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We propose a two-parameter ratio-product-ratio estimator for a finite population mean in a
simple random sample without replacement following the methodology in the studies of Ray
and Sahai (1980), Sahai and Ray (1980), A. Sahai and A. Sahai (1985), and Singh and Espejo
(2003).The bias and mean squared error of our proposed estimator are obtained to the first degree
of approximation. We derive conditions for the parameters under which the proposed estimator
has smaller mean squared error than the sample mean, ratio, and product estimators. We carry out
an application showing that the proposed estimator outperforms the traditional estimators using
groundwater data taken from a geological site in the state of Florida.

1. Introduction

We consider the following setting. For a finite population of size N, we are interested in
estimating the population mean Y of the main variable y (taking values yi for i = 1, . . . ,N) from
a simple random sample of size n (where n < N) drawn without replacement. We also know
the population mean X for the auxiliary variable x (taking values xi for i = 1, . . . ,N). We use
the notation y and x for the sample means, which are unbiased estimators of the population
means Y and X, respectively.

We denote the population variances of Y and X by

S2
Y = V(Y ) =

1
N − 1

N∑

i=1

(
Yi − Y

)2
, S2

X = V(X) =
1

N − 1

N∑

i=1

(
Xi −X

)2
, (1.1)
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respectively. Furthermore, we define the coefficient of variation of Y and X as

CY =
SY

Y
, CX =

SX

X
, (1.2)

respectively, and the coefficient of correlation C between the two variables as

C = ρ · CY

CX
, (1.3)

where ρ = SXY/SXSY denotes the population Pearson correlation coefficient.
As estimators of the population mean Y , the usual sample mean y, the ratio estimator

yR = (y/x)·X, and the product estimator yP = (x·y)/X are used.Murthy [1] and Sahai and Ray
[2] compared the relative precision of these estimators and showed that the ratio estimator,
sample mean, and product estimator are most efficient when C > 1/2, −1/2 ≤ C ≤ 1/2 and
C < −1/2, respectively. In other words, when the study variate y and the auxiliary variate x
show high positive correlation, then the ratio estimator shows the highest efficiency; when
they are highly negative correlated, then the product estimator has the highest efficiency;
when the variables show a weak correlation only, then the sample mean is preferred. (In the
paper, we say an estimator is “most efficient” or has the “highest efficiency,” if it has the
lowest mean squared error (MSE) of all the estimators considered.)

For estimating the population mean Y of the main variable, we proposed the following
two-parameter ratio-product-ratio estimator:

yα,β = α

[(
1 − β

)
x + βX

βx +
(
1 − β

)
X

]
y + (1 − α)

[
βx +

(
1 − β

)
X

(
1 − β

)
x + βX

]
y, (1.4)

where α, β are real constants. Our goal in this paper is to derive values for these constants α, β
such that the bias and/or themean squared error (MSE) of yα,β is minimal. In fact, in Section 5
we are able to use the two parameters α and β to obtain an estimator y∗(C) that is (up to first
degree of approximation) both unbiased and has minimal MSE ((N − n)/(N · n))S2

Y (1 − ρ2);
it was Srivastava [3, 4] who showed that this is the minimal possible MSE up to first degree
of approximation for a large class of estimators (to which the one in (1.4) also belongs).
The estimator y∗(C) thus corrects the limitations of the traditional estimators y, yR, and yP

which are to be used for a specific range of the parameter C and, in addition, outperforms the
traditional estimators by having the least MSE.

Note that yα,β = y1−α,1−β, that is, the estimator yα,β is invariant under a point reflection
through the point (α, β) = (1/2, 1/2). In the point of symmetry (α, β) = (1/2, 1/2), the
estimator reduces to the sample mean; that is, we have y1/2,1/2 = y. In fact, on the whole
line β = 1/2 our proposed estimator reduces to the sample mean estimator, that is, yα,1/2 = y.
Similarly, we get y1,0 = y0,1 = (xy)/X = yP (product estimator) and y0,0 = y1,1 = (yX)/x = yR

(ratio estimator). Its simplicity (essentially just using convex combinations and/or a ratio
of convex combinations) and that all three traditional estimators (sample mean, product,
and ratio estimators) can be obtained from it by choosing appropriate parameters are the
reasons whywe study the estimator in (1.4) and compare it to the three traditional estimators.
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However, in the outlook, Section 6.5, we also compare this estimator to more sophisticated
estimators for the application in the groundwater data considered here.

