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This paper addresses the problem of global asymptotic stability of a class of uncertain discrete-time state-delayed systems
employing generalized overflow nonlinearities. The systems under investigation involve parameter uncertainties that are assumed
to be deterministic and norm bounded. A new computationally tractable delay-dependent criterion for global asymptotic stability
of such systems is presented. A numerical example is given to illustrate the effectiveness of the proposed method.

1. Introduction

In the implementation of linear discrete systems, signals are
usually represented and processed in a finite wordlength for-
mat which frequently generates several kinds of nonlineari-
ties, such as overflow and quantization. Such nonlinearities
may lead to instability in the designed system. Therefore,
the study of stability problem for discrete-time systems with
finite wordlength nonlinearities is important not only for
its theoretical interest but also for application to practical
system design. Many publications [1–22] relating to the issue
of the global asymptotic stability of discrete-time systems
with overflow nonlinearities have appeared.

Parameter uncertainties are often introduced in many
physical systems as a consequence of variations in system
parameters, modeling errors or some ignored factors. Such
uncertainties may result in the deterioration of system
performance and instability of the system.

Time delay is another source of instability for discrete-
time systems. They are frequently introduced in many
physical, industrial, and engineering systems due to finite
capabilities of information processing and signal transmis-
sion among various parts of the system. During the past few
decades, there has emerged a considerable interest on the

stability analysis problems for delayed systems [17–21, 23–
31]. According to the dependence of delay, the available
stability criteria for delayed systems can be broadly classified
into two types: delay independent and delay dependent.
Increasing attention is being paid to delay-dependent stabil-
ity criteria for delayed systems since they can often provide
less conservative results than delay-independent criteria [17,
25, 27].

The problem of establishing delay-dependent criteria for
the global asymptotic stability of discrete-time uncertain
state-delayed systems with overflow nonlinearities is an
important and challenging task. So far, very little attention
has been paid for the investigation of this problem [17, 21].

In this paper, we consider the problem of global asymp-
totic stability of a class of discrete-time uncertain state-
delayed systems employing generalized overflow nonlinear-
ities. The system under investigation involves parameter
uncertainties that are assumed to be norm-bounded. The
paper is organized as follows. Section 2 presents a description
of the system under consideration. New computationally
tractable delay-dependent criteria for global asymptotic
stability of uncertain discrete-time state-delayed systems
employing generalized overflow nonlinearities are proposed
in Section 3. In Section 4, a comparison of the proposed
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method with [18] is made. It is shown that the result
presented in [18] is recovered from the presented approach
as a special case. A numerical example illustrating the
applicability of the proposed criterion is given in Section 5.

2. System Description

The class of nonlinear discrete-time uncertain state-delayed
systems under consideration is given by

x(k + 1) = f
(

y(k)
)

=
[
f1
(
y1(k)

)
f2
(
y2(k)

) · · · fn
(
yn(k)

)]T
,

(1a)

y(k) = (A + ΔA)x(k) + (Ad + ΔAd)x(k − d(k))

=
[
y1(k) y2(k) · · · yn(k)

]T
,

(1b)

where x(k) ∈ Rn is the state vector, A, Ad ∈ Rn×n are the
known constant matrices and ΔA, ΔAd ∈ Rn×n are assumed
to be of the usual norm-bounded type as follows:

[
ΔA ΔAd

]
= BF

[
C0 C1

]
, (2a)

where B ∈ Rn×l, C0, C1 ∈ Rm×n are known matrices
representing the structure of uncertainty and F ∈ R l×m is
an unknown matrix which satisfies

FTF ≤ I. (2b)

It may be mentioned that the uncertainty structure of
(2a) and (2b) has been widely adopted in robust control
and filtering for uncertain systems [32–34]. {ϕ(k), k =
−d2,−d2 + 1, . . . , 0} ∈ Rn is the initial state value at time
k and f(·) represents the generalized overflow nonlinearities.

