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We show a new method to construct constant slope surfaces with quaternions. Moreover, we give
some results and illustrate an interesting shape of constant slope surfaces by using Mathematica.

1. Introduction

Quaternions were invented by Sir William Rowan Hamilton as an extension to the complex
number in 1843. Hamilton’s defining relation is most succinctly written as

i2 = j2 = k2 = i × j × k = −1. (1.1)

Computing rotations is a common problem in both computer graphics and character
animation. Shoemake [1] introduced an algorithm using quaternions, spherical linear
interpolation (SLERP), and Bezier curves to solve this. Quaternions are used as a powerful
tool for describing rotations about an arbitrary axis. Many physical laws in classical,
relativistic, and quantum mechanics can be written nicely using them. They are also
used in aerospace applications, flight simulators, computer graphics, navigation systems,
visualizations, fractals, and virtual reality.

Kinematic describes the motion of a point or a point system depending on time. If a
point moves with respect to one parameter, then it traces its 1-dimensional path, orbit curve.
If a line segment or a rectangle moves with respect to one parameter, then they sweep their
two- and three-dimensional paths, respectively [2]. So we are thinking of a curve as the path
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traced out by a particle moving in Euclidean 3-space. The position vector of the curve is very
important to determine behaviour of the curve.

The Serret-Frenet formulae for a quaternionic curve in R3 and R4 were given by
Bharathi and Nagaraj in [3].

In the last few years, the study of the geometry of surfaces in 3-dimensional spaces,
in particular of product type M2 × R, was developed by a large number of mathematicians.
Recently, constant angle surfaces were studied in product spaces S2 × R in [4] and H2 × R in
[5, 6], where S2 and H2 represent the unit 2-sphere and hyperbolic plane, respectively. The
angle is considered between the unit normal of the surface M and the tangent direction to R.

Boyadzhiev [7] explored three-dimensional versions of these two properties: surfaces
that are equiangular and those that are self-similar. He investigated the relationships among
these surfaces and gave some examples. Thereafter, Munteanu [8] defined constant slope
surfaces. Such surfaces are those whose position vectors make a constant angle with the
normals at each point on the surface. Munteanu showed that they can be constructed by
using an arbitrary curve on the sphere S2 or an equiangular spiral.

There is also a kinematic generation of these surfaces as follows. Take a logarithmic
spiral and roll its plane along a general cone such that the eye of the spiral sits in the vertex
of the cone. Then the spiral sweeps out a surface with the required property.

More recently, we [9] gave some characterizations of constant slope surfaces and
Bertrand curves in Euclidean 3-space. We found parametrization of constant slope surfaces
for the tangent indicatrix, principal normal indicatrix, binormal indicatrix, and the Darboux
indicatrix of a space curve. Furthermore we investigated Bertrand curves corresponding to
parameter curves of constant slope surfaces.

By the definition of surfaces of revolution, we can see that such surfaces can be
obtained by rotation matrices. Similarly, in this study, we show that constant slope surfaces
can be obtained by quaternion product and the matrix representations M. Subsequently, we
give some results and an example of constant slope surfaces.

2. Preliminaries

The algebra H = {q = a01 + a1i + a2j + a3k : a0, a1, a2, a3 ∈ R} of quaternions is defined
as the four-dimensional vector space over R having a basis {1, i, j, k} with the following
properties:

i2 = j2 = k2 = i × j × k = −1, i × j = −j × i = k. (2.1)

It is clear that H is an associative and not commutative algebra and 1 is identity element of
H.

We use the following four-tuple notation to represent a quaternion:

q = (a0, a1, a2, a3)

= (a0,w)

= a0 + a1i + a2j + a3k,

(2.2)
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where Sq = a0 is the scalar component of q and Vq = {a1, a2, a3} form the vector part and
entire set of q’s is spanned by the basis quaternions:

1 = (1, 0, 0, 0),
i = (0, 1, 0, 0),
j = (0, 0, 1, 0),
k = (0, 0, 0, 1).

