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The aim of this paper is to establish a priori estimates of the following nonlocal boundary
conditions mixed problem for parabolic equation: ∂v/∂t − (a(t)/x2)(∂/∂x)(x2∂v/∂x) + b(x, t)v =
g(x, t), v(x, 0) = ψ(x), 0 ≤ x ≤ �, v(�, t) = E(t), 0 ≤ t ≤ T,

∫�
0x

3v(x, t)dx = G(t), 0 ≤ t ≤ �. It is
important to know that a priori estimates established in nonclassical function spaces is a necessary
tool to prove the uniqueness of a strong solution of the studied problems.

1. Introduction

In this paper, we deal with a class of parabolic equations with time- and space-variable
characteristics, with a nonlocal boundary condition. The precise statement of the problem
is a follows: let � > 0, T > 0, and Ω = {(x, t) ∈ R

2 : 0 < x < �, 0 < t < T}. We will determine a
solution v, in Ω of the differential equation

∂v

∂t
− a(t)

x2

∂

∂x

(
x2 ∂v

∂x

)
+ b(x, t)v = g(x, t), (x, t) ∈ Ω, (1.1)

satisfying the initial condition

v(x, 0) = ψ(x), 0 ≤ x ≤ �, (1.2)
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the classical condition

v(�, t) = E(t), 0 ≤ t ≤ T, (1.3)

and the integral condition

∫�

0
x3v(x, t)dx = G(t), 0 ≤ t ≤ T. (1.4)

For consistency, we have

∫�

0
x3ψ(x) = G(0), ψ(�) = E(0), (1.5)

where � and T are fixed but arbitrary positive numbers, a(t) and b(x, t) are the known fuctions
satisfying the following condition.

Condition 1. For t ∈ [0, T] and x ∈ [0, �], we assume that

(i) d0 ≤ a(t) ≤ d1,

(ii) b(x, t) ≤ d2,

(iii) da(t)/dt ≤ d3.

The notion of nonlocal condition has been introduced to extend the study of the classical
initial value problems and it is more precise for describing natural phenomena than the
classical condition since more information is taken into account, thereby decreasing the
negative effects incurred by a possibly erroneous single measurement taken at the initial
value. The importance of nonlocal conditions in many applications is discussed in [1, 2].

It can be a part in the contribution of the development of a priori estimates method
for solving such problems. The questions related to these problems are so miscellaneous that
the elaboration of a general theory is still premature. Therefore, the investigation of these
problems requires at every time a separate study.

This work can be considered as a continuation of the results of Yurchuk [3], Benouar
and Yurchuk[4], Bouziani [5–7], Bouziani and Benouar [8], Djibibe et al. [9], and Djibibe and
Tcharie [10]. Our results generalize and deepen ones from corresponding work in [11, 12].

We should mention here that the presence of an integral term in the boundary
condition can greatly complicate the application of standard functional and numerical
techniques.

This paper is organized as follows. After this introduction, in Section 2, we present
the preliminaries. Finally, in Section 3, we establish an energy inaquality and give its several
applications.
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2. Preliminares

We transform the problem with nonhomogeneous boundary conditions into a problem with
homogeneous boundary conditions. For this, we introduce a new unknown function u
defined by v(x, t) = u(x, t) +w(x, t), where

w(x, t) =
(
5x
�

− 4
)
E(t) − 20

�5
(x − �)G(t). (2.1)

Then, problem becomes

∂u

∂t
− a(t)

x2

∂

∂x

(
x2 ∂u

∂x

)
+ b(x, t)u = f(x, t), (2.2)

u(x, 0) = ϕ(x), 0 ≤ x ≤ �, (2.3)

u(�, t) = 0, 0 ≤ t ≤ T, (2.4)

∫�

0
x3u(x, t)dx = 0, 0 ≤ t ≤ �, (2.5)

where

ϕ(x) = ψ(x) +
20
�
(x − �)G(0) − 1

�
(5x − 4�)E(0),

f(x, t) = F(x, t) +
20
�5

(x − �)(b(x, t)G(t) +G′(t)
) − 1

�
(5x − 4�)

(
b(x, t)E(t) + E′(t)

)

+
10
�5
xa(t)

(
�4E(t) −G(t)

)
.