The generalized overflow characteristic is given by (see
Figure 1):

L ≤ fi
(
yi(k)

) ≤ 1, yi(k) > 1,

fi
(
yi(k)

) = yi(k), −1 ≤ yi(k) ≤ 1,

−1 ≤ fi
(
yi(k)

) ≤ −L, yi(k) < −1,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

i = 1, 2, . . . ,n,

(3a)

where

−1 ≤ L ≤ 1. (3b)

With appropriate choice of L, (3a) and (3b) represent the
usual types of overflow arithmetics employed in practice,
such as saturation (L = 1), zeroing (L = 0), two’s
complement (L = −1), and triangular (L = −1). The time-
varying delay d(k), known as range-like or interval-like time-
varying delay [28, 30, 31], satisfying

d1 ≤ d(k) ≤ d2, (4)

where d1 and d2 are known positive integers representing
the lower and upper delay bounds, respectively. Such delays

1

−1

fi(yi(k))

L

yi(k)1

−1

−L

Figure 1: The generalized overflow nonlinearity described by (3a)
and (3b).

may be used to characterize the realistic situation in many
practical applications [28, 31, 35, 36].

The purpose of this paper is to develop delay-dependent
robust stability criteria for the system (1a) and (1b)–(3a) and
(3b) for any interval like time-varying delay d(k) satisfying
(4).

3. Main Results

In this section, delay-dependent criteria for the global
asymptotic stability of system (1a) and (1b)–(4) are estab-
lished.

The following lemmas are needed in the proof of our
main results.

Lemma 1 (see [8]). An n × n positive definite symmetric
matrix H = [hi j] satisfies

yT(k)Hy(k)− fT
(

y(k)
)

Hf
(

y(k)
) ≥ 0, (5)

if and only if

(1 + L)hii ≥ 2
n∑

j=1, j /= i

∣
∣
∣hi j

∣
∣
∣, i = 1, 2, . . . ,n. (6)

Lemma 2 (see [32–34, 37]). Let Σ,Γ, F and M be real matrices
of appropriate dimensions with M satisfying M = MT , then

M + ΣFΓ + ΓTFTΣT < 0, (7)

for all FTF ≤ I, if and only if there exists a scalar ε > 0 such
that

M + ε−1ΣΣT + εΓTΓ < 0. (8)

Next, we present the main results of the paper.
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Theorem 3. For given positive integers d1 and d2with d2 ≥
d1, the system described by (1a) and (1b)–(4) is globally
asymptotically stable if there exists appropriately dimensioned
matrices P = PT > 0, Qi = QT

i > 0 (i = 1, 2, 3), Zi = ZT
i >

0 (i = 1, 2), H = HT = [hi j] > 0, X =
[

X11 X12

XT
12 X22

]
≥ 0,

Y =
[

Y11 Y12

YT
12 Y22

]
≥ 0, N =

[
N1
N2

]
, M =

[
M1
M2

]
, S =

[
S1
S2

]
and

a positive scalar ε such that

(1 + L)hii ≥ 2
n∑

j=1,j /= i

∣
∣∣hi j

∣
∣∣, i = 1, 2, . . . ,n, (9)

and the following (10)–(13) hold,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ11 ξ12 S1 −M1 −Z ATH 0

ξT12 ξ22 S2 −M2 0 AT
d H 0

ST
1 ST

2 −Q1 0 0 0 0

−MT
1 −MT

2 0 −Q2 0 0 0

−Z 0 0 0 P−H + Z 0 0

HA HAd 0 0 0 −H HB

0 0 0 0 0 BTH −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(10)

ψ1 =
[

X N
NT Z1

]

≥ 0, (11)

ψ2 =
[

Y S
ST Z2

]

≥ 0, (12)

ψ3 =
[

X + Y M
MT Z1 + Z2

]

≥ 0, (13)

where

Z = d2Z1 + (d2 − d1)Z2

ξ11 = − P + Q1 + Q2 + (d2 − d1 + 1)Q3 + Z + N1 + NT
1

+ d2X11 + (d2 − d1)Y11 + εCT
0 C0,

ξ12 = −N1 + NT
2 + M1 − S1 + d2X12 + (d2 − d1)Y12

+ εCT
0 C1,

ξ22 = −N2 −NT
2 + M2 + MT

2 − S2 − ST
2 −Q3

+ d2X22 + (d2 − d1)Y22 + εCT
1 C1.