(2.3)

We also write q = Sq+Vq. The conjugate of q = Sq+Vq is then defined as q = Sq−Vq.
We call a quaternion as pure if its scalar part vanishes. Summation of two quaternions q =
Sq + Vq and p = Sp + Vp is defined as q + p = (Sq + Sp) + (Vq + Vp). Multiplication of a
quaternion q = Sq+Vqwith a scalar λ ∈ R is defined as λq = λSq+λVq. Quaternion product
is defined in the most general form for two quaternions q = Sq + Vq and p = Sp + Vp as

q × p = SqSp − 〈Vq, Vp〉 + SqVp + SpVq + Vq ∧ Vp, (2.4)

where 〈Vq, Vp〉 and Vq ∧ Vp denote the familiar dot and cross-products, respectively,
between the three-dimensional vectors Vq and Vp. Quaternionic multiplication satisfies the
following properties: for any two quaternions q and p we have q × p = p × q and the
formula for the dot product 〈q,p〉 = (q × p + p × q)/2. In particular, if q = p, we obtain
|q|2 = 〈q,q〉 = q × q. If |q| = 1, then the quaternion q is unitary. The inverse of a quaternion q
is given by

q−1 =
1

|q|2
q, |q|/= 0, (2.5)

and it satisfies the relation q × q−1 = q−1 × q = 1 [10]. If q is a unitary quaternion, we may
write q in the trigonometric form as (cos θ, sin θv), where |v| = 1.

The most important property of quaternions is that they can characterize rotations
in a three-dimensional space. The conventional way of representing three-dimensional
rotations is by using a set of Euler angles {θ, ϕ, u}, which denote rotations about independent
coordinate axes. Any general rotation can be obtained as the result of a sequence of rotations,
as given by ⎡

⎣
x′
y′

z′

⎤
⎦=
⎡
⎣
cosu − sinu 0
sinu cosu 0
0 0 1

⎤
⎦
⎡
⎣

cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

⎤
⎦
⎡
⎣
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦
⎡
⎣
x
y
z

⎤
⎦. (2.6)

Let S ⊂ R3 be the set obtained by rotating a regular plane curve C about an axis in the
plane which does not meet the curve; we shall take xz plane as the plane of the curve and the
z axis as the rotation axis. Let x = g(v), z = h(v), a < v < b, g(v) > 0, be a parametrization
for C and denote by u the rotation angle about the z axis. Thus, we obtain a map

x(u, v) =

⎡
⎣
cosu − sinu 0
sinu cosu 0
0 0 1

⎤
⎦
⎡
⎣
g(v)
0

h(v)

⎤
⎦ =

⎡
⎣
g(v) cosu
g(v) sinu

h(v)

⎤
⎦ (2.7)

from the open setU = {(u, v) ∈ R3 : 0 < u < 2π, a < v < b} into S. We can see that x satisfies
the conditions for a parametrization in the definition of a regular surface. Thus S is a regular
surface which is called a surface of revolution.
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A one-parameter homothetic motion of a rigid body in Euclidean 3-space is given
analytically by

x′ = hAx + C, (2.8)

in which x′ and x are the position vectors, represented by column matrices, of a point X in
the fixed space R′ and the moving space R, respectively; A is an orthogonal 3 × 3-matrix,
C is a translation vector, and h is the homothetic scale of the motion. Also h,A, and C are
continuously differentiable functions of a real parameter t [2].

The map φ acting on a pure quaternion w :

φ : R3 −→ R3, φ(w) = q ×w × q−1 (2.9)

is linear. Without loss of generality we choose |q| = 1 and if q = a0 + a1i + a2j + a3k then

