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We propose a generic synthetic event generator from kernel trace events. The proposed method makes use of patterns of system
states and environment-independent semantic events rather than platform-specific raw events. This method can be applied to
different kernel and user level trace formats. We use a state model to store intermediate states and events. This stateful method
supports partial trace abstraction and enables users to seek and navigate through the trace events and to abstract out the desired
part. Since it uses the current and previous values of the system states and has more knowledge of the underlying system execution,
it can generate a wide range of synthetic events. One of the obvious applications of this method is the identification of system
faults and problems that will appear later in this paper. We will discuss the architecture of the method, its implementation, and the
performance results.

1. Introduction

Tracing complete systems provides information on several
system levels. The use of execution traces as a method to
analyze system behavior is increasing among system admin-
istrators and analysts. By examining the trace events, experts
can detect the system problems and misbehaviors caused
by program errors, application misconfigurations, and also
attackers. Linux trace toolkit next generation (LTTng), a low-
impact and precise Linux tracing tool, provides a detailed
execution trace of system calls, operating system operations,
and user space applications [1]. The resulting trace files can
be used to analyze the traced system at kernel and user space
levels. However, these trace files can grow to a large number
of events very quickly and make analysis difficult. Moreover,
this data contains too many low-level system calls that often
complicate the reading and comprehension. Thus, the need
arises to somehow reduce the size of huge trace files. In
addition, it is better to have relatively abstract and high-level
events that are more readable than raw events and at the same
time reflect the similar system behavior. Trace abstraction
technique reduces the size of original trace by grouping the

events and generating high-level compound synthetic events.
Since synthetic events reveal more high-level information of
the underling system execution, they can be used to easily
analyze and discuss the system at higher levels.

To generate such synthetic events, it is required to
develop efficient tools and methods to read trace events,
detect similar sections and behaviors, and convert them to
meaningful coarse-grained events. Most of the trace abstrac-
tion tools are based on pattern-matching techniques in which
patterns of events are used to detect and group similar
events or sequences of related events into compound events.
For instance, Fadel [2] uses pattern-matching technique to
abstract out the traces gathered by LTTng kernel tracer
[1]. They have also created a pattern library that contains
patterns of Linux file, socket, and process operations. Waly
and Ktari [3] use the same technique to find system faults and
anomalies. They have also designed a language for defining
fault patterns and attack scenarios.

Although defining patterns over trace events are a useful
mechanism for abstracting the trace events and finding the
system faults, there are other types of faults and synthetic
events that are difficult to find with these techniques and
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need more information of the system resources. In this
way, modeling the state values of a system and using them
may help much in finding those complex kinds of system
problems. Indeed, without a proper state model, many
patterns will simply attempt to recreate and recompute some
of that repetitive information in a time- and performance-
consuming manner.

This paper mainly describes the architecture of a stateful
trace abstractor. Using a state database to store system state
values enables us to have more information about the system
at any given point. Indeed, after reading the trace files and
making the state database, we can jump to a specific point
and abstract out the trace at that point. For example, suppose
we see there is a high load or a system problem at a certain
time. In this case, we can load the system states at that point,
reread, abstract out, and analyze only the desired part to
discover the main reason of the given problem.

The main goal of this paper is to explain how to use
the system state information to generate synthetic events as
well as to detect complex system faults and anomalies. In
this paper, we first explain converting the raw trace events
to semantic events. Secondly, using a predefined mapping
table, we describe extracting system metric values from trace
and creating a database of the system state values. Finally, we
investigate using pattern matching technique over semantic
events and system state values to generate synthetic events as
well as to detect system faults and misbehaviors.

The next section discusses related work. It is followed
by a section explaining the proposed techniques and also
the architecture of the model. Subsequently, we discuss our
method in detail and provide some illustrative examples to
show how it can be adopted to generate a wide range of
synthetic events. Finally, our paper concludes by identifying
the main features of the proposed method and possibilities
for future research.