(14)

Proof. Let

η(k) = x(k + 1)− x(k), (15)

= f
(

y(k)
)− x(k). (16)

Consider a quadratic Lyapunov function [23]

v(x(k)) = v1(x(k)) + v2(x(k)) + v3(x(k))

+ v4(x(k)),

v1(x(k)) = xT(k)Px(k),

v2(x(k)) =
0∑

θ=−d2+1

−1∑

l=θ−1

ηT(k + l)Z1η(k + l)

+
−d1∑

θ=−d2+1

−1∑

l=θ−1

ηT(k + l)Z2η(k + l),

v3(x(k)) =
−1∑

l=−d1

xT(k + l)Q1x(k + l)

+
−1∑

l=−d2

xT(k + l)Q2x(k + l)

v4(x(k)) =
−d1+1∑

θ=−d2+1

−1∑

l=θ−1

xT(k + l)Q3x(k + l)

(17)

Defining

Δv(x(k)) = v(x(k + 1))− v(x(k)), (18)

yields

Δv1(x(k)) = xT(k + 1)Px(k + 1)− xT(k)Px(k)

= fT
(

y(k)
)

Pf
(

y(k)
)− xT(k)Px(k),

Δv2(x(k)) = d2η
T(k)Z1η(k)−

−1∑

θ=−d2

ηT(k + θ)Z1η(k + θ)

+ (d2 − d1)ηT(k)Z2η(k)

−
−d1−1∑

θ=−d2

ηT(k + θ)Z2η(k + θ)

= ηT(k)Zη(k)−
−1∑

θ=−d(k)

ηT(k + θ)Z1η(k + θ)

−
−d1−1∑

θ=−d(k)

ηT(k + θ)Z2η(k + θ)

−
−d(k)−1∑

θ=−d2

ηT(k + θ)(Z1 + Z2)η(k + θ),

Δv3(x(k)) = xT(k)(Q1 + Q2)x(k)− xT(k − d1)Q1x(k − d1)

− xT(k − d2)Q2x(k − d2),
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Δv4(x(k)) = (d2 − d1 + 1)xT(k)Q3x(k)

−
−d1∑

θ=−d2

xT(k + θ)Q3x(k + θ)

≤ (d2 − d1 + 1)xT(k)Q3x(k)

− xT(k − d(k))Q3x(k − d(k)).

(19)

Using (15), we obtain the following null products [23]

0 = 2ζT1 (k)
[

NT
1 NT

2

]T

×
⎡

⎣x(k)− x(k − d(k))−
−1∑

l=−d(k)

η(k + l)

⎤

⎦,

0 = 2ζT1 (k)
[

MT
1 MT

2

]T

×
⎡

⎣x(k − d(k))− x(k − d2)−
−d(k)−1∑

l=−d2

η(k + l)

⎤

⎦,

0 = 2ζT1 (k)
[

ST
1 ST

2

]T

×
⎡

⎣x(k − d1)− x(k − d(k))−
−d1−1∑

l=−d(k)

η(k + l)

⎤

⎦,

(20)

where

ζ1(k) =
[

xT(k) xT(k − d(k))
]T

. (21)

For any appropriately dimensioned matrices X = XT ≥ 0
and Y = YT ≥ 0, we have the following relations:

0 = d2ζ
T
1 (k)Xζ1(k)−

k−1∑

l=k−d(k)

ζT1 (k)Xζ1(k)

−
k−d(k)−1∑

l=k−d2

ζT1 (k)Xζ1(k),

0 = (d2 − d1)ζT1 (k)Yζ1(k)−
k−d1−1∑

l=k−d(k)

ζT1 (k)Yζ1(k)

−
k−d(k)−1∑

l=k−d2

ζT1 (k)Yζ1(k).

