has been established for methacrylate monomers
that could not be applied to the thermal TEMPO-mediated
polymerization [24-36] due to the disproportionation ter-
mination at high temperature. This TEMPO-mediated pho-
topolymerization was accelerated by the photo-acid genera-
tors of the diaryliodonium salts [24, 25] and triarylsulfonium
salts [28] and produced polymers with the comparatively
narrow molecular weight distributions of ca. 1.4 even at
a high conversion. However, there is no report concerning
the effects of illuminance and heat released from the light
source on the photo-controlled polymerization. It was found
that the illuminance and heat from the light source affected
the polymerization rate and molecular weight control. This
paper describes the influences of illuminance and heat
from the light source of a high-pressure mercury lamp
on the TEMPO-mediated photo-controlled/living radical
polymerization of methyl methacrylate (MMA).

2. Experimental

2.1. Instrumentation. The photopolymerization was carried
out using an Ushio optical modulex BA-H502, an illuminator
OPM2-502H with a high-illumination lens UI-OP2SL, and a
500 W super high-pressure UV lamp (USH-500SC2, Ushio
Co. Ltd.). The illuminance was measured using a Topcon
IM-5 illuminance meter. Gel permeation chromatography
(GPC) was performed using a Tosoh GPC-8020 instrument
equipped with a DP-8020 dual pump, a CO-8020 col-
umn oven, and a RI-8020 refractometer. Three polystyrene
gel columns, Tosoh TSKGEL G2000Hx;, G4000Hx, and
G6000Hx; were used with tetrahydrofuran as the eluent at
40°C.

2.2. Materials. 4-Methoxy-TEMPO (MTEMPO) was pr-
epared as reported previously [37]. (2RS,2'RS)-Azob-is(4-
methoxy-2,4-dimethylvaleronitrile) (r-AMDV) was obta-
ined by separation from a mixture of the racemic and meso
forms of 2,2"-azobis(4-methoxy-2,4-dimethylvaleronitrile)

Table 1

Run 1

Run 2

20 24 28

Retention time (min)

FiGure 2: GPC profiles of the polymers obtained by the polymer-
ization with the direct irradiation.

[38]. Commercial grade MMA was washed with 5wt.%
sodium hydroxide solution and water and distilled over
calcium hydride. (4-tert-Butylphenyl)-diphenylsulfonium
triflate ("BuS) was purchased from Sigma-Aldrich and used
as received. A heat ray absorbent filter, HA30 and a neutral
density filter, ND-50 were purchased from Hoya Candeo
Optronics Corporation.

2.3. Polymerization by Indirect Irradiation. MMA (936.0 mg,
9.35mmol), ~AMDV (14.0 mg, 0.0454 mmol), MTEMPO
(9.0 mg, 0.0483 mmol), and ‘BuS (11.0mg, 0.0235 mmol)
were placed in an ampoule. After degassing the contents, the
ampoule was sealed under vacuum. The bulk polymerization
was carried out at room temperature for 7 h with irradiation
at 5.0 X 10° lux by reflective light using a mirror with a 500 W
high-pressure mercury lamp. The product was dissolved in
dichloromethane (10 mL). The solution was concentrated by
an evaporator to remove the dichloromethane and unreacted
monomer and was freeze-dried with benzene (20 mL) at
40°C to obtain the product as white powder (545.8 mg).
The monomer conversion was estimated gravimetrically.
The product was dissolved in dichloromethane (3 mL) and
poured into hexane (500 mL). The precipitate was collected
by filtration and dried in vacuo for several hours to be
subjected to GPC analysis.



ISRN Polymer Science 3
Reaction
vessel
Mirror
High-pressure
ﬂ mercury lamp
Magnetic stirrer
FIGURE 3: A schematic of the photopolymerization with indirect irradiation by reflective light.
TaBLE 1: The MMA polymerization with direct irradiation.
Run No. Filter Iluminance (X 107> lux) Time (h) Conversion (%) Mn (theor)? Mn (obs)? Mw/Mn?
1 — 32.5 2.5 70 13,600 12,500 5.04
2 — 25.7 2.5 66 12,900 12,600 3.35
3 HA30 + ND50 11.6 6 0 — — —
MTEMPO/r-AMDV = 1.06, 'BuS/MTEMPO = 0.486.
2Estimated by GPC based on poly(MMA) standards.
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Ficure 4: The GPC profile of the polymer obtained by the
polymerization with the indirect irradiation at 5.0 x 10° lux.
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The photo-controlled/living radical polymerization of MMA
was performed at room temperature using the r-AMDV
initiator and the MTEMPO mediator in the presence of the
BusS accelerator. The bulk polymerization was carried out at
different illuminances by direct irradiation in a water bath
to avoid a rise in the temperature of the reaction system
by the direct irradiation (Figure 1). The results are shown
in Table 1. The polymerization rapidly proceeded by the
direct irradiation and provided very broad molecular weight
distributions of Mw/Mn > 3. The GPC analysis revealed
that the resulting polymers contained uncontrolled high-
molecular-weight polymers. As can be seen in Figure 2,
the proportion of the high-molecular-weight polymer was
reduced as a result of decreasing the illuminance. In addition,
no polymerization occurred by the direct irradiation through