2. First-Degree Approximation to the Bias

In order to derive the bias of yα,β up to O(1/n), we set

e1 =
y − Y

Y
, e2 =

x −X

X
. (2.1)

Thus, we have y = Y (1 + e1) and x = X(1 + e2), and the relative estimators are given by

ŷ =
y

Y
= (1 + e1), x̂ =

x

X
= (1 + e2). (2.2)

Thus, the expectation value of the ei’s is

E(ei) = 0 for i = 1, 2, (2.3)

and under a simple random sample without replacement, the relative variances are

Vrel
(
y
)
=

V
(
y
)

Y
2

= E

(
e21

)
= V(e1) =

1 − f

n

(
SY

Y

)2

,

Vrel(x) =
V(x)

X
2

= E

(
e22

)
= V(e2) =

1 − f

n

(
SX

X

)2

,

(2.4)

where f = n/N is the sampling fraction. Also, we have

E(e1e2) =
1 − f

n
ρCYCX, (2.5)

see [2, 5, 6]. Furthermore, we note that E(e21e
2
2) = O(1/n2), and E(ei1e

j

2) = 0 when (i + j) is an
odd integer.

Now reexpressing (1.4) in terms of ei’s and by substituting x and y, we have

yα,β = α

[
1 + e2 − βe2
1 + βe2

]
Y (1 + e1) + (1 − α)

[
1 + βe2

1 + e2 − βe2

]
Y (1 + e1). (2.6)

In the following, we assume that |e2| < min{1/|β|, 1/|1 − β|}, and therefore we can expand
(1 + βe2)

−1 and (1 + (1 − β)e2)
−1 as a series in powers of e2. (We note that min{1/|β|, 1/|1− β|}

attains its maximal value 2 at β = 1/2.) We get up to O(e32)

yα,β = (1 + e1)Y ·
[
1 − (1 − 2α)

(
1 − 2β

)
e2 +

(
1 − α − β

)(
1 − 2β

)
e22 +O

(
e32

)]
. (2.7)
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We assume that the sample is large enough to make |e2| so small that contributions
from powers of e2 of degree higher than two are negligible; compare [6]. By retaining powers
up to e22, we get

yα,β − Y ≈ Y
{
e1 − (1 + e1)

[
(1 − 2α)

(
1 − 2β

)
e2 −

(
1 − α − β

)(
1 − 2β

)
e22

]}
. (2.8)

Taking expectations on both sides of (2.8) and substituting C = ρ(CY/CX), we obtain the bias
of yα,β to order O(n−1) as

B

(
yα,β

)
= E

(
yα,β − Y

)

≈ 1 − f

n

(
1 − 2β

)[(
1 − α − β

) − (1 − 2α)ρ
CY

CX

]
C2

XY

=
1 − f

n

(
1 − 2β

)[
1 − α − β − (1 − 2α)C

]
C2

XY .

(2.9)

Equating (2.9) to zero, we obtain

β =
1
2

or β = 1 − α − C + 2αC. (2.10)

The proposed ratio-product-ratio estimator yα,β, substituted with the values of β from (2.10),

becomes an (approximately) unbiased estimator for the population mean Y . In the three-
dimensional parameter space (α, β, C) ∈ R

3, these unbiased estimators lie on a plane (in the
case β = 1/2) and on a saddle-shaped surface, see Figure 1(a). Furthermore, as the sample
size n approaches the population sizeN, the bias of yα,β tends to zero, since the factor (1−f)/n
clearly tends to zero.

3. Mean Squared Error of yα,β

We calculate the mean squared error of yα,β up to order O(n−1) by squaring (2.8), retaining
terms up to squares in e1 and e2, and then taking the expectation. This yields the first-degree
approximation of the MSE

MSE1

(
yα,β

)
=

1 − f

n
Y

2{
C2

Y + C2
X(1 − 2α)

(
1 − 2β

)[
(1 − 2α)

(
1 − 2β

) − 2C
]}

. (3.1)

Taking the gradient ∇ = (∂/∂α, ∂/∂β) of (3.1), we get

∇MSE1

(
yα,β

)
= 4

1 − f

n
Y

2
C2

X

[
(1 − 2α)

(
1 − 2β

) − C
](
1 − 2β, 1 − 2α

)
. (3.2)
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Figure 1: Surface of “bias-free estimators” defined by (2.9) in the parameter space (α, β, C) ∈ R
3. (b)

Surface of “AOE parameters” defined by (3.4). The points of intersection of the two surfaces (see Section 5)
are drawn as black curves.