φ(i) =
(
a2
0 + a2

1 − a2
2 − a2

3

)
i + (2a0a3 + 2a1a2)j + (2a1a3 − 2a0a2)k,

φ(j) = (−2a0a3 + 2a1a2)i +
(
a2
0 + a2

2 − a2
1 − a2

3

)
j + (2a0a1 + 2a2a3)k,

φ(k) = (2a0a2 + 2a1a3)i + (2a2a3 − 2a0a1)j +
(
a2
0 + a2

3 − a2
1 − a2

2

)
k,

(2.10)

so that the matrix representation of the map φ is

M =

⎡
⎣
a2
0 + a2

1 − a2
2 − a2

3 −2a0a3 + 2a1a2 2a0a2 + 2a1a3

2a0a3 + 2a1a2 a2
0 + a2

2 − a2
1 − a2

3 2a2a3 − 2a0a1

2a1a3 − 2a0a2 2a0a1 + 2a2a3 a2
0 + a2

3 − a2
1 − a2

2

⎤
⎦. (2.11)

It is not difficult to check that M is orthogonal: MMT = I and detM = 1 so that the linear
map φ(w) = q ×w × q−1 represents a rotation in R3 [11].

Now we give the characterization of constant slope surfaces as the following theorem.

Theorem 2.1. Let r : S → R3 be an isometric immersion of a surface S in the Euclidean 3-space.
Then S is a constant slope surface if and only if either it is an open part of the Euclidean 2-sphere
centered in the origin, or it can be parametrized by

r(u, v) = u sin θ
(
cos ξf(v) + sin ξf(v) ∧ f

′
(v)
)
, (2.12)

where θ is a constant (angle) different from 0, ξ = ξ(u) = cot θ logu, and f is a unit speed curve on
the Euclidean sphere S2 [8].
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3. New Approach

A quaternion function Q(u, v) = cos ξ(u) − sin ξ(u)f′(v) defines a 2-dimensional surface in
S3 ⊂ R4, where f′(v) = (f ′

1(v), f
′
2(v), f

′
3(v)) and |f′| = 1. Thus, for the unitary quaternion

Q(u, v), the matrix representation of the map φ : R3 → R3 is given by

M=

⎡
⎢⎣
cos2ξ+sin2ξ

(
f ′2
1 −f ′2

2 −f ′2
3

)
2 sin ξ

(
cos ξf ′

3+sin ξf
′
1f

′
2

)
2 sin ξ

(
sin ξf ′

1f
′
3−cos ξf ′

2

)

2 sin ξ
(
sin ξf ′

1f
′
3−cos ξf ′

3

)
cos2ξ+sin2ξ

(−f ′2
1 +f ′2

2 −f ′2
3

)
2 sin ξ

(
sin ξf ′

2f
′
3+cos ξf

′
1

)

2 sin ξ
(
sin ξf ′

1f
′
3+cos ξf

′
2

)
2 sin ξ

(
sin ξf ′

2f
′
3−cos ξf ′

1

)
cos2ξ+sin2ξ

(−f ′2
1 −f ′2

2 +f ′2
3

)

⎤
⎥⎦.

(3.1)

We are now ready to show the main result of this study.

Theorem 3.1. Let r : S → R3 be an isometric immersion of a surface S in the Euclidean 3-space.
Then the constant slope surface S can be reparametrized by r(u, v) = Q(u, v) × Q1(u, v), where
“×” is the quaternion product,Q1(u, v) = u sin θf(v) ∈ R3 is a surface and a pure quaternion.

Proof. Since Q(u, v) = cos ξ(u) − sin ξ(u)f′(v) and Q1(u, v) = u sin θ f(v), we obtain

Q(u, v) ×Q1(u, v) =
(
cos ξ(u) − sin ξ(u)f′(v)

) × (u sin θ f(v))

= u sin θ
(
cos ξ(u) − sin ξ(u)f′(v)

) × f(v)

= u sin θ cos ξ(u)f(v) − u sin θ sin ξ(u)f′(v) × f(v).

(3.2)

By using (2.4), we get

f′(v) × f(v) = f′(v) ∧ f(v)

= −f(v) ∧ f′(v).
(3.3)

If we substitute this into the last equation, we have

Q(u, v) ×Q1(u, v) = u sin θ
(
cos ξ(u)f(v) + sin ξ(u)f(v) ∧ f′(v)

)
. (3.4)

Hence applying Theorem 2.1, we find that the constant slope surface is given by

Q(u, v) ×Q1(u, v) = r(u, v). (3.5)

This completes the proof.