2. Related Work

The related work can be divided into two main categories:
trace abstraction techniques and their usage in intrusion
detection systems (IDSs). Trace abstraction combines groups
of similar raw events into compound events and by means
of eliminating the detailed and unwanted events reduces
the complexity of the trace [4]. Furthermore, abstraction
provides a high-level model of a program and makes under-
standing and debugging the source code easier [5]. Several
studies have been conducted on analyzing, visualizing, and
abstracting out large trace files [2, 3, 6]. Trace visualization
is another way to show abstractions of trace events [7]. It
uses visual and graphical elements to reveal the trace events.
Through their work in [8], Hamou-Lhadj and Lethbridge
carry out a survey on the several trace exploration and
visualization tools and techniques. Some important tools
that make use of these techniques are Jinsight [9], which is
an Eclipse-based tool for visually exploring a program’s run-
time behavior; Program Explorer [10], a trace visualization
and abstraction tool that has several views and provides
facilities like merging, pruning, and slicing of the trace

files; ISV [11], which uses automatic pattern detection to
summarize similar trace patterns and thereupon reduces the
trace size. Other tools include AVID [12], Jive [13], and
Shimba [14].

Besides visualization, pattern matching technique has
been widely used for trace abstraction [6, 15]. Most of the
aforementioned tools use this technique to detect repeated
contiguous parts of trace events and to generate abstract and
compound events [8]. Fadel [2], Waly and Ktari [3], and
Matni and Dagenais [6] use pattern matching technique to
generate abstract events from the LTTng kernel trace events.
Pattern matching can also be used in intrusion detection
systems [16]. For example, STATL [15] models misuse
signatures in the form of state machines, while in [17],
signatures are expressed as colored petri nets (CPNs), and
in MuSigs [18], directed acyclic graphs (DCA) are used to
extract security specifications. Beaucamps et al. [19] present
an approach for malware detection using the abstraction of
program traces. They detect malwares by comparing abstract
events to reference malicious behaviors. Lin et al. [18] and
Uppuluri [16] use the same technique to detect system
problems and misuses.

Almost all of these pattern-matching techniques have
defined their patterns over trace events and did not consider
using the system state information. Our work is different as,
unlike many of those previous techniques, it considers the
system states information and provides a generic abstraction
framework. Our proposed method converts raw events to
platform-dependent semantic events, extracts the system
state value, and sends them as inputs to the pattern-matching
algorithms.

3. Overview

First, here are some terms that will be referred to throughout
this text:

(i) “raw event” is used to identify the event that is
directly generated by the operating system tracer. Raw
events show various steps of the operating system
running, such as a system call entry/exit, an interrupt,
and disk block read;

(ii) “semantic events” to show the events resulting
from conversion of platform-specific raw events to
environment-independent events. As will be dis-
cussed later, there is a mapping table between
raw events and environment-independent semantic
events;

(iii) Also the term “synthetic events” is used to identify
events that are the result of trace abstraction and fault
identification analysis modules and depict high-level
behavior of the system execution. In other words,
synthetic events are generated from raw and semantic
events to explain the system behavior at various
higher levels. “sequential file read,” “attempt to write
to a closed file,” “DNS request,” and “half-opened
TCP connection” are examples of synthetic events.
Figure 1 shows the relations of these three event
types.
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Figure 1: Raw, semantic, and synthetic events and conversion
between them.

Table 1: Raw events to semantic events.

Raw events Semantic events

sys open event

sys dup event File open

sys create event

sys read event

sys pread64 File read

sys readv event

sys write event

sys pwrite64 event File write

sys writev event

sys kill event

sys tkill event Process kill

sys tgkill event

In order to support different versions of trace formats,
we propose a generic synthetic event generator that uses
a set of semantic events rather than versioned raw events.
Indeed, having different versions of kernel tracers as well
as an evolutionary Linux kernel that leads to different
trace formats makes it difficult to have a stable version of
an analyzer module. It means that, for each new release
of kernel or the tracer and also for any change in the
trace events format, the abstraction module will have to be
updated. However, by designing a generic tool, independent
of kernel versions and trace formats, we can achieve a generic
abstraction module that will not be dependent on certain
kernel or tracer version. Semantic events help in this way: we
define a semantic “open file” event instead of events of both
the sys open and sys dup Linux system calls. In the Linux
kernel, there is often no unique way to implement user-
level operations. Thus, by grouping the events of similar and
overlapping functionalities, we reach a new set of semantic
events that will be used in the synthetic event generator.
Examples of such semantic events have been outlined in
Table 1.

Later, for the trace formats, one must simply update the
mapping table for converting the raw events to semantic
events. With this table, the synthetic event generator will
work without the need to be updated for the new trace
formats, being independent of the specific format and
version.