Setting (3.2) to zero to obtain the critical points, we obtain the following solutions:

α =
1
2
, β =

1
2

(3.3)

or

C = (1 − 2α)
(
1 − 2β

)
. (3.4)

One can check that the critical point in (3.3) is a saddle point unless C = 0, in which case
we get a local minimum. However, the critical points determined by (3.4) are always local
minima; for a given C, (3.4) is the equation of a hyperbola symmetric through (α, β) =
(1/2, 1/2). Thus, in the three-dimensional parameter space (α, β, C) ∈ R

3, the estimators with
minimal MSE (or better, minimal first approximation to the MSE; see calculation in (3.6)) lie
on a saddle-shaped surface, see Figure 1(b).

We now calculate the minimal value of the MSE. Substituting (3.3) into the estimator
yα,β yields the unbiased estimator y (sample mean) of the population mean Y . Thus, we
arrive at the mean squared error of the sample mean:

MSE
(
y1/2,1/2

)
= MSE

(
y
)
=

1 − f

n
Y

2
C2

Y =
1 − f

n
S2
Y . (3.5)

By substituting (3.4) into the estimator, an asymptotically optimum estimator (AOE) y
(o)
α,β

is
found. For the first-degree approximation of the MSE, we find (independent of α and β)

MSE1

(
y
(o)
α,β

)
=

1 − f

n
Y

2(
C2

Y − C2C2
X

)
=

1 − f

n
S2
Y

(
1 − ρ2

)
, (3.6)
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that is, the same minimal mean squared error as found in [2, 5–7]. In fact, Srivastava
[3, 4] showed that this is the minimal possible mean squared error up to first degree of
approximation for a large class of estimators to which the estimator (1.4) also belongs, for
example, for estimators of the form yg = y · g(x/X) where g is a C2-function with g(1) = 1.
(In [8] it was shown that incorporating sample and population variances of the auxiliary
variable might yield an estimator that has a lower MSE than ((1 − f)/n)S2

Y (1 − ρ2) especially
when the relationship between the study variate y and the auxiliary variate x is markedly
nonlinear.) Thus, whatever value C has, we are always able to select an AOE y

(o)
α,β from the

two-parameter family in (1.4).

4. Comparison of MSEs and Choice of Parameters

Here we compare MSE1(yα,β) in (3.1) with the MSE of the product, ratio, and sample mean
estimators, respectively. It is known (see [2, 5]) that

MSE
(
y
)
= V

(
y
)
=

1 − f

n
Y

2
C2

Y , (4.1)

MSE1
(
yR

)
=

1 − f

n
Y

2{
C2

Y + C2
X(1 − 2C)

}
, (4.2)

MSE1
(
yP

)
=

1 − f

n
Y

2{
C2

Y + C2
X(1 + 2C)

}
. (4.3)

4.1. Comparing the MSE of the Product Estimator to Our Proposed Estimator

From [2, 5–7], we know that, for C < −1/2, the product estimator is preferred to the sample
mean and ratio estimators. Therefore, we seek a range of α and β values where our proposed
estimator yα,β has smaller MSE than the product estimator.

From (4.3) and (3.1), the following expression can be verified:

MSE1
(
yP

) −MSE1

(
yα,β

)
= 4

1 − f

n
Y

2
C2

X

[
1 + 2αβ − α − β

][
C − (

2αβ − α − β
)]
, (4.4)

which is positive if

[
1 + 2αβ − α − β

][
C − (

2αβ − α − β
)]

> 0. (4.5)

We obtain the following two cases:

(i) C > 2αβ − α − β > −1 (if both factors in (4.5) are positive) or

(ii) C < 2αβ − α − β < −1 (if both factors in (4.5) are negative).

Noting that we are only interested in the case C < −1/2, we get from (i)

−1
2
> C > 2αβ − α − β > −1. (4.6)
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We note that this implies −1 < C < −1/2, and the range for α and β where these inequalities
hold are explicitly given by the following two cases.

(i) If β < 1/2, then (β + C)/(2β − 1) < α < (β − 1)/(2β − 1).

(ii) If β > 1/2, then (β − 1)/(2β − 1) < α < (β + C)/(2β − 1).