(2.6)

We introduce appropriate function spaces. Let L2(Ω) be the Hilbert space of square integrable
functions. To problem (2.1), (2.2), (2.3), (2.5), we associate the operatorAwith the domain of
definition

D(A) =

{
∂u

∂t
,
1
x2

∂u

∂x
,
∂2u

∂x2
∈ L2(Ω)

}

, (2.7)

satisfying (2.4) and (2.5). The operator A is considered from E to F, where E is the banach
space consisting of u ∈ L2(Ω) satisfying the boundary conditions (2.4) and (2.5) and having
the finite norm:

‖u‖2 =
∫

Ω
J2x

(
∂u

∂t

)
dx dt + sup

0≤t≤T

{∫�

0
x2u2(x, t)dx +

∫�

0

(
x
∂u

∂t

)2

dx +
∫�

0

(
x
∂u

∂x

)2

dx

}

,

(2.8)
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and F is the Hilbert space of vector-value function F = (f, ϕ) having the norm

∥
∥(f, ϕ

)∥∥2 =
∫

Ω
x2f2(x, t)dx dt +

∫�

0
x2ϕ2(x)dx +

∫�

0

(
x
∂ϕ(x)
∂x

)2

dx, (2.9)

where Jxh =
∫�
x θ

2h(θ, t)dθ.

3. A Priori Estimate and Its Consequences

Theorem 3.1. Under Condition 1, for any function v ∈ D(A), one has the following a priori estimate

‖v‖E ≤ c‖Av‖F, (3.1)

where c is a positive constant independent of the solution v.

Proof. Firstly, applying operator Jx to (2.1), multiplying the obtained result with Jx(∂u/∂t),
and integrating over Ωτ = (0, �) × (0, τ), oberve that

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt −

∫

Ωτ

Jx

(
a(t)
x2

∂

∂x

(
x2 ∂u

∂x

))
Jx

(
∂u

∂t

)
dx dt

+
∫
Ωτ
Jx(b(x, t)u)Jx

(
∂u

∂t

)
dx dt =

∫
Ωτ
Jx
(
f(x, t)

)
Jx

(
∂u

∂t

)
dx dt.

(3.2)

Integrating by parts of the second integral on the left-hand side of (3.2), we get

−
∫

Ωτ

Jx

(
a(t)
x2

∂

∂x

(
x2 ∂u

∂x

))
Jx

(
∂u

∂t

)
dx dt =

∫

Ωτ

x2a(t)
∂u

∂x
Jx

(
∂u

∂t

)
dx dt. (3.3)

Substituting (3.3) into (3.2), we get

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt +

∫

Ωτ

x2a(t)
∂u

∂x
Jx

(
∂u

∂t

)
dx dt.

+
∫

Ωτ

Jx(b(x, t)u)Jx
(
∂u

∂t

)
dx dt =

∫

Ωτ

Jx
(
f(x, t)

)
Jx

(
∂u

∂t

)
dx dt.

(3.4)

In the second time, multiplying the equality (2.1)with x2∂u/∂t, and integrating the obtained
equality over Ωτ , we get

∫

Ωτ

(
x
∂u

∂t

)2

dx dt −
∫

Ωτ

a(t)
∂

∂x

(
x2 ∂u

∂x

)
∂u

∂t
dx dt

+
∫

Ωτ

x2b(x, t)u
∂u

∂t
dx dt =

∫

Ωτ

x2f(x, t)
∂u

∂t
dx dt.

(3.5)
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The standard integration by parts of the second term on the left-hand side of (3.5), leads to

−
∫

Ωτ

a(t)
∂

∂x

(
x2 ∂u

∂x

)
∂u

∂t
dx dt =

1
2

∫�

0
a(τ)x2

(
∂u

∂x
(x, τ)

)2

dx − 1
2

∫�

0
a(0)x2

(
∂ϕ

∂x

)2

− 1
2

∫

Ωτ

a′(t)x2
(
∂u

∂x

)2

dxdt.

(3.6)

Substituting (3.6) into (3.5), we get

∫

Ωτ

(
x
∂u

∂t

)2

dxdt +
1
2

∫�

0
a(τ)x2

(
∂u

∂x
(x, τ)

)2

dx − 1
2

∫�

0
a(0)x2

(
∂ϕ

∂x

)2

− 1
2

∫

Ωτ

a′(t)x2
(
∂u

∂x

)2

dx dt +
∫

Ωτ

x2b(x, t)u
∂u

∂t
dx dt =

∫

Ωτ

x2f(x, t)
∂u

∂t
dx dt.

(3.7)

Finally, adding (3.4) to (3.7), we have

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt +

∫

Ωτ

(
x
∂u

∂t

)2

dx dt +
1
2

∫�

0
a(τ)x2

(
∂u

∂x
(x, τ)

)2

dx

=
∫

Ωτ

Jx
(
f(x, t)

)
Jx

(
∂u

∂t

)
dx dt +

∫

Ωτ

x2f(x, t)
∂u

∂t
dx dt +

1
2

∫�

0
a(0)x2

(
∂ϕ

∂x

)2

−
∫

Ωτ

x2b(x, t)u
∂u

∂t
dx dt −

∫

Ωτ

Jx(b(x, t)u)Jx
(
∂u

∂t

)
dx dt

+
1
2

∫

Ωτ

a′(t)x2
(
∂u

∂x

)2

dx dt −
∫

Ωτ

x2a(t)
∂u

∂x
Jx

(
∂u

∂t

)
dx dt.