(22)

Using (18)–(22), we obtain

Δv(x(k)) ≤ ζT2 (k)πζ2(k)−
k−1∑

l=k−d(k)

ζT3 (k, l)ψ1ζ3(k, l)

−
k−d1−1∑

l=k−d(k)

ζT3 (k, l)ψ2ζ3(k, l)

−
k−d(k)−1∑

l=k−d2

ζT3 (k, l)ψ3ζ3(k, l)− β,

(23a)

where

β = yT(k)Hy(k)− fT
(

y(k)
)

Hf
(

y(k)
)
, (23b)

π

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

π11 + A
T

HA π12 + A
T

HAd S1 −M1 −Z

πT
12 + A

T
d HA π22 + A

T
d HAd S2 −M2 0

ST
1 ST

2 −Q1 0 0
−MT

1 −MT
2 0 −Q2 0

−Z 0 0 0 P−H + Z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(23c)

π11 = − P + Q1 + Q2 + (d2 − d1 + 1)Q3 + Z + N1 + NT
1

+ d2X11 + (d2 − d1)Y11,
(23d)

π12 = −N1 + NT
2 + M1 − S1 + d2X12 + (d2 − d1)Y12, (23e)

π22 = −N2 −NT
2 + M2 + MT

2 − S2 − ST
2 −Q3 + d2X22

+ (d2 − d1)Y22,
(23f)

A = A + ΔA, Ad = Ad + ΔAd, (23g)

ζ2(k)

=
[

xT(k) xT(k−d(k)) xT(k−d1) xT(k−d2) fT
(

y(k)
)]T

,

(23h)

ζ3(k, l) =
[
ζT1 (k) ηT(l)

]T
. (23i)

In view of Lemma 1, (9) implies that the quantity β (see
(23b)) is nonnegative. From (23a), it is clear that Δv(x(k)) <
0 if π < 0 and (11)−(13) hold true and Δv(x(k)) = 0
only when ζ2(k) = 0 and ζ3(k, l) = 0. Thus the conditions
π < 0 and (11)−(13) are sufficient conditions for the global
asymptotic stability of system (1a) and (1b)–(4).

By the well-known Schur’s complement the condition
π < 0 is equivalent to the following:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π11 π12 S1 −M1 −Z A
T

H

πT
12 π22 S2 −M2 0 A

T
d H

ST
1 ST

2 −Q1 0 0 0
−MT

1 −MT
2 0 −Q2 0 0

−Z 0 0 0 P−H + Z 0
HA HAd 0 0 0 −H

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (24)

Now, using (2a), condition (24) can be expressed in the
following form:

M + BFC + C
T

FTB
T
< 0, (25a)
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where

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π11 π12 S1 −M1 −Z ATH
πT

12 π22 S2 −M2 0 AT
d H

ST
1 ST

2 −Q1 0 0 0
−MT

1 −MT
2 0 −Q2 0 0

−Z 0 0 0 P−H + Z 0
HA HAd 0 0 0 −H

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(25b)

B
T =

[
0 0 0 0 0 BTH

]
, (25c)

C =
[

C0 C1 0 0 0 0
]
. (25d)

By Lemma 2, (25a), (25b), (25c), and (25d) is equivalent
to the following:

M + ε−1B B
T

+ εC
T

C < 0, (26)

where ε > 0. The equivalence of (26) and (10) follows
trivially from Schur’s complement. This completes the proof
of Theorem 3.

Remark 4. Theorem 3 provides a stability condition which
depends on both the lower delay bound (d1) and upper delay
bound (d2). For a given d1(d2), d2 (d1) can be obtained by
iteratively solving the inequalities (10)–(13) with respect to
d2 (d1).