For any given C, we again note that the two regions determined here are symmetric through
(α, β) = (1/2, 1/2). We also note that the parameters (α, β) which give an AOE (see (3.4)),
which for a fixed C lie on a hyperbola, are contained in these regions.

In case (ii), where C < −1 (and therefore automatically C < −1/2), the following range
for α and β can be found.

(i) If β < 1/2, then (β − 1)/(2β − 1) < α < (β + C)/(2β − 1).

(ii) If β > 1/2, then (β + C)/(2β − 1) < α < (β − 1)/(2β − 1).

The same remark as in the previous case applies. Furthermore, note that, for C = −1, the
product estimator attains the same minimal MSE as our proposed estimator yα,β on the
hyperbola given by (3.6). In Figure 2(a)we show the region in parameter space (α, β, C) ∈ R

3

calculated here and in the next two sections where the proposed estimator works better than
the three traditional estimators.

4.2. Comparing the MSE of the Ratio Estimator to Our Proposed Estimator

For C > 1/2, the ratio estimator is used instead of the sample mean or product estimator;
compare [2, 5–7]. As a result, we are concerned with a range of plausible values for α and β,
where yα,β works better than the ratio estimator.

Taking the difference of (4.2) and (3.1), we have

MSE1
(
yR

) −MSE1

(
yα,β

)
= 4

1 − f

n
Y

2
C2

X

[
2αβ − α − β

][
C − 1 − (

2αβ − α − β
)]

(4.7)

which is positive if

[
2αβ − α − β

][
C − 1 − (

2αβ − α − β
)]

> 0. (4.8)

Therefore,

(i) C − 1 > 2αβ − α − β > 0 or

(ii) C − 1 < 2αβ − α − β < 0.

Hence, from solution (i), where C > 1, we have the following.

(i) If β < 1/2, then (β + C − 1)/(2β − 1) < α < β/(2β − 1).

(ii) If β > 1/2, then β/(2β − 1) < α < (β + C − 1)/(2β − 1).

Also, from solution (ii), where 1/2 < C < 1, we obtain the following.

(i) If β < 1/2, then β/(2β − 1) < α < (β + C − 1)/(2β − 1).

(ii) If β > 1/2, then (β + C − 1)/(2β − 1) < α < β/(2β − 1).
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Figure 2: (a) Region of the parameter space (α, β, C) ∈ R
3 where our proposed estimator yα,β has lower

MSE than the traditional estimators. (b) Scatterplot of study and auxiliary variables for the groundwater
data studied in Section 6.

4.3. Comparing the MSE of the Sample Mean to Our Proposed Estimator

Finally, we compare the MSE(y) to our proposed estimator, MSE(yα,β). From [2, 5–7], we
know that sample mean estimator is preferred for −1/2 ≤ C ≤ 1/2.

Taking the difference of (4.1) and (3.1), we get

MSE
(
y
) −MSE1

(
yα,β

)
=

1 − f

n
Y

2
C2

X(1 − 2α)
(
1 − 2β

){
2C − (1 − 2α)

(
1 − 2β

)}
(4.9)

which is positive if

(1 − 2α)
(
1 − 2β

){
2C − (1 − 2α)

(
1 − 2β

)}
> 0. (4.10)

Therefore, either
(i) α > 1/2, β > 1/2 and C > 1/2(1 − 2α)(1 − 2β),

(ii) α < 1/2, β > 1/2 and C < 1/2(1 − 2α)(1 − 2β),

(iii) α > 1/2, β < 1/2 and C < 1/2(1 − 2α)(1 − 2β), or

(iv) α < 1/2, β < 1/2 and C > 1/2(1 − 2α)(1 − 2β).

Combining these with the condition −1/2 ≤ C ≤ 1/2, we get the following explicit ranges.

(i) If 0 < C ≤ 1/2 and β > 1/2, then 1/2 < α < (2β + 2C − 1)/2(2β − 1) (from (i)).

(ii) If 0 < C ≤ 1/2 and β < 1/2, then (2β + 2C − 1)/2(2β − 1) < α < 1/2 (from (iv)).

(iii) If −1/2 ≤ C < 0 and β > 1/2, then (2β + 2C − 1)/2(2β − 1) < α < 1/2 (from (ii)).

(iv) If −1/2 ≤ C < 0 and β < 1/2, then 1/2 < α < (2β + 2C − 1)/2(2β − 1) (from (iii)).
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We note that the caseC = 0 implies r = 0, and thus the sample mean estimator is the estimator
with minimal MSE (and, as already noted, y = y1/2,1/2).

