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We consider arbitrary angle interactions between spatial solitons and the planar boundary between two optical materials with
a single power-law nonlinear refractive index. Extensive analysis has uncovered a wide range of new qualitative phenomena in
non-Kerr regimes. A universal Helmholtz-Snell law describing soliton refraction is derived using exact solutions to the governing
equation as a nonlinear basis. New predictions are tested through exhaustive computations, which have uncovered substantially
enhanced Goos-Hänchen shifts at some non-Kerr interfaces. Helmholtz nonlinear surface waves are analyzed theoretically, and
their stability properties are investigated numerically for the first time. Interactions between surface waves and obliquely incident
solitons are also considered. Novel solution behaviours have been uncovered, which depend upon a complex interplay between
incidence angle, medium mismatch parameters, and the power-law nonlinearity exponent.

1. Introduction

A light beam impinging on the interface between two
dissimilar dielectric materials is a fundamental optical
geometry [1–12]. After all, the single-interface configuration
is an elemental structure that facilitates more sophisticated
device designs and architectures for a diverse range of
photonic applications. The seminal work of Aceves et al.
[6, 7] some two decades ago considered perhaps the simplest
scenario, where a spatial soliton (i.e., a self-trapped and
self-stabilizing optical beam) is incident on the boundary
between two different Kerr-type materials. Their intuitive
approach reduced the full complexity of the electromag-
netic interface problem to something far more tractable,
namely, the solution a scalar equation of the inhomogeneous
nonlinear Schrödinger (NLS) type. The development of an
equivalent-particle theory [3–6] provided an enormous level
of insight into the behaviour of scalar solitons at material

boundaries. The adiabatic perturbation technique developed
by Aliev et al. [13, 14] provides another toolbox for analyzing
interface phenomena (e.g., light incident on the boundary
between a linear and a nonlinear medium). Photorefractive
[15] and quadratic [16] materials have also been considered.

A recurrent feature of the waves at interfaces literature is
the appearance of the paraxial approximation, which com-
bines the assumptions of broad (predominantly transverse-
polarized) beams and slowly varying envelopes [1–16].
The adoption of this ubiquitous mathematical device can
impose some strong physical constraints that should be
borne in mind when modelling precisely these types of
angular geometries. Indeed, the class of problem at hand
is inherently nonparaxial since impinging beams may be
arbitrarily oblique with respect to the interface. External
refraction (where the refracted beam deviates away from the
interface) provides a specific context where beam refraction
cannot be described using conventional approaches. Paraxial
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wave optics must be applied with care since, in potentially
off-axis regimes, it holds true only where angles (in the
laboratory frame) of incidence, reflection, and refraction
with respect to the reference direction are negligibly (or near-
negligibly) small.

Recently, we proposed the first scalar model of spatial
solitons at interfaces that is valid across the entire angular
range [17, 18]. By respecting the essential role played by
Helmholtz diffraction [19–24], the angular restriction was
lifted while retaining an intuitive and manageable envelope
equation. Preliminary analyses considered bright [17, 18]
and dark [25, 26] spatial solitons incident on the boundary
between dissimilar Kerr-type materials. They focused on
establishing and developing the propagation aspects of our
Helmholtz interfaces approach. By enforcing appropriate
continuity conditions at the interface, a Snell’s law for Kerr
spatial solitons was derived whose validity was tested and
confirmed by extensive numerical computations. Here, we
take the first steps in a systematic study of the materials
aspects of nonlinear beam-interface interactions. The sim-
plest non-Kerr system one might consider is a class of host
media whose refractive index nNL(E) has a generic power-
law dependence on the (complex) electric field amplitude E
[27–29]:

nNL(E) = α

2n0
|E|q, (1)

where α is a positive coefficient, n0 is the linear index (at the
optical frequency), and the exponent q lies within the range
0 < q < 4. Typically, the nonlinear response of the medium is
assumed to be weak so that αE

q
0/n0 � O(1), where E0 is the

peak field amplitude.
Power-law models have played a key role in the theory of

nonlinear waves for the past three decades [30, 31]. Indeed,
[32] provides an excellent review of the fundamental impor-
tance of model (1) in photonics contexts. Materials that fall
into this broad category include some semiconductors (e.g.,
InSb [33] and GaAs/GaAlAs [34]), doped filter glasses (e.g.,
CsSxSex−2 [35, 36]), and liquid crystals [32]. One expects
non-Kerr regimes (where q deviates from the value of 2) to
give rise to a diverse range of new quantitative and qualitative
phenomena. The physical basis for this expectation lies in the
idealized nature of the Kerr response. In a range of materials,
one can often find higher-order nonlinear effects coming into
play. Perhaps the most obvious example of the breakdown
of Kerr-type behaviour is optical saturation, where the
refractive index change becomes bleached in the presence of
sufficiently high-intensity illumination. In such cases, model
(1) with q < 1 can be used to describe generic leading-
order corrections from a saturable (dispersive) nonlinearity
[35, 36].

In this paper, a detailed account is presented of arbitrary-
angle refraction of spatial solitons at the interface between
dissimilar power-law materials. Also of intrinsic interest are
nonlinear surface waves (i.e., localized modes that travel
along the boundary). This fundamental class of excitation
has been the subject of previous power-law studies involving
a single interface [35–39] and guided waves in multilayer

structures (e.g., slab waveguides) [40–43]. Stability char-
acteristics have been inferred from inspection of power-
propagation constant solution branches. However, to the best
of our knowledge, direct verification of such predictions
[37–43] (e.g., through numerical solution of the underlying
nonlinear Helmholtz equation) has been absent from the
literature to date. Rather, computational studies of surface
waves tend to have been in the limit of slowly varying
envelopes and nonlinear Schrödinger-type models, typically
of the diffusive-Kerr [44, 45], thermal [46], or saturable
[47] type. Here, we investigate the stability of exact ana-
lytical Helmholtz surface waves through direct numerical
calculations. As a fairly stringent test of solution robustness,
we also report on some key findings concerning arbitrary-
angle interactions between surface waves and solitons. In
beam-refraction and surface-wave contexts, simulations have
uncovered strikingly distinct behaviours as the exponent
q is varied and across a range of quasi-paraxial and fully
nonparaxial angular regimes.

The layout of this paper is as follows. In Section 2, we
propose a governing equation for scalar optical fields in
two adjoining power-law materials with dissimilar medium
coefficients. Exact analytical bright solitons are presented for
both media, and these solutions are used as a nonlinear basis
to derive a generalized Helmholtz-Snell law. In Section 3,
extensive computations test predictions of the new refraction
law over a range of system parameters. We also extend
our first calculations of the Goos-Hänchen (GH) shifts
[48] in the Helmholtz angular regime [49] with power-
law nonlinearities. Nonlinear surface waves are derived in
Section 4, and simulations provide what appears to be the
first full investigation of the stability properties of this new
class of Helmholtz solution. We conclude, in Section 5, with
some comments about the impact of our results.