(3.8)

In the light of Cauchy inequality, certain terms of (3.8) are then majorized as follows:

∫

Ωτ

Jx
(
f(x, t)

)
Jx

(
∂u

∂t

)
dx dt ≤ α1

2

∫

Ωτ

J2x
(
f(x, t)

)
dx dt +

1
2α1

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt, (3.9)

∫

Ωτ

x2f(x, t)
∂u

∂t
dx dt ≤ α2

2

∫

Ωτ

x2f2(x, t)dx dt +
1
2α2

∫

Ωτ

(
x
∂u

∂t

)2

dx dt, (3.10)

−
∫

Ωτ

x2a(t)
∂u

∂x
Jx

(
∂u

∂t

)
dx dt ≤ α3

2

∫

Ωτ

a2(t)
(
x
∂u

∂x

)2

dx dt +
1
2α3

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt,

(3.11)

−
∫

Ωτ

x2b(x, t)u
∂u

∂t
dx dt ≤ α4

2

∫

Ωτ

x2b2(x, t)u2(x, t)dx dt +
1
2α4

∫

Ωτ

(
x
∂u

∂t

)2

dx dt, (3.12)

−
∫

Ωτ

Jx(b(x, t)u)Jx
(
∂u

∂t

)
dx dt ≤ α5

2

∫

Ωτ

J2x(b(x, t)u)dx dt +
1
2α5

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt.

(3.13)
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Combining the inequalities (3.9), (3.10), (3.11)with (3.8), choosing α1, α2, α3, α4, α5 which that
α1 + α3 + α5 < 2α1α3α5 and α2 + α4 < 2α2α4, we get

λ1

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt + λ2

∫

Ωτ

(
x
∂u

∂t

)2

dx dt +
1
2

∫�

0
a(τ)

(
x
∂u

∂x
(x, τ)

)2

dx

≤ 1
2

∫

Ωτ

(
α3a

2(t) + a′(t)
)(

x
∂u

∂x

)2

dx dt +
α4
2

∫

Ωτ

x2b2(x, t)u2(x, t)dx dt

+
α5
2

∫

Ωτ

J2x(b(x, t)u)dx dt +
α1
2

∫

Ωτ

J2x
(
f(x, t)

)
dx dt

+
α2
2

∫

Ωτ

x2f2(x, t)dx dt +
1
2

∫�

0
a(0)

(
x
∂ϕ

∂x

)2

,

(3.14)

where

λ1 = 1 − 1
2

(
1
α1

+
1
α3

+
1
α5

)
λ2 = 1 − 1

2

(
1
α2

+
1
α4

)
. (3.15)

Lemma 3.2. For x ∈ (0, �), the following inequalities hold:

∫

Ωτ

J2x(u)dx dt ≤
�2

2

∫�

0
x2u2dx,

λ2

∫�

0
x2u2dx ≤ λ2

∫�

0
x2ϕ2(x)dx + λ2

∫

Ωτ

x2u2(x, t)dx dt + λ2

∫

Ωτ

(
x
∂u

∂t

)2

dx dt.

(3.16)

It follows by using Lemma 3.2 and (3.18) that

λ1

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt +

1
2

∫�

0
a(τ)

(
x
∂u

∂x
(x, τ)

)2

dx +
λ2
2

∫�

0
x2u2dx

≤ 1
2

∫

Ωτ

(
α3a

2(t) + a′(t)
)(

x
∂u

∂x

)2

dx dt +

(
2α4 + α5�2

)

4

∫

Ωτ

x2b2(x, t)u2(x, t)dx dt

+
α1�

2 + 2α2
4

∫

Ωτ

x2f2(x, t)dx dt +
λ2
2

∫�

0
x2ϕ2(x)dx +

1
2

∫�

0
a(0)

(
x
∂ϕ

∂x

)2

.

(3.17)
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Therefore, by formula (3.17) and Condition 1, we obtain

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt +

∫�

0

(
x
∂u

∂x
(x, τ)

)2

dx +
∫�

0
x2u2dx

≤ λ3
(∫

Ωτ

x2f2(x, t)dx dt +
∫�

0
x2ϕ2(x)dx +

∫�

0

(
x
∂ϕ

∂x

)2

dx

)

+ λ4

(∫

Ωτ

(
x
∂u

∂x

)2

dx dt +
∫

Ωτ

x2u2(x, t)dx dt

)

,

(3.18)

where

λ3 =
max

((
α1�

2 + 2α2
)
/4, λ2/2, d1/2

)

min(λ1, λ2/2, d0/2)
, λ4 =

max
((
α5�

2 + 2α4
)
d2
2/4, d3 + α3d

2
1/2

)

min(λ1, λ2/2, d0/2)
.