Remark 5. Pertaining to the case of L = −1, the matrix H in
Theorem 3 assumes the form of a positive definite diagonal
matrix and consequently, the conditions in Theorem 3
become in true LMI settings. Thus, for L = −1, the
conditions in Theorem 3 can be easily tested using MATLAB
LMI toolbox [37, 38].

Remark 6. Note that, in case of L /= − 1, the conditions
of Theorem 3 are not in true LMI settings. In this case, to
determine the global asymptotic stability of system (1a) and
(1b)–(4) via Theorem 3, one needs to solve the conditions
(10)–(13) for ε > 0, P = PT > 0, Qi = QT

i > 0 (i = 1, 2, 3),
Zi = ZT

i > 0 (i = 1, 2), H = HT > 0, X ≥ 0, Y ≥ 0,
N, M and S using MATLAB LMI toolbox [37, 38] and also
check if there exists a solution H = HT > 0 meeting (9).
This method essentially involves repeated searching of ε > 0,
P = PT > 0, Qi = QT

i > 0 (i = 1, 2, 3), Zi = ZT
i > 0 (i = 1, 2),

H = HT > 0, X ≥ 0, Y ≥ 0, N, M and S satisfying (10)–(13)
until a solution H = HT > 0 meeting (9) is found. If (9)–(13)
provide a feasible solution, then the system (1a) and (1b)–
(4) is globally asymptotically stable; otherwise, no conclusion
regarding the global asymptotic stability of the system under
consideration can be drawn.

In the following, as an extension of the present approach,
we develop a criterion which is true LMI-based and compu-
tationally simpler than Theorem 3.

Let the matrix H = [hi j] ∈ Rn×n is represented by

hii = gi +
n∑

j=1, j /= i

(
αi j + βi j

)
, i = 1, 2, . . . ,n, (27a)

hi j = hji =
(

1 + L

2

)(
αi j − βi j

)
, i, j = 1, 2, . . . ,n

(
i /= j

)
,

(27b)

αi j = αji > 0, βi j = βji > 0, i, j = 1, 2, . . . ,n
(
i /= j

)
,

(27c)

gi > 0, i = 1, 2, . . . ,n, (27d)

where it is understood that, for n = 1, H corresponds to a
scalar γ > 0. Thus, corresponding to n = 3, the matrix H
takes the form

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1 + α12 + β12 + α13 + β13

(
1 + L

2

)
(
α12 − β12

)
(

1 + L

2

)
(
α13 − β13

)

(
1 + L

2

)
(
α12 − β12

)
g2 + α12 + β12 + α23 + β23

(
1 + L

2

)
(
α23 − β23

)

(
1 + L

2

)
(
α13 − β13

)
(

1 + L

2

)
(
α23 − β23

)
g3 + α13 + β13 + α23 + β23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (28)

where gi > 0, αi j = αji > 0, βi j = βji > 0, i, j =
1, 2, 3 (i /= j) and L ∈ [−1, 1].

It can be verified that the matrix H represented by (27a),
(27b), (27c), and (27d) is a positive definite symmetric
matrix and satisfies (9). Further, any positive definite sym-
metric matrix H satisfying (9) can always be expressed in
the form of (27a), (27b), (27c), and (27d). Consequently,
Theorem 3 can equivalently be stated as follows.

Theorem 7. For given positive integers d1 and d2 with d2 ≥
d1, the system described by (1a) and (1b)–(4) is globally

asymptotically stable if there exists appropriately dimensioned
matrices P = PT > 0, Qi = Qi

T > 0 (i = 1, 2, 3),
Zi = Zi

T > 0 (i = 1, 2), X =
[

X11 X12

X12
T X22

]
≥ 0, Y =

[
Y11 Y12

Y12
T Y22

]
≥ 0, N =

[
N1
N2

]
, M =

[
M1
M2

]
, S =

[
S1
S2

]
and

scalars ε > 0, gi > 0 (i = 1, 2, . . . ,n), αi j = αji > 0,
βi j = βji > 0 (i, j = 1, 2, . . . ,n (i /= j)) satisfying (10)–(13)
where H is characterized by (27a), (27b), (27c), and (27d).