2. Helmholtz Model for Scalar
Soliton Refraction

The formalism of Helmholtz soliton theory [23, 24] is now
deployed to develop a framework for describing refraction
phenomena in wider classes of nonlinear optical materials.
This type of modelling approach is valid when the beam
waist w0 is much broader than its free-space carrier wave-
length λ, such that ε ≡ λ/w0 � O(1). Ultranarrow beam
corrections to the governing equation, typically obtained
from single-parameter (i.e., ε-based) order-of-magnitude
analyses of fully-nonlinear Maxwell equations [50–55], are
unnecessary in such regimes.

2.1. Governing Equation. Within the scalar approximation
[19–24], we consider an electric field of the form

E(x, z, t) = E(x, z) exp(−iωt) + E∗(x, z) exp(+iωt), (2)

which is time harmonic with angular frequency ω. The
laboratory space and time coordinates are (x, z) and t,
respectively. In medium j (where j = 1 and 2), it is well
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known that the complex spatial field E(x, z) satisfies the
Helmholtz equation

∂2E

∂z2
+
∂2E

∂x2
+
ω2

c2
n2
j (E)E = 0, (3)

where c is the vacuum speed of light. The refractive
index distribution nj(E) on either side of the boundary is
introduced through n2

j (E) ≡ n2
0 j + αj|E|q, where n0 j is

the linear index at frequency ω and αj is a nonlinearity
coefficient. To facilitate comparison with our earlier work
[17, 18, 25, 26], we look for travelling-wave solutions to
(3) of the form E(x, z) = E0u(x, z) exp(ik1z). Here, E0 is a
(real) scale factor determining electric-field units, u(x, z) is
the dimensionless envelope, and exp(ik1z) biases the solution
in the forward longitudinal direction (taken to be z), where
k1 ≡ n01ω/c is the (linear) propagation constant of the
carrier wave in medium 1. It then follows that u satisfies the
inhomogeneous equation

∂2u

∂z2
+ i2k1

∂u

∂z
+
∂2u

∂x2
+
ω2

c2
α1E

q
0|u|qu

=
[
k2

1

(
1− n2

02

n2
01

)
+
ω2

c2
α1E

q
0

(
1− α2

α1

)
|u|q

]
h(x, z)u,

(4)

where h(x, z) is a Heaviside function that is equal to zero
(unity) in the domain of medium 1 (medium 2). Equation
(4) may be normalized with respect to the parameters in
medium 1, in which case the following governing equation
may be derived without further approximation [17, 18, 56,
57]:

κ
∂2u

∂ζ2
+ i

∂u

∂ζ
+

1
2
∂2u

∂ξ2
+ |u|qu =

[
Δ

4κ
+ (1− α)|u|q

]
h(ξ, ζ)u.

(5)

The dimensionless longitudinal and transverse coordinates
are ζ = z/LD and ξ = 21/2x/w0, respectively, where LD =
k1w

2
0/2 is the diffraction length of a reference (paraxial)

Gaussian beam. The inverse beam width is quantified by
κ = 1/(k1w0)2 = ε2/4π2n2

01 � O(1), where ε ≡ λ/w0, and the

field amplitude scales with E0 = (2n2
01/α1k1LD)

1/q
. Model (5)

is supplemented by the mismatch parameters [17, 18, 25, 26]

Δ ≡ 1− n2
02

n2
01

, (6a)

α ≡ α2

α1
, (6b)

which determine how the linear and nonlinear refractive
properties of the system change as one traverses the bound-
ary.

Equation (5) allows one access to material scenarios
where Δ < 0 (i.e., configurations with n02 > n01) [17,

18, 25, 26]. By contrast, the scalings deployed in classic
paraxial theory [8, 9] restrict those models to consideration
of regimes with Δ > 0. It is also apparent that setting κ ≈ 0
in an attempt to recover the paraxial model is going to lead
to complications when handling the linear mismatch term
Δ/4κ. The physical and mathematical difficulties of interpret-
ing the paraxial approximation as the single-parameter limit
κ ≈ 0 have been discussed at length elsewhere [23, 24]; it is
particularly well illustrated by interface geometries.

2.2. Solitons as a Nonlinear Basis. When investigating the re-
fraction of nonlinear light beams at material boundaries, it
is essential to have an appropriate set of basis functions with
which to formulate the problem. Such a basis is provided by
the underlying exact analytical Helmholtz solitons [56]. In
the following analysis, we align the interface along the z axis
so that it is located at transverse position x = 0. Medium 1
(the domain of the incident beam, where h = 0) is taken to
occupy the half-plane −∞ ≤ x < 0, while medium 2 (the
domain of the refracted beam, where h = +1), occupies 0 ≤
x ≤ +∞.

In medium 1, the governing equation (5) becomes

κ
∂2u

∂ζ2
+ i

∂u

∂ζ
+

1
2
∂2u

∂ξ2
+ |u|qu = 0. (7)

Sufficiently far from the interface, (7) admits exact analytical
solitons of the form [56]

u(ξ, ζ) = η0sech2/q

⎛
⎝a ξ −Vincζ√

1 + 2κV 2
inc

⎞
⎠

× exp

[
±i

√√√ 1 + 4κβ0

1 + 2κV 2
inc

(
Vincξ +

ζ

2κ

)]

× exp
(
−i

ζ

2κ

)
,

(8a)

where η0 is the peak amplitude of the beam, a = q[η
q
0/(2 +

q)]1/2 determines the (inverse) solution width, and

β0 = 2
η
q
0

2 + q
(8b)

quantifies nonlinear phase shift through the (typically
small) quantity 4κβ0. The ± sign flags evolution in the
forward/backward longitudinal direction. The propagation
angle of the beam in the laboratory (i.e., the (x, z)) frame,
denoted by θinc and measured with respect to the z axis,
is related to the transverse velocity parameter Vinc through
tanθinc = (2κ)1/2Vinc [23, 24]. In medium 2, u satisfies

κ
∂2u

∂ζ2
+ i

∂u

∂ζ
+

1
2
∂2u

∂ξ2
− Δ

4κ
u + α|u|qu = 0, (9)
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Figure 1: Schematic diagram illustrating (a) internal (θref < θinc) and (b) external (θref > θinc) refraction in the laboratory frame. The
transparency condition (θref = θinc) is shown in part (c). External refraction regimes tend to be highly angular and cannot be adequately
described by the paraxial approximation.

and one may derive similar families of solitons,

u(ξ, ζ) = η0sech2/q

⎛
⎝a√α ξ −Vrefζ√

1 + 2κV 2
ref

⎞
⎠

× exp

[
±i

√√√1− Δ + 4κβ0α

1 + 2κV 2
ref

(
Vrefξ +

ζ

2κ

)]

× exp
(
−i

ζ

2κ

)
.