Another technique to make the synthetic event generator
more generic and powerful is to use the system state values.
In this work, we use system state values besides the trace
events for extracting the high-level information. As discussed
in the related work, most of the abstraction techniques
use patterns over raw and high-level events to generate
abstract events. However, generating some complex types
of abstract events can be very time consuming and can
affect system performance. It is also difficult to generate
some complex types of synthetic events that deal with
several system resources or under different user identities
and at different levels. Thus, using patterns of trace events
is somehow not enough, and there is a need to extract
and use more system information. To do so, we model
state values of important system resources in a database
named “modeled state.” This database contains current
and historic state values of the system resources, keeping
track of information about running processes, the execution
status of a process (running, blocked, and waiting), file
descriptors, disks, memory, locks, and other system metrics.
The modeled state can then be used to show users the current
system states. For example, each scheduling event which
sets the current running process in the modeled state will
be readily available for the upcoming events. Similarly, file
open events can associate filenames to file descriptors in the
modeled state. These values can then be used to retrieve the
filename of the given file descriptor in the context of the
upcoming file operation events.

4. Architecture

In this section, we explain the architecture of the proposed
solution which is shown in Figure 2. It consists of various
modules: event mapper, modeled state, and synthetic event
generator. In the following, we will explain how each module
works.

4.1. Mapper. In the architecture, the event mapper is used
to convert the trace raw events to environment-independent
semantic events and also to extract the state values. The
mapper actually has two steps: converting the raw events
to semantic events and converting the semantic events to
state changes. For each step, it uses a different mapping
table. The first table is used for converting the raw events
to the semantic events, and the second one has been
used to convert the semantic events to corresponding state
changes. It makes use of two mapping tables that contain
list of conversion entries for each event type. There is not
necessarily a one-to-one relationship between the raw events
and corresponding outputs. A raw event or a group of
raw events can be converted into one or more semantic
events. For example, a Linux sched schedule(p1, p2) event
may be mapped into two semantic events: process stop(p1)
and process running(p2). Table 2 lists examples of these
mapping entries. The mapper in Figure 2 includes both the
mapping Tables 1 and 2. In other words, when events are
processed in the mapper, corresponding semantic events are
generated, and changes in the modeled state also occur. Most
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Figure 2: Architectural view of the stateful synthetic event genera-
tor.

Table 2: Semantic events to state changes.

Semantic events Corresponding state change

File open (fd) Changes the state of the input fd to opened

File read (fd, count) Changes the state of the input fd to read

File close (fd) Changes the state of the input fd to closed

Kill process (p1) Changes the state of the input p1 to killed

of the changes take place by directly changing a state value.
However, some events may have more complex effects on the
modeled state. In this case, a set of changes may be queued to
be performed on the state values.

4.2. Modeled State. The modeled state stores the system
metrics and different state values of them. The system
metrics (e.g., process name, file name, etc.) are stored in
a tree-based data structure called “attribute tree” [20] or
“metric tree.” In this tree, each metric has an address starting
from its machine name. The content of the attribute tree is
similar to the tree shown in Figure 3, where names starting
with $ identify the variables and can have many values. For
example, $pid can be process1, process2, . . . .

The tree shown in Figure 3 acts like a lookup table in
which various system resources and attributes are defined
in a file system like path. Besides that, there is another
tree based interval database to store the different values of
those resources and attributes during the system execution.
We store all of the extracted state values in this database
that enables us to retrieve the state values at any later
given time. Montplaisi and Dagenais [20] proposed a Java

implementation of the modeled state that is used in this
project to store and retrieve the state values.

Different types of data may be stored in the modeled
state: the state of a process, the current running process on
a CPU, state of a file descriptor, and so on. System resources
statistics are another type of information that can be stored
in the modeled state. Examples of these statistics include
number of bytes read and written for a specific file, for a
process or for the whole trace, total CPU usage per process
or per trace or for a specific time period, the CPU waiting
time, number of TCP connections in the last 2 seconds,
the duration for which a disk was busy, and large data
transfers. Statistics extracted from trace events are similar to
the extracted state values from events. By processing trace
events, one can interpret the event contents, gather relevant
statistics, and aggregate them by machine, user, process, or
CPU for the whole trace or for a time duration. For that, we
identify the event types and event arguments used to count,
aggregate, and compute the statistics of the system metrics.
In other words, when one defines a mapping between events
and states, he or she may also want to relate associated trace
events to the statistics values.