Remark 8. For L = −1, the matrix H in Theorem 7
(or Theorem 3) reduces to a positive definite diagonal
matrix and consequently, the conditions in Theorem 7 (or
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Theorem 3) become in true LMI settings. However, for
L /= − 1, Theorem 7 provides true LMI conditions for global
asymptotic stability, without a need for searching H meeting
(9) as in Theorem 3 (see Remark 6), which is beneficial
in terms of numerical complexity. It may be observed
that, for L /= − 1, the matrix inequalities in Theorem 7
become linear in the variables P, Qi (i = 1, 2, 3), Zi

(i = 1, 2), X, Y, N, M, S, ε, gi (i = 1, 2, . . . ,n), αi j , βi j (i, j =
1, 2, . . . ,n (i /= j)) and, thus, are computationally tractable.
Since the matrix H described by (27a), (27b), (27c), and
(27d) has a built-in feature of satisfying (9), one needs not
bother about (9) while using Theorem 7.

In the case of constant delay, the lower and the upper
delay bounds in (4) becomes identical (i.e., d1 = d2 = d)
and Theorem 7 leads to the following corollary.

Corollary 9. The system (1a) and (1b)–(4) with d(k) = d
is globally asymptotically stable if there exists appropriately
dimensioned matrices P = PT > 0, Qi = QT

i > 0 (i =
1, 2, 3), Zi = ZT

i > 0 (i = 1, 2), X =
[

X11 X12

XT
12 X22

]
≥ 0,

Y =
[

Y11 Y12

YT
12 Y22

]
≥ 0, N =

[
N1
N2

]
, M =

[
M1
M2

]
, S =

[
S1
S2

]
,

scalars ε > 0, gi > 0 (i = 1, 2, . . . ,n), αi j = αji > 0,
βi j = βji > 0 (i, j = 1, 2, . . . ,n(i /= j)) satisfying (11)–(13)
and
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ̂11 ξ̂12 S1 −M1 −dZ1 ATH 0

ξ̂
T

12 ξ̂22 S2 −M2 0 AT
d H 0

ST
1 ST

2 −Q1 0 0 0 0

−MT
1 −MT

2 0 −Q2 0 0 0

−dZ1 0 0 0 P−H + dZ1 0 0

HA HAd 0 0 0 −H HB

0 0 0 0 0 BTH −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(29)

where

ξ̂11 = − P + Q1 + Q2 + Q3 + dZ1 + N1 + NT
1

+ dX11 + εCT
0 C0,

ξ̂12 = −N1 + NT
2 + M1 − S1 + dX12 + εCT

0 C1,

ξ̂22 = −N2 −NT
2 + M2 + MT

2 − S2 − ST
2 −Q3

+ dX22 + εCT
1 C1,

(30)

and H is given by (27a), (27b), (27c), and (27d).

4. Comparison with A Previous Work [18]

A delay-independent criterion for the global asymptotic sta-
bility of a class of uncertain discrete-time systems involving
multiple state delays and generalized overflow nonlinearities
is reported in [18]. In this section, for the case of single

delay, it will be shown how the delay-independent stability
criterion [18, Theorem 1] is recovered from Corollary 9 as a
special case.