(10)

Note that the connection between transverse velocity Vref

and propagation angle θref, that is, tanθref = (2κ)1/2Vref, is
unaffected by the (additional, linear) term Δ/4κ in (9) or by
the nonlinear coefficient α. The geometry of these solitons,
and their inherent stability against perturbations to the local
beam shape, was explored in detail in [56].

2.3. Phase Continuity and Refraction. In recent analyses, we
have shown that arbitrary-angle refraction is well described
by anticipating that the phase distribution of the light be
continuous across the interface [17, 18, 25, 26]. Matching
the phases of solutions (8a) and (10) at x = 0 leads to the
requirement that

±
√√√ 1 + 4κβ0

1 + 2κV 2
inc
= ±

√√√1− Δ + 4κβ0α

1 + 2κV 2
ref

. (11)

Hence, continuity is possible if and only if the incident and
refracted solitons share a common longitudinal sense (i.e.,
both must be in either the forward or backward directions).
By rearranging (11), one can show that Vref is related to Vinc

through

V 2
ref = V 2

inc −
1

2κ

(
1 + 2κV 2

inc

1 + 4κβ0

)[
Δ + 4κβ0(1− α)

]
. (12)

Expressed in this way, (12) provides a helpful form “V 2
ref =

V 2
inc + deviation,” where the sign of the deviation can be

analysed separately. It is then instructive to define a net
mismatch parameter δ as [17, 18]

δ ≡ Δ + 4κβ0(1− α). (13)

This parameter can be interpreted as the sum of linear and
nonlinear mismatches in material parameters. Its sign fully

characterizes beam refraction. When δ > 0, one has that
V 2

ref < V 2
inc, which is equivalent to θref < θinc. This regime

is referred to as internal refraction, and it corresponds to the
situation where the beam in medium 2 is deviated toward
the interface (see Figure 1(a)). Conversely, δ < 0 implies that
V 2

ref > V
2
inc or, equivalently, θref > θinc. This external refraction

regime corresponds to the beam in medium 2 being bent
away from the interface (see Figure 1(b)). The special case
of δ = 0 is the transparency condition, where linear and
nonlinear index mismatches oppose each other exactly so
that V 2

ref = V 2
inc (or θref = θinc). The interface is thus

essentially transparent to the incident beam (see Figure 1(c)),
which experiences no net change in dielectric properties as it
crosses the boundary. It is interesting to note that the absence
of an interface provides a parameter subset (i.e., Δ = 0 and
α = 1) that satisfies the transparency condition identically.

2.4. The Helmholtz-Snell Law for Spatial Solitons. By recog-
nizing the rotational symmetry inherent to Helmholtz spatial
solitons [23, 24, 56], it becomes clear that “forward” and
“backward” designations are arbitrary. The only physical
distinction between the two families is the propagation
direction relative to the observer. By deploying trigonometric
identities to eliminate velocities Vinc and Vref, the forward
and backward solutions in each medium may be written as

u(ξ, ζ) = η0sech2/q
[
a
(
ξ cos θinc − ζ√

2κ
sin θinc

)]

× exp

⎡
⎣i

√
1 + 4κβ0

2κ

(
ξ sin θinc +

ζ√
2κ

cos θinc

)⎤⎦

× exp
(
−i

ζ

2κ

)
,

(14a)

and

u(ξ, ζ) = η0sech2/q
[
a
√
α
(
ξ cos θref − ζ√

2κ
sin θref

)]

× exp

⎡
⎣i

√
1− Δ + 4κβ0α

2κ
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×
(
ξ sin θref +

ζ√
2κ

cos θref

)]

× exp
(
−i

ζ

2κ

)
.

(14b)

In this representation, the angles are bounded by
−180◦ < θinc, ref ≤ +180◦ with respect to the z-axis.
By matching the solution phase at ξ = 0, one can
obtain a compact Helmholtz-Snell refraction law involving
laboratory-frame angles:

γn01 cos θinc = n02 cos θref, (15a)

where

γ ≡
[

1 + 4κβ0

1 + 4κβ0α(1− Δ)−1

]1/2

. (15b)

It is worthwhile noting that (15a) has a form which is
almost exactly identical to that encountered when studying
the classic electromagnetic problem of plane wave refraction
at the boundary between different linear dielectrics. Thus,
the single correction factor γ captures the interplay between
finite-waist beams (through the appearance of κ) and
discontinuities in both the linear and nonlinear properties
of the adjoining media. The exponent q appears implicitly
through β0.

When a beam encounters the boundary with a rarer
medium, there is little penetration of light across that
boundary until the incidence angle exceeds a critical value,
denoted by θcrit. At criticality, where θinc = θcrit, the trajectory
of the incident beam is deviated so that, in principle, the
outgoing beam travels along the interface (i.e., θref = 0).
Applying this condition to law (15a) and (15b) leads to
an analytical prediction for θcrit in terms of the mismatch
parameters Δ and α and also the solution parameter 4κβ0:

tan θcrit =
[
Δ + 4κβ0(1− α)
1− Δ + 4κβ0α

]1/2

. (16)

In practice, one rarely finds the refracted soliton travelling
along the interface boundary since other effects tend to
appear (we will return to this point later).

2.5. Universal versus Specific Representations. There is clearly
a universal flavour about (12), (13), (15a), (15b) and (16).
For instance, there is no explicit mention of the system
nonlinearity so that refraction is fully described by the
mismatch parameters Δ and α and the beam parameter
4κβ0. These equations are, in fact, more general than they
first appear; for instance, laws of exactly the same structure
govern the refraction of plane waves in power-law materials:
a wave with real amplitude u0 has β0 ≡ u

q
0 (it is noteworthy

that the refraction analysis for plane waves does not capture
the modulational instability of such solutions in the single
power-law context [58]).

The power-law nature of the problem becomes apparent
after one substitutes for β0 from (8b). The γ factor (c.f. (15b))
then becomes

γ =
[

1 + 8κη
q
0

(
2 + q

)−1

1 + 8κη
q
0α
(
2 + q

)−1(1− Δ)−1

]1/2

, (17a)

while the relation for the critical angle (c.f. (16)) is given by

tan θcrit =
[
Δ + 8κη

q
0

(
2 + q

)−1(1− α)

1− Δ + 8κη
q
0α
(
2 + q

)−1

]1/2

, (17b)

and the net mismatch parameter (c.f. (13)) is δ = Δ +
8κη

q
0(1− α)/(2 + q).

3. Simulations of Solitons at
Power-Law Interfaces

The Helmholtz type of off-axis nonparaxiality demands that
the inequalities κ � O(1) and 4κβ0 � O(1) are always
met, which is equivalent to the simultaneous requirements
of broad beams with moderate intensities, respectively [23,
24, 56]. Here, attention is restricted to configurations where
the mismatch parameters are relatively small, typically α =
O(1) and |Δ| � O(1). We now proceed with a three-
stage analysis. The simplest case to consider first is that of
linear interfaces. We then move on to investigate nonlinear
interfaces and conclude by noting the dependence of GH
shifts [48, 49] on the nonlinearity exponent q. Stable solitons
of the homogeneous power-law Helmholtz model tend to
exist in the continuous interval 0 < q < 4 [27, 56]. For
definiteness, we consider here only three discrete values: q =
1 (sub-Kerr), 2 (Kerr), and 3 (super-Kerr).