In Figure 2(a) we show the region in parameter space (α, β, C) ∈ R
3 where the

proposed estimator yα,β works better than the three traditional estimators. Note that the
surface of “AOE parameters” in Figure 1(b) is a subset of this region, except for the values
C = 0, C = −1, and C = +1 for which our proposed estimator only works as well as the sample
mean, product, and ratio estimator, respectively. (We also remark that the points (1, 1, 1) and
(0, 0, 1) (note that y1,1 = y0,0 = yR), (0, 1,−1) and (1, 0,−1) (note that y1,0 = y0,1 = yR) as
well as the line (α, 1/2, 0) (note that yα,1/2 = y) belong to the surface of “AOE parameters” in
Figure 1(b).)

5. Unbiased AOE

Combining (2.10) and (3.4), we can calculate the parameters α and β where our proposed
estimator becomes—at least up to first approximation—an unbiased AOE. We obtain a line
with (recall that on this line our estimator always reduces to the sample mean estimator)

β =
1
2
, C = 0 (5.1)

or a “curve” (α∗(C), β∗(C), C) ∈ R
3 in the parameter space with

α∗(C) =
1
2

⎛

⎝1 ±
√

C

2C − 1

⎞

⎠, β∗(C) =
1
2

(
1 ±

√
C(2C − 1)

)
. (5.2)

We note that the parametric “curve” in (5.2) is only defined for C ≤ 0 or C > 1/2—in fact, this
parametric “curve” is three hyperbolas. The surface of “bias-free estimator parameters” in
Figure 1(a) and the surface of “AOE parameters” in Figure 1(b) only intersect in these three
hyperbolas and the line β = 1/2 and C = 0. In the region 0 < C ≤ 1/2 of the parameter space
(α, β, C) ∈ R

3, we have the common situation where minimising MSE comes with a trade-off
in bias. The curves of intersection are included in Figure 1. Explicitly, our proposed estimator
using the values in (5.2) is given by

y∗(C) = yα∗(C),β∗(C)

=
2(C + 1)X

2 − 2(C − 1)x2 +
(
2C2 − C − 1

)(
X − x

)2

4Xx − (2C2 − C − 1)
(
X − x

)2
y.

(5.3)

At first it might seem surprising that this estimator y∗(C) is also defined in the region 0 < C ≤
1/2. (The denominator vanishes if C = (1 ±

√
9 + 32Xx/(X − x)

2
)/4.) However, one can also

let the parameters (α, β) in the definition of our proposed estimator yα,β in (1.4) be complex
numbers—but such that we still get a real estimator. One can check that α∗(C) and β∗(C) in
(5.2) for 0 < C < 1/2 have this property.
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Furthermore, we can check that the first degree of approximation of the bias and MSE
of y∗(C) are given by

B1
(
y∗(C)

)
= 0, MSE1

(
y∗(C)

)
=

1 − f

n
S2
Y

(
1 − ρ2

)
(5.4)

(compare (2.9) and (3.6)). Thus, the estimator y∗(C) of (5.3) is an unbiased AOE.
One might also ask whether inside 0 < C ≤ 1/2 there is a choice of real parameters

(α, β) ∈ R
2 such that we get an AOE with small bias. Using (3.4) in (2.9), we get the first-

degree approximation of the bias of an AOE

B1

(
y
(o)
α,β

)
=

1 − f

n
C2

XY
1
2

[
C(1 − 2C) +

(
1 − 2β

)2]
. (5.5)

From this expression (and the constraint (3.4)) it is clear that the bias can only be made zero
if C ≤ 0 or C ≥ 1/2. Otherwise, there is always a positive contribution coming from the term
C(1 − 2C) that does not vanish no matter what we choose for β ∈ R. In fact, it looks as if
the choice β = 1/2 always yields the least possible bias; however two remarks are in order
here. Firstly, given (3.4) and unless C = 0, we can only let β be close to 1/2 and choose α
accordingly (the absolute value |α| is then large). Secondly, we already noted that yα,1/2 = y,
and the MSE for the sample mean estimator is ((1 − f)/n)S2

Y , not ((1 − f)/n)S2
Y (1 − ρ2) as for

an AOE. We have arrived here at a point where the first-degree approximation to bias and
MSE breaks down. To find a choice of real parameters for given C with minimal MSE and
least bias, higher degrees of approximation would have to be considered.