The statistics can then be used to generate synthetic
events to detect system faults and problems. In this project,
we use a threshold detection mechanism [15, 21] to detect
system problems. In this approach, the occurrences of
specific events and statistics values of important system
metrics are stored, updated, and compared to predefined
threshold values. If the values cross the thresholds, or in the
case of a quick rise in a short period, an alarm is raised or
a log record is generated [15]. With this approach, some
hook methods may be registered and invoked in the case
of unusual growth or the reaching of certain threshold. For
some predefined semantic events, we store and update the
statistics values of the important metrics (e.g., quantity of
I/O throughput, number of forks, number of half-opened
TCP connections, CPU usage, number of file deletions, etc.)
in the modeled state.

It is important to mention that system state is a broad
term, and it could be too resource and performance consum-
ing to care of all system resources. For trace abstraction, we
only need to store a subset of that information required to
represent the synthetic event patterns and associated initial,
intermediate, and final states. In other words, the amount
of data stored in the modeled state will depend on the
patterns and will be extracted from them. Therefore, by
having created a pattern library in advance or by importing
them during analysis, it would be possible to determine the
required set of system attributes and metrics that should be
kept track of, in the modeled state.

4.3. Synthetic Event Generator. Synthetic event generator is
another module that is used to generate high-level events
from trace events. The synthetic event generator may use
either the semantic events, modeled state values, or both to
generate the synthetic events. It makes use of a pattern library
that contains various patterns for reducing the trace size and
also for detecting the system faults and attacks.
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Figure 3: Typical organization of the modeled state elements.

In this paper, we use finite state machine to define the
patterns. In this way, we have created a set of state machines
based on the semantic events and state values to abstract out
the Linux kernel execution events. In addition, it contains
patterns to detect Syn flood attack, fork bomb attack, and
port scanning. Each state machine represents a set of states
and a sequence of actions and transitions. A transition is
triggered by reading an associated semantic event or a state
value change. Reaching a particular state targets a synthetic
event that can reveal either a high-level system behavior or
a system fault or a misbehavior. In this model, we use the
modeled state to store both the states of system resources as
well as the state machines’ intermediate states. Based on this
idea, common methods are used for storing, retrieving, and
exploring the states.

As an example, suppose that we want to list all “write
to a closed file” synthetic events. In this case, by comparing
the filename of each write event to the open files list kept
in the modeled state, we can generate and list all of these
synthetic events. Here, we actually have a pattern of “write
to file” semantic events and a specific path in the modeled
state (open files list). Another example of such a pattern is
when we want to detect all sequential file reading operations.
In this case, for each read event, we keep track of the last
read position as well as whether all previous read operations
were sequential or not. Then, upon closing a file, if the state
values for all previous read operations were sequential, and
the last read operation has read the file to the end, then a
“sequential file read” synthetic event can be generated. In the
same way, a pattern is defined over “file read” semantic events
and relevant modeled state values.

The resulting synthetic events are again passed to the
mapper. The mapper may have mapping entries for synthetic
events as well, which means that the same way that semantic
events change the state values, synthetic events can affect
them. For instance, a “TCP connection” synthetic event
can change the state of a socket to connecting, established,
closing, and closed. Previously generated synthetic events
may also be passed again through the synthetic event
generator, which means that they can be used to generate
complex higher-level events. For example, one can generate

“library files read” synthetic event from the consecutive “read
∗/lib/∗ files” synthetic events. Figure 4 depicts this issue.

Another result is that the stateful approach enables the
analyst to seek and go back and forth in the trace, select
an area, and abstract out only the selected area. In other
words, it supports partial trace abstraction. For instance,
suppose we see there is a high load at a specific point, we
can jump to the starting point of the selected area, load the
stored system information, and run abstraction process to get
meaningful events and to achieve a high-level understanding
of the system execution.

5. Illustrative Examples

Using patterns of semantic events and system states helps to
develop a generic synthetic events generator. This way, we are
able to generate more meaningful high-level events and to
detect more system faults and problems. Here, we provide a
few examples that outline aspects of synthetic events we can
generate using the proposed method.