3.1. Solitons at Linear Interfaces. From (13), linear interfaces
are defined by the inequality 4κβ0|1 − α| � |Δ|. To isolate
the effects of a linear-index change alone, we set α = 1.0
so that δ = Δ. One therefore finds the existence of a
critical angle in regimes where Δ > 0 (since n02 < n01).
The following simulations consider q = 1. Figure 2 shows
generally good agreement between theoretical predictions
and full numerical calculations when κ = 2.5×10−3; the level
of agreement is improved even further when κ = 1.0× 10−4.

The fact that smaller values of κ give rise to better theory-
numerics agreement, despite the increased magnitude of the
linear-interface perturbation term at Δ/4κ, invites comment.
We suspect that one possible explanation may lie in the
origin of the Helmholtz-Snell law, whereby one matches
solution phase (but not amplitude) at the boundary: the
matching condition thus takes no account of amplitude
curvature. In the laboratory frame, broader beams (i.e.,
those characterized by smaller κ values) tend to have lower
amplitude curvature, and the corresponding spatial solitons
(which play the role of nonlinear basis functions) thus map
much more consistently onto the inherent assumptions of
the analytical approach.

Upon crossing the interface, the refracted soliton may
suffer small oscillations (in its amplitude, width, and area)
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Figure 2: Comparison of the theoretical Snell’s law given by (15a)
and (15b) (lines) against full numerical computations (points) for
a unit-amplitude (η0 = 1.0) spatial soliton at a linear interface (α =
1.0) with q = 1 and when (a) κ = 2.5×10−3 and (b) κ = 1.0×10−4.
Curves below (above) the θref = θinc line have Δ > 0 (Δ < 0), so that
the refraction is internal (external).

reminiscent of those reported in previous studies [56], and be
accompanied by a radiation pattern. Computations [59] have
verified the effective independence of the refraction angle θref

with respect to the incident amplitude η0. Accordingly, the
curves in Figure 2 are essentially insensitive to q; they are
quantitatively very similar to those obtained for q = 2 [10]

and (when θinc is sufficiently above θcrit in internal-refraction
regimes) for q = 3.

Any interaction between a spatial soliton and an interface
generally involves three distinct components: a reflected
beam, a refracted beam (sometimes more than one), and
radiation. The way in which the incident energy is distributed
amongst these components depends on a complicated
interplay between the interface and beam parameters, and
also the incidence angle. At very small angles (e.g., θinc <
1◦), the interaction can be highly inelastic and nonadiabatic
(especially in external refraction regimes). Crucially, the
single refracted soliton (as predicted in Section 2) dominates
as θinc approaches even modest nonparaxial angles, with
reflected and radiation components hardly excited at all. The
Helmholtz-Snell law embodied by (15a) and (15b) is, of
course, most valid in such regimes.

3.2. Solitons at Nonlinear Interfaces. Nonlinear interface
effects dominate beam refraction when 4κβ0|1 − α| 

|Δ|. Without loss of generality, we isolate such effects by
setting Δ = 0 so that the net mismatch parameter is given
by δ = 4κβ0(1 − α) = 8κη

q
0(1 − α)/(2 + q). Refraction

thus becomes far more sensitive to κ in nonlinear regimes
(compare this to linear regimes, where δ = Δ is independent
of κ). Theoretical predictions are shown in Figure 3. While
there is generally good agreement with numerics for both
κ = 2.5 × 10−3 and κ = 1.0 × 10−4 when α ≈ 1.0, the
fit becomes less reliable for α = 2.0 and α = 0.3. For such
parameters, the nonlinear refractive index change across the
boundary is no longer small: one cannot expect to find such
a close match because of strong nonlinear effects (e.g., beam
splitting and radiation phenomena). While the fit is clearly
better for broader beams (κ = 1.0 × 10−4), the Helmholtz-
Snell predictions for narrower beams (κ = 2.5 × 10−3) are
still in good qualitative agreement.

Detailed attention is first paid to regimes with α > 1
(external refraction, since δ < 0), where the nonlinearity
is stronger in the second medium. Since the width of the
refracted soliton is proportional to α−1/2, it follows that the
beam must become narrower as it crosses the interface. In
this type of material regime, the incident soliton always has
sufficient energy flow to excite a self-trapped soliton-like
state in medium 2.

Simulations have shown that nonlinear external refrac-
tion tends to induce stronger oscillations in the parameters
(amplitude, width, and area = amplitude × width) of the
outgoing beam than in the linear case. Such oscillations
are not captured by the adiabatic analysis in Section 2
(which anticipates a stationary state), but one expects their
appearance intuitively. Qualitatively different effects can
appear at quasi-paraxial incidence angles as the exponent
q is varied; an illustrative example is shown in Figure 4
for θinc = 3◦ when α = 2.0. A unit-amplitude soliton
exhibits a pronounced splitting phenomenon when q = 1
(see Figure 4(b)), whereby the field distribution in the second
medium is shared between a dominant externally refracted
beam (as predicted by analysis) and a weaker internally
refracted component (there is also a low-amplitude reflected
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Figure 3: Comparison of the theoretical Snell’s law given by (15a)
and (15b) (lines) against full numerical computations (points) for a
unit-amplitude (η0 = 1.0) spatial soliton at a nonlinear interface
(Δ = 0) with q = 1 and when (a) κ = 2.5 × 10−3 and (b)
κ = 1.0× 10−4. Curves below (above) the θref = θinc line are labelled
by the right-hand (left-hand) legend and have α < 1 (α > 1)
so that refraction is internal (external). Note that the numerical
datapoints for α = 0.3 and α = 0.5 are very close together in both
panes.

component in the form of radiation modes). Since the
internally refracted beam carries away some of the momen-
tum of the incident beam, it follows that the dominant
refracted beam travels at a smaller angle than that predicted
by (15a) and (15b). This type of splitting is not present
for unit-amplitude solitons with q = 2 (see Figure 4(b)),
though it may appear for incident solitons with higher peak
intensities [60]. In such cases, the properties of the daughter
solitons may be quantified with recourse to inverse scattering
techniques. Splitting is also absent at q = 3 (see Figure 4(c)),
though one finds quite a complicated radiation ripple pattern
in the second medium.