6. Application and Conclusion

Using data taken from the Department of the Interior, United States Geology Survey [9], site
number 02290829501 (located in Florida), a comparison of our proposed estimator yα,β to the
traditional estimators was carried out. The study variables (denoted by Y ) are taken to be
the maximum daily values (in feet) of groundwater at the site for the period from October
2009 to September 2010. The auxiliary variables (denotedX) are taken as the maximum daily
values (in feet) of groundwater for the period fromOctober 2008 to September 2009. Our goal
is to estimate the true average maximum daily groundwater Y for the period from October
2009 to September 2010.

The questions we ask are as the follows. How many units of groundwater must be
taken from the population Y to estimate the population mean Y within d = 10% at a 90%
confidence level (α = 0.10)? And how well do the estimators perform given this data set with
auxiliary information for the calculated sample size n?

Using the entire data set, we calculate the following parameters: Y ≈ 0.5832, X ≈
0.6277, SY ≈ 0.4480, SX ≈ 0.7222, ρ ≈ 0.9125, CY ≈ 0.7681, CX ≈ 1.1504, and C ≈ 0.6092.
A scatterplot of the data set is shown in Figure 2(b), which adds emphasis to the positive
measure of association between the study variable Y and the auxiliary variable X.

One should note that the value of C ≈ 0.6092 lies in the interval (1/2, 1), so we
choose values of α and β from Section 4.2 (resp., from Section 5). Indeed, we use (5.2) and
choose β = β∗(0.6092) ≈ 0.3176 and α = α∗(0.6092) ≈ −0.3349. Note that β = 0.3176 yields
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(−0.8704) < α < 0.200573 in Section 4.2. Using the notation of Section 5, we also note that
y−0.3349,0.3176 = y∗(0.6092).

6.1. Calculating the Sample Size n

To estimate the population mean amount of groundwater recorded for the state of Florida
from October 2009 to September 2010, a sample of size n is drawn from the population of
sizeN = 365 according to the simple random sampling without replacement, see [10]. A first
approximation to this sample size needed is the (infinite population) value

n0 =
Z2

α/2σ
2

d2
, (6.1)

where d is the chosen margin of error from the estimate of Y and Zα/2 is a standard normal
variable with tail probability of α/2. Accounting for the finite population size N, we obtain
the sample size

n =
1

1/n0 + 1/N
. (6.2)

In general, the true value of σ2 is unknown but can be estimated using its consistent estimator
s2. However, in our case σ2 is calculated from the population and is given as S2

Y ≈ 0.2006.
Therefore, with α = 0.10, that is, Z0.05 ≈ 1.6449, and d = 10% of Y (i.e., d ≈ 0.0583), the sample
size can be calculated as follows: we have n0 ≈ ((1.6449)2 · 0.2006)/(0.0583)2 ≈ 159.59 and
rounding up gives n0 = 160; so, we get n ≈ 1/(1/160+ 1/365) ≈ 111.23 and thus take n = 112.

6.2. Relative Efficiencies

Table 1 shows the relative efficiencies of the traditional estimators (sample mean y, ratio yR

and product yP estimators) and our proposed two-parameter ratio-product-ratio estimator
yα,β for the parameters (α, β) = (−0.3349, 0.3176). We note that, with this choice of parameters,
the estimator is an (unbiased) AOE, namely, y−0.3349,0.3176 = y∗(0.6092). The table shows that
our two-parameter ratio-product-ratio estimator dominates the traditional estimators in the
sense that it has the highest efficiency.

We can also observe that, in the computation of the relative efficiency, the specification
of the sample size n is not important since the finite population correction factor ((1 − f)/n)
is canceled out (however, this would not be the case for higher degrees of approximation).

6.3. Constructing a 90% Confidence Interval for Y Using yα,β

Constructing a 90% confidence interval, the following formulation can be used (similar
formulae hold for all estimators discussed here), see [10]:

⎛

⎝y∗(0.6092) ± Z0.05

√
S2
Y

n
·
√

N − n

N − 1

⎞

⎠. (6.3)

The factor
√
(N − n)/(N − 1) is the finite population correction.
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Table 1: Relative efficiencies comparisons.

MSE(y)/MSE(y) MSE(y)/MSE1(yR) MSE(y)/MSE1(yP ) MSE(y)/MSE1(y
∗(0.6092))

100% 196.11% 16.73% 597.28%

Table 2: Comparison of the estimators according to the absolute deviation from the population mean Y (in
10 000 simulations).