5.1. System Load and Performance. By keeping track of the
system load and usage (e.g., CPU usage, I/O throughputs,
memory usage, etc.), and aggregating them per process,
per user, per machine, and per different time intervals,
it becomes easy to check the resource load values against
predefined threshold values. Thus, by processing the trace
events and having defined standard patterns, we can compute
the system load and store in the modeled state. For example,
for each file open semantic event, we increment the number
of opened files for that process and also for the whole system.
Likewise, we decrement the number of opened files for each
file close semantic event. In the same way, for each schedule
in and out event, we add the time duration to the CPU usage
of that process. We perform the same processing for memory
usage, disk blocks operations, bandwidth usage, and so on
and update the corresponding values in the modeled state.

The detector module then compares the stored values
against predefined thresholds and detects whether an over-
load exists in the system. In case of overload, a “system
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Figure 4: Generating several levels of synthetic events.

overload” synthetic event would be generated, and an
alarm would be raised to the system administrator or any
predefined monitoring systems. The Administrator or the
monitoring system, in turn, responds appropriately to the
problem. This solution can be extended to all types of system
load and performance problems.

5.2. Denial of Service Attacks. The proposed stateful method
can also be used to detect denial of service (DOS) attacks. For
instance, a “fork bomb” is a form of denial of service attack
which clones a large number of child processes in a short
time, in order to saturate the system resources. To detect
this attack, one can store the number of fork operations for
each process in the modeled state. In this case, upon forking
a process, value of a corresponding counter is incremented,
and upon killing a process, the value is decremented. Each
time the value changes, it is compared to the predetermined
threshold value, and in case the threshold value is reached,
it will generate a synthetic event and will send an alarm to
the system monitoring module. Figure 5 outlines the state
machine used for detecting these kinds of attacks.

The same technique may be used for detecting the “Syn
flood attack” and for other similar DOS attacks as well. For
each connection (even half-opened or established), we keep
track of a counter in the modeled state, and the attack (or a
possible attack attempt) is detected by comparing the value
of the counter to a predefined value. The predefined value
can be defined by an expert or by an automated learning
technique. These values can be adjusted for different servers
and applications.

5.3. Network Scan Detection. Network scanning—especially
port scanning—is the process in which a number of packets
are sent to a target computer to find weaknesses and open
doors to break into that machine. The scanner sends a
connection request to targeted ports and, depending on the
scanning method, receives a list of open ports, version of
operating system, and running services on the other end.

Port scanning has legitimate uses in computer networks and
is usually considered one of the early steps in most network
attacks. Nmap [22] is the most widely used tool for such
network scanning. We used Nmap to generate the relevant
kernel traces of high-level port scanning. There is actually no
way and no reason to stop a user from scanning a computer.
However, by detecting port scanning, one can be alerted
because of a potential attack.

There are many ways to perform and accordingly detect
a port scanning from network packets. A common method,
which is implemented in Nmap, involves establishing a
typical TCP connection and immediately closing it by
sending an RST or an FIN packet and repeating it to different
ports at defined time intervals. Another hard-to-detect port
scanning method is sending a dead packet (a typical TCP
SYN or TCP FIN instead of a regular TCP connection).
According to RFC 793 [23], an open port must ignore this
packet, and conversely, a closed one must reply with an RST
packet. Consequently, any answer from the other end will
determine the status of the port: whether it is open, closed,
or filtered.

The LTTng kernel tracer traces the packets in both the
IP and TCP layers. However, the proposed prototype uses
socket-related events (TCP layer) to detect “port scanning”
synthetic events. Simplifying the prototype, we consider
every TCP connection pattern—even established or half
opened—followed by a disconnection, a single port scan.
Upon detecting these kinds of events, we update an associ-
ated entry in the modeled state. The scanned port number,
pattern used, source address, source port, and timestamps
of the first packet are stored in that entry. There is a
registered method in the detector module which monitors
the associated modeled state entry and, in case of detecting
a successive port scanning, generates a “ports scanning”
synthetic event and raises an alarm to the system-monitoring
module. Due to the completeness of the defined rules and
patterns, this technique can detect distributed port scanning
even with different timings between packets. Figure 6 depicts
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the state machine used to detect “port scanning” synthetic
events.

6. Implementation

We have prototyped a Java tool in Linux that takes the LTTng
trace as input and applies the proposed techniques to create
the several levels of abstract events. We use the Java library
provided by Montplaisi and Dagenais [20] to manage the
modeled state and other shared information. Our synthetic
event generator stores all the system states as well as the states
required for state machines in this tree.