Refraction in nonparaxial regimes tends to be a much
cleaner process, with little radiation generated by the beam-
interface interaction in comparison with quasi-paraxial
regimes. Even at modest angles (e.g., θinc = 30◦), where the
interface perturbation is distributed over a relatively short
interaction length, the quantitative characteristics of the
outgoing beam depend crucially on the power-law exponent.
Both the depth of modulation and (longitudinal spatial)
frequency of the oscillations tend to increase with q, as shown
in Figure 5(a). When q = 2, the oscillations tend to vanish in
ζ ; for q = 1 and 3, they survive in the long-term evolution
(this is also true for the oscillations shown in Figure 4(a)).
A more detailed comparison of how the q affects beam
refraction is presented in Figures 5(b)–5(d).

For material combinations with α < 1 (internal refrac-
tion, since δ > 0), the nonlinearity is weaker in the
second medium. In that case, one should expect a critical
angle to exist (in accordance with (17b)). If the incident
soliton survives the interaction with the interface, then the
refracted beam may be expected to undergo self-reshaping
oscillations in its parameters, with the overall trend being
toward an increase in solution width. Simulations have
confirmed this to be the case, with diffractive broadening
generally accompanied by a reduction in peak amplitude
(see Figure 6(a))—these oscillations are reminiscent of those
uncovered previously for perturbed initial-value problems
[56].

Computations have uncovered a range of q-dependent
effects, an illustrative sample of which is shown in Figure 6
for beams with κ = 2.5 × 10−3, a nonparaxial incidence
angle θinc = 30◦, and a nonlinear mismatch of α = 0.5. The
(longitudinal spatial) frequency of the reshaping oscillations
tends to decrease with increasing q (c.f., the increase with
q when α > 1). Also at higher q values (e.g., for q = 3),
a threshold phenomenon can appear whereby the energy-
flow [56] of the incident soliton may not be great enough
to excite a refracted beam (if the energy flows associated
with solutions (8a) and (10) are denoted by Winc and Wref,
respectively, then it can be shown that Wref ≈ Winc/α1/2).
This instability is shown in Figure 6(d): upon colliding with
the interface, the beam breaks up into radiation (this scenario
is also present at quasi-paraxial incidence angles above the
critical angle θcrit).

3.3. Snaking at Nonparaxial Angles. Equations (15a) and
(15b) show that, at nonlinear interfaces, the refraction
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Figure 4: External refraction of a unit-amplitude (η0 = 1.0) spatial soliton at a nonlinear interface with α = 2.0 and a quasi-paraxial
incidence angle θinc = 3◦ when κ = 2.5 × 10−3. (a) Evolution in ζ of the peak amplitude |u|m of the beam. (b), (c), and (d) show the full
numerical solution |u(ξ, ζ)| of (5) when the nonlinearity exponent is q = 1, 2, and 3, respectively.

angle must depend on q (a prediction supported by simple
inspection of Figures 4, 5, and 6). At this point, it also
becomes instructive to consider the trajectory of refracted
beams more carefully. Detailed numerical calculations reveal
that at quasi-paraxial incidence angles, the beam in the
second medium tends to follow a straightline path. Such a
simple notion of refraction, founded upon intuition from
plane wave theory, is illustrated in Figure 7(a) for a nonlinear
interface with α = 2.0 and a beam with θinc = 3◦

and κ = 2.5 × 10−3. However, if the incidence angle is
increased into the nonparaxial domain (e.g., θinc = 30◦), a
qualitatively different picture emerges. Now, the straightline
path ξ − Vrefζ = 0 predicted by solution (10) defines an
average trajectory about which the refracted beam “snakes.”
Figure 7(b) quantifies this snaking effect for the external
refraction simulations shown in Figures 5(b)–5(d). Snaking
is more apparent with sub-Kerr nonlinearities (i.e., where
q < 2), and it increases for narrower beams (i.e., larger
values of κ) at a fixed amplitude (see Figure 8(a), where
η0 = 1.0). Beams with larger amplitudes also exhibit snaking,

but oscillations tend to be more rapid in the longitudinal
direction (see Figure 8(b)).

The snaking phenomenon is most pronounced in
regimes with α > 1, where the nonlinearity is stronger in the
second medium. There is also an intrinsic dependence on θinc

that can be seen in Figure 7. For small angles of incidence,
the incoming soliton experiences an interface perturbation
that is distributed over a relatively long distance. The
refracting beam is able to accommodate the inhomogeneity
in the system since changes in focusing properties of the
host medium occur gradually in the longitudinal direction.
For larger-incidence angles, the effective beam-interface
interaction length may be much shorter. Solitons impinging
on the boundary then exhibit a sharp (rather than a gradual)
perturbation whose action is to induce sustained oscillations.

3.4. Goos-Hänchen Shifts at Power-Law Interfaces. Recently,
GH shifts [48] have been investigated within the context of
Helmholtz spatial solitons at Kerr-type material interfaces
[49]. These shifts describe the translation in the trajectory



Journal of Atomic, Molecular, and Optical Physics 9

0 5 10 15 20
0.8

1

1.2

1.4

1.6

1.8

2

ζ

−5

q = 1
q = 2
q = 3

|u
| m

(a)

−5 0 5 10 15 20
10

5

0

−10

−5

ζ

ξ

(b)

−5 0 5 10 15 20
10

5

0

−10

−5

ζ

ξ

(c)

−5 0 5 10 15 20
10

5

0

−10

−5

ζ

ξ

(d)

Figure 5: External refraction of a unit-amplitude (η0 = 1.0) spatial soliton at a nonlinear interface with α = 2.0 and a nonparaxial incidence
angle θinc = 30◦ when κ = 2.5 × 10−3. (a) Evolution in ζ of the peak amplitude |u|m of the beam. (b), (c), and (d) show the full numerical
solution |u(ξ, ζ)| of (5) when the nonlinearity exponent is q = 1, 2, and 3, respectively.

of a reflected beam relative to its position as predicted
by geometrical optics. Extensive numerical investigations
considered the interplay between incidence angle θinc, mate-
rial mismatches (Δ,α), and the nonparaxial parameter κ.
Radiation-induced trapping was found to play a key role
in determining the magnitude of the shift. Also uncovered
were giant external GH shifts (in regimes with δ > 0 but
where the second medium has a weaker nonlinearity (i.e.,
α < 1)). While a similar investigation of GH shifts in the
power-law context is certainly outside our current scope, a
small selection of results will now be presented to illustrate
how they depend upon the nonlinearity exponent q.

We begin by considering linear interfaces and unit-
amplitude incident solitons with κ = 2.5 × 10−3. According
to (16), interfaces with Δ = 0.0025 have a theoretical critical
angle of θcrit ≈ 2.86◦ (this value depends only very weakly on
q). Figure 9(a) gives a representative set of results. Inspection
shows that, for any θinc, the magnitude of the shift is generally
greater for systems with q = 1 than for q = 2 or q = 3.
The true critical angle (which can only be found through
full simulations) is also slightly greater than that predicted
by theory (for q = 1 and q = 2, θcrit ≈ 3.016◦ and θcrit ≈

3.030◦; both angles exceed their theoretical values of θcrit ≈
2.857◦ and θcrit ≈ 2.859◦, respectively). While the qualitative
behaviour of systems with q = 1 and q = 2 is largely very
similar, strong qualitative differences have been uncovered in
the case of q = 3. As θinc approaches the theoretical critical
angle, the incident soliton often becomes unstable against the
interface perturbation. Large amounts of radiation tend to be
generated by the interaction (c.f. Figure 9(d)), so that there
is essentially no reflected or refracted beam and a GH shift is
thus not easily quantifiable (or even meaningful). However,
when θinc is sufficiently above θcrit, the refraction angle is still
well described by theory.