Deviation from population mean Counts∣∣∣y∗(0.6092) − Y
∣∣∣ <

∣∣∣yR − Y
∣∣∣ <

∣∣∣y − Y
∣∣∣ <

∣∣∣yP − Y
∣∣∣ 3 173

∣∣∣yR − Y
∣∣∣ <

∣∣∣y∗(0.6092) − Y
∣∣∣ <

∣∣∣y − Y
∣∣∣ <

∣∣∣yP − Y
∣∣∣ 2 978

∣∣∣y∗(0.6092) − Y
∣∣∣ <

∣∣∣y − Y
∣∣∣ <

∣∣∣yR − Y
∣∣∣ <

∣∣∣yP − Y
∣∣∣ 1 528

∣∣∣y − Y
∣∣∣ <

∣∣∣y∗(0.6092) − Y
∣∣∣ <

∣∣∣yR − Y
∣∣∣ <

∣∣∣yP − Y
∣∣∣ 972

∣∣∣yP − Y
∣∣∣ <

∣∣∣y − Y
∣∣∣ <

∣∣∣y∗(0.6092) − Y
∣∣∣ <

∣∣∣yR − Y
∣∣∣ 766

∣∣∣y − Y
∣∣∣ <

∣∣∣y∗(0.6092) − Y
∣∣∣ <

∣∣∣yP − Y
∣∣∣ <

∣∣∣yR − Y
∣∣∣ 308

∣∣∣y − Y
∣∣∣ <

∣∣∣yP − Y
∣∣∣ <

∣∣∣y∗(0.6092) − Y
∣∣∣ <

∣∣∣yR − Y
∣∣∣ 275

Of course, by the choice of the sample size n = 112, we get a margin of error given by
approximately 0.1 ·Y ≈ 0.0583; more precisely, the calculation using the above formula yields
(y∗(0.6092) ± 0.0580).

6.4. Comparison of Estimators

To compare the proposed estimator with the traditional ones, we selected 10 000 times
a sample of size n = 112 and calculated the estimators from it. We note that there are(
365
112

) ≈ 2.5 ·1096 possibilities to choose 112 data points out of a total 365 without replacement.
In Table 2 we show the relative position of the estimators with respect to the

population mean Y . In the 10 000 simulations, our proposed estimator outperformed the
traditional estimators on 4 701 occasions. The ratio estimator, the suggested estimator for this
value of C by [1], performs better than our proposed estimator 2 978 times (in these cases it
is actually the best of the studied estimators; note that the ratio estimator is the worst 1 349
times).

In Table 3, we compare the estimators by looking at the following criteria. The coverage
probability is the proportion of the 90% confidence interval covering the populationmean Y ; as
expected, the usual mean sample estimator yields around 90%, while the ratio estimator and
our proposed estimator yield much higher values—in this simulation, all intervals calculated
from our proposed estimator cover Y . For those 90% confidence intervals that do not cover
Y , we check whether they lie to the left (negative bias) or to the right (positive bias) of Y . We
also state the statistical information lower and upper quartile and median that we get from the
10 000 simulations; we also show violin plots for the estimators (the dashed line indicates the
value Y ; the dotted lines indicate the 90% confidence interval) to get a visual confirmation
of the numbers just presented. In the violin plot, we see that the values obtained by our
proposed estimators yield a narrow normal distribution around the true value (skewness is
0.0046; kurtosis is 2.9926), while the product estimator gives a spread-out distribution and
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Table 3: Comparison of the estimators in 10 000 simulations. See text for details.

Estimator Coverage Neg. bias Pos. bias Lo. quart. Median Up. quart.
y 89.86% 5.14% 5.00% 0.5583 0.5820 0.6062
yR 97.01% 0.12% 2.87% 0.5670 0.5831 0.6017
yP 49.59% 25.44% 24.97% 0.5240 0.5809 0.6410
y∗(0.6092) 100.00% 0.00% 0.00% 0.5732 0.5829 0.5928

0.90.80.70.60.50.40.3

y

yR

yP

y∗(C)

Estimator MSE MSE(y)/MSE(est)
y 0.00127 100%
yR 0.00068 186.68%
yP 0.00755 16.79%
y∗(0.6092) 0.00021 598.93%

the (traditionally preferred) ratio estimator gives a skewed distribution (skewness is 0.5230;
kurtosis is 3.4253). Finally, we compare the values of the MSEs; the experimental values
obtained agree with the theoretical values listed in Table 1.