Iluminance (lux)

Figure 5: The plots of the monomer conversion versus the
illuminance for the polymerization with the indirect irradiation.

a heat ray absorbent filter, HA30, that can exclude the rays
with the wavelengths over ca. 900 nm and a neutral density
filter, ND-50, that reduces the illuminance to 50%.

In order to avoid the influence of heat rays on the
polymerization, the polymerization was performed with the
indirect irradiation by a reflective light using a mirror. This
indirect irradiation can exclude heat rays of wavelengths
around 1,100 nm included in the light from the mercury
lamp because the heat rays are not reflected by a mirror. A
schematic of the polymerization with the indirect irradiation
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TasLE 2: The MMA polymerization with indirect irradiation.

Filter Iluminance (X 1072 lux) Time (h) Conversion (%) Mn (theor) Mn (obs)? Mw/Mn?
— 1.3 7 46 9,240 9,230 1.42
— 1.9 7 49 9,820 9,690 1.49
— 5.0 7 56 11,200 9,950 1.45
— 20.1 7 62 12,300 10,900 1.43
— 80.4 7 65 12,900 10,800 1.53
HA30 4.4 7.5 15 3,230 3,260 1.60
HA30 110.0 6 24 4,980 5,640 1.59

MTEMPO/r-AMDYV = 1.06, 'BuS/MTEMPO = 0.486.
2Estimated by GPC based on poly(MMA) standards.
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FIGURE 6: The mechanism of the MTEMPO-mediated photo-controlled/living polymerization in the presence of ‘BuS.

is shown in Figure 3. The results of the polymerization are
shown in Table 2.

The indirect irradiation polymerization produced poly-
mers with controlled molecular weights without any uncon-
trolled high-molecular-weight polymers. The experimental
molecular weights, Mn (obs), were in good agreement with
the theoretical molecular weights, Mn (theor). The GPC
profile of the resulting polymer obtained at a 5.0 X 10° lux-
illuminance is shown in Figure 4. Figure 5 shows the plots of
the monomer conversion versus the illuminance. An increase
in the illuminance accelerated the polymerization. However,
too high an illuminance increased molecular weight distri-
bution and produced a deviation in the molecular weight
from the theoretical one. The polymerization at too high an
illuminance may be influenced by the heat released from the

light source because the distance from the light source to the
reaction vessel was quite short (12.5 cm). The elimination of
heat rays using HA30 decelerated the polymerization. This
deceleration can be accounted for by the fact that this heat
ray absorbent filter eliminates not only rays over 900 nm, but
also rays below 270 nm. When it is taken into consideration
that ‘BuS has a UV absorption at Aoy = 238 nm, ‘BuS was
not excited by the irradiation through HA30, resulting in
the fact that "BuS should not have served as the accelerator.
The irradiation through HA30 also caused an increase
in the molecular weight distribution probably due to the
deceleration of the initiation. This implies that the excited
'BuS also accelerates the decomposition of the initiator.
The proposed mechanism throughout the polymerization is
shown in Figure 6. It can be deduced that the elimination of
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only heat rays that cause the uncontrolled polymerization
is significant for controlling the molecular weight of a
polymer.

4. Conclusion

This is the first study clarifying the influence of heat rays on
the photo-controlled/living radical polymerization mediated
by MTEMPO. The heat rays caused uncontrolled polymer-
ization during the MTEMPO-mediated photopolymeriza-
tion. A decrease in the illuminance reduced the proportion
of a polymer with an uncontrolled molecular weight. The
exclusion of heat rays is indispensable for the molecular
weight control. However, the use of a heat ray absorbent
filter is ineffective for controlling the molecular weight
because the filter also eliminated the rays below 270 nm
when the accelerator with the UV absorption below this
wavelength was used for the polymerization. The indirect
irradiation by reflective light using a mirror effectively
controlled the molecular weight by the TEMPO-mediated
photopolymerization.
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