GH shifts at nonlinear interfaces have also been analyzed;
results are presented in Figure 10 for α = 0.7 and where
system nonlinearity has been augmented by considering
incident solitons with η0 = 2.0. Regimes with Δ =
−0.001 and Δ = −0.0025 are associated with linear
external refraction, while (13) shows that δ > 0 (i.e.,
for these parameter sets, net refraction is internal so that
a critical angle should still exist). One general trend to
emerge is that the true critical angle is slightly less than
the theoretical value (c.f. linear interfaces of Figure 9, where
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Figure 6: Internal refraction of a unit-amplitude (η0 = 1.0) spatial soliton at a nonlinear interface with α = 0.5 and a nonparaxial incidence
angle θinc = 30◦ when κ = 2.5 × 10−3. (a) Evolution in ζ of the peak amplitude |u|m of the beam. (b), (c), and (d) show the full numerical
solution |u(ξ, ζ)| of (5) when the nonlinearity exponent is q = 1, 2, and 3, respectively.

the true critical angle slightly exceeds theory). However,
it is worth noting that the qualitative behaviour predicted
by (16), namely that θcrit increases with q, is supported
by numerics. Close to the (true) critical angle, simulations
show that there is a strong divergence in the GH shift
(which becomes highly sensitive to θinc). Two other gen-
eral trends are that (i) GH shifts are larger (sometimes
notably) for q = 1 than for q = 3; (ii) in nonlinear
regimes, the GH shifts depend more strongly on q than
for the case of linear interfaces (compare Figure 10 to
Figure 9(a)).

Figure 10(b) reveals new types of behaviour at power-
law interfaces when q /= 2. In particular, for q = 3 one
enters a regime wherein the GH shift no longer increases
monotonically with θinc; instead, there is a marked decrease
in the shift before the divergence at θinc ≈ θcrit sets in.
These results provide clear evidence that one can, quite
reasonably, expect to find new qualitative phenomena in
material regimes that deviate from the idealized Kerr-type
response.

4. Helmholtz Nonlinear Surface Waves

Surface waves are well known in nonlinear photonics,
being stationary localized light states that travel along the
interface between different media. The transverse mode
profiles are typically asymmetric due to the differences
in dielectric properties defining the interface. We now
derive the surface modes of model (5) using solitons
(8a) and (10) as a nonlinear basis. These new solu-
tions are most conveniently parameterized by β, which is
related to the propagation constant in paraxial theory [27,
56].

4.1. Exact Analytical Solutions. To proceed, one seeks solu-
tions to (5) of the form u(ξ, ζ) = F(ξ − ξj) exp(ikζζ)
exp(−iζ/2κ), where kζ is the propagation constant and F(ξ−
ξj) is the (real) envelope profile that is centred on ξj . After
substituting for u and defining κk2

ζ − 1/4κ ≡ β, it can be
shown that in medium 1
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For a nonlinearity exponent q, the surface waves associated
with any given interface are parameterized solely by β.
The displacements ξ1 and ξ2, as yet undetermined, can be
found by considering the auxiliary equations that arise from
respecting continuity of u and its normal derivative (here
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Figure 9: Demonstration of the GH shift for a unit-amplitude (η0 = 1.0) spatial soliton at a linear interface with Δ = 0.0025 and when
κ = 2.5× 10−3. (a) Variation of the GH shift with changing nonlinearity exponent q (the q = 3 results (inset) closely follow those for q = 2
until radiation effects come into play more strongly). (b), (c), and (d) show the full numerical solution |u(ξ, ζ)| of (5) when q = 1, 2 and
3, respectively (note that, over longer propagation lengths, the solution in (d) breaks up into radiation). The incidence angle in (b), (c), and
(d) is θinc = 3.016◦, which exceeds the (almost q-independent) critical angle θcrit ≈ 2.86◦.

∂u/∂ξ or, equivalently, dF/dξ) across the interface. These
conditions lead to

sech2/q
(
q√
2
β1/2ξ1

)
=
[

1
α

(
1 +

Δ

4κβ

)]1/q

× sech2/q

⎡
⎣ q√

2
β1/2

(
1 +

Δ

4κβ

)1/2

ξ2

⎤
⎦,

(19a)

tanh
(
q√
2
β1/2ξ1

)
=
(

1 +
Δ

4κβ

)1/2

× tanh

⎡
⎣ q√

2
β1/2

(
1 +

Δ

4κβ

)1/2

ξ2

⎤
⎦,

(19b)

respectively. After some algebraic manipulation of (19a) and
(19b), one finds that
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√

2
q
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(20a)
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where the parameters δ and μ are given by δ ≡ [Δ/4κβ(α −
1)]1/2 and μ ≡ [(Δ/4κβ)(1 + Δ/4κβ)−1 (1− 1/α)−1]1/2.

4.2. Surface Wave Existence Criterion. For displacements ξ1

and ξ2 to be real, it must be that 0 < δ2 < 1 and 0 <
μ2 < 1. These two simultaneous requirements lead to a third
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Figure 10: Numerical calculation of the GH shift for incident
spatial solitons with η0 = 2.0 at a nonlinear interface with α = 0.7,
(a) Δ = −0.001, and (b) Δ = −0.0025 when κ = 2.5 × 10−3 (inset
shows the behaviour of the shift for q = 3 around the minimum).

inequality placed on the product 4κβ, namely, 4κβ > 4κβmin,
where

4κβmin = Δ

α− 1
(21)

(it is interesting to note that 4κβmin is independent of
q). Thus, existence criterion (21) for Helmholtz surface
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Figure 11: Nonlinear surface wave profiles for κ = 2.5× 10−3 in (a)
regime 1 (with Δ = 0.005 and α = 2.0) and (b) regime 2 (with Δ =
−0.005 and α = 0.5). From (21), one has that 4κβmin = 0.005 and
hence βmin = 0.5 for the solutions in (a), while 4κβmin = 0.01 and
hence βmin = 1.0 in (b). In these profiles, β = 2.0 so that β > βmin

in each case. The + and − signs in the legends refer to the choice of
sign solution in (20a) and (20b).

waves explicitly involves the (inverse) beam size through the
appearance of κ. Since 4κβ must remain positive, it follows
that surface modes are supported in two distinct parameter
regimes: (i) regime 1: Δ > 0 and α > 1 (i.e., n2

02 < n2
01 and

α2 > α1) and (ii) regime 2: Δ < 0 and 0 < α < 1, (i.e.,
n02 > n01,α2 < α1). We mention, in passing, that (21) is
reminiscent of the existence criterion derived by Aceves et
al. [8]; it differs through the explicit appearance of κ. Typical
surface wave profiles are shown in Figure 11.
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Figure 12: Power curves as a function of the propagation constant
β, obtained from (22) with κ = 2.5 × 10−3. (a) Regime 1 with
Δ = 0.005 and α = 2.0 and (b) regime 2 with Δ = −0.005 and
α = 0.5. The + and − signs in the legends refer to the choice
of solution in (20a) and (20b). Lower (upper) solution branches
appear as red (blue) lines, and each branch generally satisfies the
VK stability criterion [61].