We infer that our proposed estimator is more efficient and robust than the traditional
sample mean, ratio, and product estimators.

6.5. Outlook

Several authors have proposed efficient estimators using auxiliary information. For example,
Srivastava [11] and Reddy [12] consider a generalisation to the product and ratio estimator

given by y(k) = y(x/X)
k
; Reddy [12] also introduces the estimator yk = y X/(X +k (x−X));

in Sahai and Ray [2] the estimator ykt = y (2− (x/X)k) (where “t” stands for “transformed”)
is considered; Singh and Espejo [6] introduce a certain class of “ratio-product” estimators
having the form yRP (k) = y(k · (X/x) + (1 − k) · (x/X)). Choosing appropriate parameters k
for these estimators and calculating the first-degree approximation of the MSE, one can show
that

MSE1

(
y(−C)) = MSE1

(
yC

)
= MSE1

(
yCt

)
= MSE1

(
yRP

(
C + 1
2

))

=
1 − f

n
S2
Y

(
1 − ρ2

)
.

(6.4)

Thus, these estimators and our proposed estimator (see (3.6)) are equally efficient up to the
first degree of approximation, having the minimal possible MSE for this type of estimators
[3, 4] (i.e., estimators which are given by a product of y and a function of x/X). Indeed, all
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Table 4: Comparison of AOEs in 10 000 simulations. See text for details.

Estimator Coverage Neg. bias Pos. bias Lo. quart. Median Up. quart.
y∗(0.6092) 100% 0% 0% 0.5732 0.5829 0.5928
y(−0.6092) 100% 0% 0% 0.5738 0.5835 0.5935
y0.6092 100% 0% 0% 0.5732 0.5829 0.5928
y0.6092t 100% 0% 0% 0.5719 0.5816 0.5915
yRP (0.8046) 99.99% 0% 0.01% 0.5749 0.5850 0.5953

0.54 0.56 0.58 0.6 0.62 0.64

y∗(C)

y(−C)

yC

yCt

yRP

C + 1
2



Estimator MSE MSE(y)/MSE(est)
y∗(0.6092) 0.000212 598.93%
y(−0.6092) 0.000214 593.91%
y0.6092 0.000212 598.92%
y0.6092t 0.000215 590.51%
yRP (0.8046) 0.000228 555.09%

these estimators give similar results as our proposed estimator in the above application, see
Table 4. Comparing the first degree of approximation of the bias (doing calculations as in
Section 2) reveals why our unbiased AOE y∗(C) and Reddy’s yC behave similarly—they are
both unbiased AOEs:

B
(
y
)
= B1

(
y∗(C)

)
= B1

(
yC

)
= 0, B1

(
yR

)
=

1 − f

n
(1 − C)C2

Xy,

B1
(
yP

)
=

1 − f

n
CC2

Xy, B1

(
y(−C)) =

1 − f

n

C(1 − C)
2

C2
Xy,

B1
(
yCt

)
=

1 − f

n

C(1 − 3C)
2

C2
Xy, B1

(
yRP

(
C + 1
2

))
=

1 − f

n

(1 + 2C)(1 − C)
2

C2
Xy.

(6.5)

(With C = 0.6092, only yCt is negatively biased, compare the quartiles and the box plot in
Table 4).

For our proposed estimator yα,β in (1.4) (which contains the three traditional
estimators, namely, sample mean, product, and ratio estimators), we are able to use the
two parameters α and β to obtain an estimator y∗(C) in (5.3) that is up to first degree of
approximation both unbiased and has minimal MSE. While the idea behind creating yα,β is
simple, the form of the unbiased AOE y∗(C) derived from it is not—and the above list shows
that there are many AOEs, but they are not necessarily unbiased.

A thorough comparison of estimators using auxiliary information (e.g., the one in (1.4)
and the ones mentioned above) involving higher degrees of approximation of MSE and bias
as well as accompanying simulations might be desirable, for example, to find the estimator
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that behaves well if the parameter C is unknown in advance (in which case it may be replace
with its consistent estimate, Ĉ = r ·(ĈY/ĈX), where r is the sample Pearson correlation coefficient
and ĈY and ĈX are the estimates of the coefficients of variation of Y andX, resp.). (Recall that
our analysis in Section 5 shows that the first-degree approximation toMSE and bias for values
of the parameter C close to zero breaks down.)
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