(3.19)

Eliminating the last term on the right-hand side of inequality (3.18). To this end, using Gronwall’s
lemma, it follows that

∫

Ωτ

J2x

(
∂u

∂t

)
dx dt +

∫�

0

(
x
∂u

∂x
(x, τ)

)2

dx +
∫�

0
x2u2dx

≤ λ5
(∫

Ω
x2f2(x, t)dx dt +

∫�

0
x2ϕ2(x)dx +

∫�

0

(
x
∂ϕ

∂x

)2

dx

)

,

(3.20)

where λ5 = λ3eλ4T .
The right-hand side of (3.20) is independent of τ , hence, replacing the left-hand side by the

upper bound with respect to τ , We get

∫

Ω
J2x

(
∂u

∂t

)
dx dt + sup

0≤t≤T

{∫�

0
x2u2(x, t)dx +

∫�

0

(
x
∂u

∂x

)2

dx

}

≤ c
(∫

Ω
x2f2(x, t)dx dt +

∫�

0
x2ϕ2(x)dx +

∫�

0

(
x
∂ϕ(x)
∂x

)2

dx

)

,

(3.21)

where c =
√
λ5 =

√
λ3eλ4T/2. This completes the proof of Theorem 3.1.

Lemma 3.3. The operator A : E → F with domain D(A) has a closure A.

Proof of Lemma 3.2. Suppose that un ∈ D(A) is a sequence such that

lim
n→+∞

un = 0, in E, (3.22)

lim
n→+∞

Aun =
(
f, ϕ

)
, in F, (3.23)
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we must show that f ≡ 0 and ϕ ≡ 0. Equality (3.22) implies that

lim
n→+∞

un = 0, in D′(Ω). (3.24)

By virtue of the condition of derivation of D′(Ω) in D′(Ω), we get

lim
n→+∞

[
∂un
∂t

− a(x, t)∂
2un
∂x2

+ b(x, t)
∂un
∂x

+ c(x, t)un

]

= 0, in D′(Ω). (3.25)

Then from equality (3.23) it follows that

lim
n→+∞

[
∂un
∂t

− a(t)
x2

∂

∂x

(
x2 ∂un

∂x

)
+ b(x, t)un

]
= f, in L2(Ω). (3.26)

therefore

lim
n→+∞

[
∂un
∂t

− a(t)
x2

∂

∂x

(
x2 ∂un

∂x

)
+ b(x, t)un

]
= f, in D′(Ω). (3.27)

By virtue of the uniqueness of the limit in D′(Ω), the identies (3.25) and (3.27) conduct to
f ≡ 0.

By analogy, from (3.23), we get

lim
n→+∞

un(x, 0) = ϕ(x), in L2(0, �). (3.28)

We see via (3.22) and the obvious inequality

‖un(x, 0)‖L2(0,�) ≤ ‖un(x, t)‖E, ∀n ∈ N (3.29)

that

lim
n→+∞

un(x, 0) = 0, in L2(0, �). (3.30)

By virtue of (3.28), (3.30) and the uniqueness of the limit in L2(0, �) we conclude that ϕ ≡
0.

Definition 3.4. A solution of the equation

Av =
(
f, ϕ

)
, (3.31)

is called a strong solution of problem (2.2), (2.3), (2.4), and (2.5).
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Consequence 3.5. Under the conditions of Theorem 3.1, there is a constant c > 0 independent
of v such that

‖v‖E ≤ c
∥
∥
∥Av

∥
∥
∥
F
, ∀v ∈ D

(
A
)
. (3.32)

Consequence 3.6. The range R(A) of the operator A is closed and R(A) = R(A).

Consequence 3.7. A strong solution of the problem (2.2), (2.3), (2.4), and (2.5) is unique and
depends continuously on F = (f, ϕ) ∈ F.
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d’équations paraboliques,” Comptes Rendus de l’Académie des Sciences, vol. 321, no. 9, pp. 1177–1182,
1995 (French).

[9] M. Z. Djibibe, K. Tcharie, andN. I. Yurchuk, “Continuous dependence of solutions to mixed boundary
value problems for a parabolic equation,” Electronic Journal of Differential Equations, vol. 2008, pp. 1–10,
2008.

[10] M. Z. Djibibe and K. Tcharie, “Problème mixte pour une quation parabolique linèaire du deuxième
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