4.3. Solution Families and Wave Power. For both forward-
and backward-propagating surface waves, there exist two
solution families. The origin of this duality lies in solving
simultaneous equations (19a) and (19b), where one is
eventually obliged to find the roots of quadratic equations.
Figure 11 reveals that, for fixed (Δ, α, β), the profile depends
strongly on the nonlinearity exponent q. That is, the peak
amplitude, width, and area all decrease with increasing
q. The difference between the two peak amplitudes and
the distance of each solution peak from the interface also
decrease with increasing nonlinearity exponent.

Since the surface wave profiles differ, it is plausible that
the two families will not share the same stability properties.
We begin an analysis of Helmholtz solutions (18a) and (18b)
by considering the power P, where

P
(
β; q

) ≡
∫ +∞

−∞
dξ
∣∣u(ξ, ζ)

∣∣2, (22)

as a function of the free parameter β for different values
of the nonlinearity exponent q. The energy-flow invariant
W [56] is related to P through W(β) = ±(1 + 4κβ)1/2P(β),
where the ± sign here corresponds to forward- or backward-
propagating envelopes (being distinct from the sign choice
in (20a) and (20b)). A representative set of curves is shown
in Figure 12, where it can be seen that P(β) comprises two
branches. In regime 1 (where Δ > 0 and α > 1), the lower
(upper) branch corresponds to the −(+) sign in (20a) and
(20b). This situation is reversed for regime 2 (where Δ <
0, 0 < α < 1), in which the lower (upper) branch corresponds
to the +(−) sign (see Figure 11). We note that for lower-
branch solutions, the peak of the surface wave always resides
in whichever medium has the lower linear refractive index.

Global trends in the parameter dependence of the modes
profiles can be readily identified and discussed in the context
of the two solution branches. For instance, one might
fix Δ, β, and κ and consider the effect of varying α. In
regime 1, one finds that upon increasing α, the upper-
branch solutions tend to retain their shape while the lower-
branch solutions experience a decrease in amplitude, width,
and area. The separation between the pair of solutions also
becomes greater, with each localized wave moving away from
the interface. As α is increased in regime 2, the lower-branch
solutions tend to retain their shape while the upper-branch
solution exhibits decreases in amplitude, width, and area.
Also, the separation between the solutions tends to decrease
with increasing α (so that the solutions move toward the
boundary).

4.4. Surface Wave Stability. Except near the intersection
point (where β ≈ βmin), both P(β) branches satisfy the classic
Vakhitov-Kolokolov (VK) criterion for stability; namely,
dP/dβ > 0 [61]. Extensive simulations have revealed that
lower-branch solutions always tend to remain self-trapped
within the vicinity of the interface (so long as dP/dβ >
0) evolving with a stationary profile over arbitrarily long
distances.

Upper-branch solutions tend to display a spontaneous
instability in finite ζ . A set of typical results is shown
in Figure 13 for regime 1 with Δ = 0.005 and α =
2.0, where the input wave is localized predominantly in
medium 1 (compare with Figure 11(a)). The initial stages of
evolution appear to be stationary, but instability sets in after
a finite propagation length. The unstable solution deviates
spontaneously into medium 2, crossing the boundary and
shedding radiation in the process. The beam in medium
2 undergoes narrowing since α > 1. For fixed interface
and solution parameters, the instability growth rate clearly
increases with q. However, the angular deviation of the
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Figure 13: Spontaneous instability of nonlinear surface waves lying on the upper solution branch of Figure 12(a), where κ = 2.5× 10−3 and
β = 2.0 (interface mismatch parameters are Δ = 0.005 and α = 2.0). (a) Evolution in ζ of the peak amplitude |u|m of the beam. (b), (c), and
(d) show the full numerical solution |u(ξ, ζ)| of (5) when the nonlinearity exponent is q = 1, 2, and 3, respectively. Note that the profiles of
the input waves in (b) and (d) correspond to the upper-branch solutions shown in Figure 11(a).

(reshaping) daughter beam relative to the interface is largely
insensitive to q.

Qualitatively different effects appear in regime 2 with
Δ = −0.005 and α = 0.5; this time, the input wave is localized
predominantly in medium 2 (compare with Figure 11(b)).
After a finite propagation length, the surface wave bends
smoothly away from the interface and is deflected deeper
into medium 2. There is relatively little radiation shed in
this process, and the localized wave suffers only a very small
change to its shape (largely because the beam remains always
on the same side of the interface, so does not encounter
changes in refractive index). In common with regime 1, the
instability growth rate increases with q.

4.5. Interactions between Solitons and Surface Waves. The
stability of lower-branch surface waves is now investigated by
considering their resilience against interactions with spatial

solitons. Only a brief summary is presented here since the
primary motivation is to uncover qualitatively new effects
that depend upon the exponent q (detailed quantitative
analyses are reserved for future works). For definiteness,
we present simulation results for collisions between a unit-
amplitude (η0 = 1.0) soliton and surface waves in regimes
1 (Δ = 0.005,α = 2.0) and 2 (Δ = −0.005,α = 0.5) with
β = 2.0 and κ = 2.5× 10−3.

Regime 1 is considered first for a quasi-paraxial incidence
angle of θinc = 3◦ (see Figure 14). When q = 1, the two
distinct beams persist after the interaction. The path of the
outgoing soliton has been deflected relative to its ingoing
trajectory. The surface wave, on the other hand, survives as
a localized spatial structure but can no longer be interpreted
as a “surface wave” per se since it travels obliquely to (not
along) the interface. This picture is qualitatively different for
q = 2 and 3; there, the interaction results in the coalescence
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Figure 14: Quasi-paraxial interaction (θinc = 3◦) between a lower-branch nonlinear surface wave (with β = 2.0) and a unit-amplitude
(η0 = 1) soliton in regime 1 (mismatch parameters Δ = 0.005 and α = 2.0) with κ = 2.5 × 10−3. (a) Evolution in ζ of the peak amplitude
|u|m of the solution. Parts (b), (c), and (d) show the full numerical solution |u(ξ, ζ)| of (5) when the nonlinearity exponent is q = 1, 2 and
3, respectively.

of the soliton and surface wave, producing a single higher-
intensity narrow filament travelling obliquely to the interface
(narrowing is to be expected for medium combinations with
α > 1). It is noteworthy that the propagation angle of the
filament, relative to the interface, increases with q. Also,
as one might expect, nonlinear beams interacting at quasi-
paraxial angles tend to shed a large amount of radiation.