As a consequence of this theorem, we get the following important corollary.
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Corollary 3.2. Let M be the matrix representation of the map φ : R3 → R3 for the unitary
quaternionQ(u, v). Then, for the pure quaternion Q1(u, v), we get the constant slope surface as

r(u, v) = MQ1(u, v). (3.6)

We know that a surface of revolution can be obtained by a rotation matrix. Similarly, we view that the
constant slope surface r(u, v) can be obtained by the matrix representationM, too.

Finally we state the following result.

Corollary 3.3. For the homothetic motion Q̃(u, v) = u sin θQ(u, v), the constant slope surface can
be written as r(u, v) = Q̃(u, v) × f(v). Therefore we have

r(u, v) = u sin θMf(v). (3.7)

Now, we give some remarks regarding our Theorem 3.1 and Corollary 3.3.

Remark 3.4. Theorem 3.1 says that both the points and the position vectors on the surface
Q1(u, v) are rotated by Q(u, v) through the angle ξ(u) about the axis Sp{f′(v)}.

Remark 3.5. Corollary 3.3 shows that the position vector of the curve f(v) is rotated by Q̃(u, v)
through the angle ξ(u) about the axis Sp{f′(v)} and extended through the homothetic scale
u sin θ.

4. Example

We give an example of constant slope surfaces and draw its picture by using Mathematica.

Example 4.1. We consider the unit speed spherical curve

f(v) =
1
2

(
cos 2v,

√
3, sin 2v

)
. (4.1)

If the angle is taken θ = π/4 then we have

Q(u, v) = cos
(
logu

)
+
(
sin
(
logu

)
sin 2v, 0,− sin

(
logu

)
cos 2v

)
, (4.2)

Q1(u, v) =

(√
2
4

u cos 2v,
√
6
4

u,

√
2
4

u sin 2v

)
. (4.3)
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Thus, by using (3.1) and (3.6), we get the following constant slope surface:

r(u, v)

=

⎡
⎣
cos2
(
logu

)−sin2(logu) cos 4v sin
(
2 logu

)
cos 2v −sin2(logu) sin 4v

− sin
(
2 logu

)
cos 2v cos

(
2 logu

) − sin
(
2 logu

)
sin 2v

−sin2(logu) sin 4v sin
(
2 logu

)
sin 2v cos2

(
logu

)
+sin2(logu) cos 4v

⎤
⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
4

u cos 2v√
6
4

u√
2
4

u sin 2v

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
4

u cos 2v
(
cos
(
2 logu

)
+
√
3 sin

(
2 logu

))
√
6
4

u cos
(
2 logu

) −
√
2
4

u sin
(
2 logu

)
√
2
4

u sin 2v
(
cos
(
2 logu

)
+
√
3 sin

(
2 logu

))

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(4.4)

Hence, we can give Mathematica code of this constant slope surface as

ParametricPlot3D

[{√
2
4

u cos[2v]
(
cos
[
2 log[u]

]
+
√
3 sin

[
2 log[u]

])
,

√
6
4

u cos
[
2 log[u]

] −
√
2
4

u sin
[
2 log[u]

]
,

√
2
4

u sin[2v]
(
cos
[
2 log[u]

]
+
√
3 sin

[
2 log[u]

])}
,

{
u, 0,

P i

2

}
, {v, 0, P i}

]

(4.5)

and the picture of Q(u, v) ×Q1(u, v) is drawn as follows (Figure 1).

5. Conclusion

By the definition of surfaces of revolution, we can see that such surfaces can be obtained
by rotation matrices for the position vectors of given regular plane curves. Similarly, in this
study, we show that constant slope surfaces can be obtained by quaternion product and the
matrix representations M. Afterwards, we give some results and illustrate an example of
constant slope surfaces by using quaternions and draw its picture by using Mathematica
computer program.
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Figure 1: Constant slope surfaceQ(u, v) ×Q1(u, v), f(v) = (1/2)(cos 2v,
√
3, sin 2v), θ = π/4.
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