We also created a prototype pattern library that covers
common Linux file, network, and process operations. Using
this pattern library and the proposed method, we can
generate various levels of file operations (e.g., file simple
open and close operation, sequential and nonsequential,
file read and write, etc.), network connections (e.g., TCP
connection, port scanning, etc.), and process operations
(fork process, kill process, etc.). The pattern library also
includes patterns of some system problems and attacks.

In this implementation, we have defined the patterns
in XML format. Also we hardcoded the preactions and
postactions for each state transition. Waly and Ktari [3]
have developed a language for defining patterns and attack
scenarios over LTTng events. Efforts are needed to extend this
language to support the patterns of system states. Generally,
the required language should be a declarative language
with which one can declare the patterns and scenarios and
mapping between events and outputs. It can, however, also
be a programming-like language with which one can define
state variables, pre- and posttransition actions, conditions,
output formats, and so forth. Designing such a language is a
future work of this project.

We have used a C helper program that simply calls
the “wget WWW.YAHOO.COM” in Linux to generate the
corresponding kernel traces. Figure 7 shows the highest level
of generated synthetic events for this command. The count of
generated raw event for this command is 3622. The synthetic
event generator has converted these 3600 raw events into less
than 10 synthetic events. Here, the synthetic events include
reading some library and configuration files, making a TCP
connection to WWW.YAHOO.COM, and writing the data
read to file index.html.1, following with some other event.

Table 3: Number of events in different levels of abstraction.

Size (MB)
Number of events

Original trace Abstract level 1 Abstract level 2

25 2279766 335362 4954

75 5420727 710052 5466

150 8872888 976672 86697

500 37328387 7668926 178426

1000 68961889 20186771 192788

2000 140507496 33924846 328430

5000 328868336 130293720 2099836

10000 621132167 159023500 2247225

7. Performance

For the performance testing, the Linux kernel version
2.6.38.6 is instrumented using LTTng and the tests are
performed on a 2.8 GHz with 6 GB ram machine. We will
show the results from different points of view. As discussed
in the Implementation Section, we have generated two other
levels of abstraction in addition to the semantic events. For
the first abstract level, we have used 120 patterns, and for
the second level, we have used 30 patterns. Following tables
and figures show the results for traces with different sizes
from 25 MB to 10000 MB. To generate these trace files, we
have used “wget -r -l0 URL,” “ls –R,” and also “grep x . -r”
commands consecutively.

7.1. Reduction Ratio. As discussed earlier, one goal of the
abstraction technique is reducing the trace size. We have
measured the reduction ratio of the proposed method.
Figure 8 and Table 3 show the reduction of the number of
events in the different levels of abstraction.

Table 3 shows the numbers of events at each abstract
level. For instance, by applying the synthetic event generator
over a 10 GB trace file, we could reduce it to a trace with 25%
of the original size but still with mostly the same meaning. It
is important to note that the content of trace files at different
levels should yield the same interpretation of the system
execution. In the Implementation Section, we showed that
the same meaning can be extracted from different levels of
abstraction. Using the same pattern-matching technique, the



8 Advances in Software Engineering

“Port scan”  synthetic event

Listen
SYN

RCVD

SYN
sent

Open
port

Closed
port

Filtered
port

recv SYN

Send SYN + ACK recv RST/FIN

Send RST

Send timeout

· · ·

Update State (modelled state,
timestamp,

Port No,
Src IP,
Src port)

Update State (modelled state,
timestamp,

Port No,
Src IP,
Src port)

Update State (modelled state,
timestamp,

Port No,
Src IP,
Src port)

“Open”,

“Closed”

“Filtered”

Figure 6: State transition for detecting the port scanning.

Figure 7: A view of the implemented stateful synthetic event generator.
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reduction ratio is related to the number of patterns and also
the number of containing events in each pattern. For that,
the reduction ratio of the different examined traces is not the
same.

7.2. Patterns and Containing Events. Table 4 shows the
number of selected synthetic events of various trace sizes
for the first abstract level. In the proposed pattern library,
a set of patterns have been defined for each of these synthetic
events, so that by applying them over trace events and
by retrieving the current system state, the engine is able
to detect those events. We have defined 120 patterns for
abstracting out the trace events and generating the first level
of abstraction. These patterns cover important aspects of
file, socket, process, and also system wide operations. The
patterns are stored in an XML file, and the system is defined
in such a way that administrators can easily add new patterns
to the system.
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Table 4: Count of different event types in first level of abstraction.