The qualitative behaviour can change dramatically at
nonparaxial angles; a representative set of simulations for
θinc = 30◦ is shown Figure 15. We have not observed
coalescence phenomena; instead of this, individual beams
retain their separate identities and can be clearly resolved.
While the soliton often survives intact (and experiences a
narrowing effect due to α > 1), the evolution of the surface
wave depends strongly on the nonlinearity exponent: (i)
for q = 1, it acquires slow modulations in its shape but

remains localized within the vicinity of the interface (i.e.,
it remains essentially a surface wave after the interaction);
(ii) for q = 2, its path is deviated by the interaction so
that it no longer travels along the interface (this obliquely-
evolving self-trapped structure is, by definition, not a surface
wave); (iii) for q = 3, the collision destroys it completely.
It is interesting to note the general trend that larger-
interaction angles generate far less radiation than their
paraxial counterparts [62].

We now turn our attention to similar interaction sce-
narios in regime 2. For a quasi-paraxial incidence angle of
3◦, the behaviour is strikingly different from that uncovered
for the same angle in regime 1 (compare Figures 16 and
14, respectively). When q = 1, the soliton survives the
interaction and the surface wave remains quasi-bound to the
interface (but exhibiting a longitudinal “skimming” effect).
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Figure 15: Nonparaxial interaction (θinc = 30◦) between a lower-branch nonlinear surface wave (with β = 2.0) and a unit-amplitude
(η0 = 1) soliton in regime 1 (mismatch parameters Δ = 0.005 and α = 2.0) with κ = 2.5 × 10−3. (a) Evolution in ζ of the peak amplitude
|u|m of the solution. (b), (c), and (d) show the full numerical solution |u(ξ, ζ)| of (5) when the nonlinearity exponent is q = 1 (surface wave
follows interface), 2 (surface wave deflected), and 3 (surface wave destroyed), respectively.

For q = 2 and 3, the interaction deflects the surface wave
away from the boundary (i.e., the surface wave becomes an
obliquely-evolving beam). However, the behaviour of the
soliton is different for q = 2 and 3: it survives intact in the
former case and breaks up into radiation in the latter (this
effect is related to the threshold phenomenon discussed in
Section 3.2 and is not a consequence of the interaction with
the surface wave).

5. Conclusion

We have presented, to the best of our knowledge, the
first investigation of the way spatial solitons behave at
the planar interface between dissimilar materials whose
refractive index has a power-law dependence on the electric
field amplitude. This analysis has thus extended arbitrary

angle refraction considerations beyond the ubiquitous Kerr-
type case [17, 18, 25, 26]. Exact analytical solitons have been
deployed as a nonlinear basis [56], permitting the derivation
of a generalized Helmholtz-Snell law. Extensive numerical
computations have tested its predictions, which are most
accurate in regimes where only the linear refractive index
changes across the boundary.

A range of new quantitative and qualitative effects that
depend strongly upon the exponent q has been identified.
For example, simulations have found that, at linear interfaces
with Δ > 0 and where q = 1 or 2, there is generally
a well-defined transition (as θinc increases) from soliton
reflection, through GH shifting, to soliton refraction. In
contrast, systems with q = 3 are often far more complex: the
reflection-to-refraction transition is generally obscured by
radiation effects over a finite band of incidence angles around
the (theoretical) critical angle: solitons interacting with
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Figure 16: Quasi-paraxial interaction (θinc = 3◦) between a lower-branch nonlinear surface wave (with β = 2.0) and a unit-amplitude
(η0 = 1) soliton in regime 2 (mismatch parameters Δ = −0.005 and α = 0.5) with κ = 2.5× 10−3. (a) Evolution in ζ of the peak amplitude
|u|m of the solution. (b), (c), and (d) show the full numerical solution |u(ξ, ζ)| of (5) when the nonlinearity exponent is q = 1 (surface wave
“skimming”), 2 (deflection of the surface wave), and 3 (deflection of the surface wave and breakup of the soliton into radiation), respectively.

the interface may collapse into low-amplitude diffracting
waves, with GH shifts becoming difficult to interpret or
quantify in the absence of a well-defined reflected beam.
However, strong supporting evidence has been obtained
to confirm the validity of our Helmholtz-Snell modelling
in arbitrary-angle non-Kerr regimes. In this way, the first
steps have been taken towards understanding how (fully
2D) diffraction/nonlinearity interplays govern spatial soliton
refraction in a much wider class of systems.

Nonlinear surface waves of model (5) have been derived,
and we have performed the first numerical analysis of these
types of solutions. Simulations have addressed the stability
properties of the new surface waves, which tend to lie on
one of two possible branches of the classic (β, P) curves.
Solutions lying on the lower branch are predicted to behave
as stable robust entities, while solutions on the upper branch
are inherently unstable. Extensive computations have lent

direct numerical support for this stability prediction in the
more general Helmholtz context, and the growth rate of the
upper-branch instability has been found to increase with q.

The stability properties of lower-branch Helmholtz sur-
face waves have been further investigated by considering
collisions with obliquely incident spatial solitons. A rich
variety of behaviours, which depend crucially on both the
nonlinearity exponent and the interaction angle, has been
discovered. Finding analytical descriptions (e.g., through
a perturbation theory [62]) of these phenomena seems a
remote possibility since much of the behaviour is clearly non-
adiabatic. Hence, computer simulations play a fundamental
role in investigating solitons, surface waves, and their
interactions in non-Kerr regimes.

The research presented in this paper provides a clear
indication that deviating from the ideal Kerr-type nonlin-
earity (q = 2) can give rise to novel, interesting, and
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potentially exploitable phenomena. Each component of this
paper (testing the Helmholtz-Snell law, calculating GH shifts,
analyzing surface wave stability, and studying soliton-surface
wave interactions) is a problem for detailed investigation in
its own right. Our findings unpin analyses of other types
of optical (and nonoptical) contexts involving solitons and
surface waves where the power-law type of nonlinearity takes
centre stage. One can expect other distinct classes of surface
wave to exist when the interface comprises combinations of
focusing/defocusing power-law nonlinearities [42, 43, 63];
the stability properties of these waves can, quite reasonably,
be expected to differ from those reported here. Furthermore,
the validity of our Helmholtz-Snell modelling in power-
law regimes suggests that it may also be applicable to other
material configurations, for example, to single- and multi-
interface problems with cubic-quintic [64–67] and saturable
[68–70] nonlinearities. Research is currently underway that
investigates the generality of our findings in these other con-
texts, and preliminary results do suggest wider applicability.
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