Number of synthetic events in first level of abstraction

Events count Size (MB) File operations Network operations

File open File read File write File close
Socket
create

Socket
connect

Socket
receive

Socket
send

Socket
close

2279766 25 2727 8401 12913 2327 150 112 4583 7911 150

5420727 75 2474 18563 30251 2122 370 718 21523 26570 611

8872888 150 86780 59108 20913 86536 154 106 7574 10767 161

37328387 500 87484 158484 1025703 88143 673 979 60880 70651 1070

68961889 1000 98583 218789 6507052 96226 159 73 57965 62003 168

140507496 2000 161458 562239 5980178 161577 2140 2500 166420 245718 2638

328868336 5000 1045710 612821 23001032 1044562 4592 5154 137733 296566 5356

621132167 10000 755647 3541833 23214444 720016 27676 20741 735271 1288181 29059

As the second step, Table 5 shows some important
synthetic events for the second abstract level. To generate
these events, a set of patterns were defined over the events
of the first level of abstraction and also the relevant modeled
state values. For instance, “check file” synthetic events
contain a sequence of an open file, check file status or check
file permission, and a close file. Also “sequentially file read
(write)” refers to a set of subsequent file operations that
consist of a file open, read from (write to) a file sequentially,
and finally close it. An “HTTP (DNS) connection” is detected
through a pattern of socket create, socket connect to a 80/53
port with transport protocol equal to TCP (UDP), zero
or more send/receive data, and finally socket close events.
However, a “network connection” synthetic event means that
there is a complete connection (sequence of socket create-
socket connect, send/receive data, and close socket), but that
the engine could not find the type of connection protocol
or the destination port. This happens because of probable
missing events. It may also occur if the connection was
already established at the starting time of the trace. At this
level, we have defined 30 different patterns for detecting such
kind of synthetic events.

It would be interesting to know the number of events
participating to form a synthetic event on one upper level.
Table 6 shows the average number of events from one level
below contained in each synthetic event.

As shown in Table 6, “check file” synthetic events always
contain three events: open a file, check a file attribute, and
close that file. It is important to note that the numbers here
only show the containing events from one level below. On the
other hand, in this example, each of these three events can
in turn contain several events from a lower level. As another
example, the average number of 48 events obtained from a
5 GB trace means that each “sequentially file write” synthetic
event contains 48 events on average: one for open file, one
for close file, and the rest for write events. The null value for
the DNS connection is because there is no such connection
for those traces.

7.3. Execution Time. As discussed earlier, one of the impor-
tant features of the proposed method is its execution
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Figure 9: Execution time comparisons.

efficiency. In this section, execution times for different trace
sizes will be shown. Table 7 shows the time spent to read the
relevant events, to look for patterns, and to generate the first
abstraction level.

The numbers in Table 7 show the time spent for reading
the events, looking for the patterns, and generating the
abstract events. The execution time for checking each pattern
has a relatively minor impact when checking all patterns
simultaneously. Reading the trace events and finding relevant
events for each pattern takes most of the analyzing time.

Figure 9 shows the differences between execution times
spent for different levels of abstraction.

In Figure 9, the blue line shows the execution time
needed for reading the trace events. For this step, no pattern
was specified, and the diagram only shows the time needed
for reading all trace events. In the same way, the orange
line shows the execution time for generating the first level
of abstract events. The execution time consists of reading
events, looking up the patterns, and generating the abstract
events. The yellow line depicts the time needed for analyzing
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Table 5: Count of different event types in second level of abstraction.

Number of synthetic events in second level of abstraction

Events count Size (MB) File operations Network operations

Check file
Sequentially

file read
Sequentially

file write
Read write

file
Network

connection
HTTP

connection
DNS

connection

2279766 25 928 673 496 230 43 103 4

5420727 75 1117 742 253 10 372 193 46

8872888 150 66141 19742 440 213 58 103 0

37328387 500 53371 32093 1791 888 688 274 108

68961889 1000 81607 14343 207 69 139 29 0

140507496 2000 61647 96921 2505 504 1486 867 285

328868336 5000 948436 87095 8047 984 1921 3116 319

621132167 10000 395067 303452 20267 1230 11740 16668 651

Table 6: Average number of containing events for generating the upper level synthetic events.

Events count Size (MB)
Average number of containing events

Check file
Sequentially

file read
Sequentially

file write
Read write

file
Network

connection
HTTP

connection
DNS

connection

2279766 25 3 3 10 9 1 38 5

5420727 75 3 3 25 87 3 37 5

8872888 150 3 4 11 9 2 38 0

37328387 500 3 4 10 26 2 44 5

68961889 1000 3 3 20 67 4 82 0

140507496 2000 3 4 61 16 5 92 5

328868336 5000 3 6 48 62 3 34 5

621132167 10000 3 4 34 120 4 42 5

and generating both levels of abstract events. Differences
between the orange and yellow lines with the blue line show
that the time needed for analyzing and generating the first
level of abstraction is more than the time needed for the
second level. This is explained by the fact that the number
of patterns in the first level is much greater than the number
of patterns in the second level. The results show that the
execution time is relatively linear with the trace size and also
the number of relevant events. However, there exists other
factors that affect the results. The complexity of patterns
and also the number of containing events for each pattern
may lead to different execution times for different synthetic
events. For example, in Table 7, we see different values for
different synthetic events for the same trace file, and the
reason is that they have different scenarios with different
complexities and different numbers of containing events.

Another important factor is the number of coexisting
patterns. As shown in Figure 9, the number of patterns
and the number of coexisting patterns affect the execution
times for the two different abstraction levels. Since the first
level deals with file and socket operations, they need to be
called for each file/socket access, thus having a large impact
on the performance and execution time of the analyzer.
By contrast, in the second abstraction level, the analyzer
works with fewer coexisting patterns, less often called during
a process lifetime; thus, less time is needed for analyzing

and generating the second level of abstract events. The
execution time is therefore related to the size of the trace
files, the number of relevant events, the number of coexisting
patterns, and also the complexity of patterns.

8. Conclusion and Further Work

In this paper, we proposed an abstraction method that
uses a set of patterns over semantic trace events and
system state values to generate synthetic events. Using the
notion of semantic events (the events of a generic type
that replace platform-dependent events) can help decouple
the synthetic event generator from the system and tracer-
dependent events. Using semantic events as well as system
state values makes the abstraction process more generic to
support different versions of trace formats and operating
system kernels and also to support both the kernel and user
level tracing. As shown in the Illustrative Examples Section,
using proposed techniques, we efficiently generate a wide
range of synthetic events that reveal more of the system
behaviors and can also be used to detect a larger range of
system problems.

Although most of the synthetic events can be defined by
patterns and state machines, we do not support the synthetic
events that are not representable using state transitions. For
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Table 7: Execution time for generating the first abstraction level.

Time spent (ms) for analysing and generating the first level of abstract events

Events
count

Size (MB) All (ms) File operations Network operations

File
open

File
read

File write File close
Socket
create

Socket
connect

Socket
receive

Socket
send

Socket
close

2279766 25 4748 3963 4024 3995 4038 4151 3952 3871 3937 3777

5420727 75 9176 5900 6195 6394 6218 6394 6257 5884 6014 5957

8872888 150 12735 10403 10308 10183 10282 9975 10025 97125 10125 10424

37328387 500 58477 50251 50855 51928 50424 49366 47896 48962 49163 48104

68961889 1000 148284 128252 129157 138988 128186 127912 128312 127191 126915 128061

140507496 2000 226569 177913 180017 187366 178640 177389 174385 179372 178509 179097

328868336 5000 650228 513230 514012 546782 512659 510139 507873 511201 510139 512771

621132167 10000 1105124 902245 916292 941668 909893 907177 901127 899976 904227 874227

example, a dependency analysis between different processes
and resources, leading to the computation of the critical path
for a request, cannot be defined as a simple pattern. Another
possible limitation is related to the output completeness
of the tracers. Because not every state modification is
logged with a tracer, this may somehow limit the proposed
technique.

Using the proposed method and having defined a
complete pattern library can also lead to an efficient host-
based intrusion detection system. In our project, expanding
the rule base and pattern library is an important future work.
We have implemented a prototype pattern library that works
over semantic events and system states. However, more work
is needed to complete it and to support more aspects of
system behavior. Examples of the patterns we should extend
include memory usage and interprocess communications.

As mentioned in the Implementation Section, there is
a need to further develop the supporting language. This
language can be declarative or similar to a programing
language and should support the requirements needed to
implement the proposed method. It could be used for
defining the mapping table between raw events and semantic
events, as well as the mapping between events and state
changes. We will focus on extending the language defined in
[3] in a future investigation.
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