Following the proof of [18, Theorem 1], one can easily see
that the system (1a) and (1b)–(4) with d(k) = d is globally
asymptotically stable if there exists a positive scalar ε and n×n
positive definite symmetric matrices P, Q, and H such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P + Q + εCT
0 C0 εCT

0 C1 0 ATH 0

εCT
1 C0 −Q + εCT

1 C1 0 AT
d H 0

0 0 P−H 0 0

HA HAd 0 −H HB

0 0 0 BTH −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(31)

where H is defined by (27a), (27b), (27c), and (27d).
By choosing the parameters X12 = Y12 = N = M =

S = 0, Q1 = ρ1I, Q2 = ρ2I, Q3 = Q, Z1 = ρ3I/d, Z2 =
ρ4I/d, X11 = ρ5I/d, X22 = ρ6I/d, Y11 = ρ7I/d, Y22 = ρ8I/d,
for some sufficiently small positive scalars ρi (i = 1, 2, . . . , 8),
the conditions in Corollary 9 reduces to (31). Thus, for the
case of single delay, the delay-independent stability criterion
[18, Theorem 1] is recovered from Corollary 9 as a special
case.

5. An Illustrative Example

Consider a system represented by (1a) and (1b)–(4) with

L = −1, A =
[

0.8 0
0.05 0.9

]

, Ad =
[

0.01 0
0 0.02

]

,

B =
[

0 0.1
]T

, C0 =
[

0.01 0
]

, C1 =
[

0 0.01
]
.

(32)

Let us select d1 =2 and d2 = 10. With the help of Matlab LMI
toolbox [37, 38], it is found that (10)–(13) are feasible for the
following values of unknown parameters.

P =
[

834.51 5.7678
5.7678 569.3174

]

,

Q1 =
[

23.1690 −2.2272
−2.2272 4.3780

]

,

Q2 =
[

23.4337 −2.2530
−2.2530 4.4249

]

,

Q3 =
[

9.8871 −0.7648
−0.7648 4.4261

]

,
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Z1 =
[

1.1158 −0.1113
−0.1113 0.1791

]

,

Z2 =
[

1.5860 −0.1572
−0.1572 0.2643

]

,

X =

⎡

⎢
⎢
⎢
⎣

3.5791 −0.2228 −0.3348 −0.0213
−0.2228 1.5497 0.0043 −0.4386
−0.3348 0.0043 0.5415 −0.0451
−0.0213 −0.4386 −0.0451 0.1951

⎤

⎥
⎥
⎥
⎦

,

Y =

⎡

⎢
⎢
⎢
⎣

4.6378 −0.2861 −0.3943 −0.0326
−0.2861 2.0289 0.0010 −0.5704
−0.3943 0.0010 0.7649 −0.0650
−0.0326 −0.5704 −0.0650 0.2606

⎤

⎥
⎥
⎥
⎦

,

N =

⎡

⎢
⎢
⎢
⎣

−0.2430 0.0242
0.0241 −0.0401
0.2682 −0.0269
−0.0269 0.0414

⎤

⎥
⎥
⎥
⎦

,

M =

⎡

⎢
⎢
⎢
⎣

0.0149 −0.0008
−0.0010 0.0059
−1.1023 0.1103
0.1102 −0.1711

⎤

⎥
⎥
⎥
⎦

,

S =

⎡

⎢
⎢
⎢
⎣

0.0047 −0.0004
−0.0005 0.0006
0.4861 −0.0487
−0.0485 0.0764

⎤

⎥
⎥
⎥
⎦

,

H =
[

891.2363 0
0 577.5832

]

,

ε = 356.1845.

(33)

Therefore, according to Theorem 3, the system under consid-
eration is globally asymptotically stable. Further, by selecting
d1 = 2 and iteratively solving (10)–(13) with respect to d2, it
is seen that the system (1a) and (1b)–(4), (32) is also globally
asymptotically stable for 2 ≤ d(k) ≤ 23.

6. Conclusions

A new computationally tractable delay-dependent stability
criterion for a class of uncertain discrete-time systems
with time-varying delay subject to generalized overflow
nonlinearities has been established. As shown in Section 4,
pertaining to the systems involving single delay, the delay-
independent stability criterion [18, Theorem 1] has been
recovered from Corollary 9 as a special case. The effectiveness
of the results presented has been illustrated with a numerical
example. The results discussed in this paper can easily be
extended to a class of nonlinear uncertain discrete-time
systems involving multiple state delays.

Abbreviations

Rp×q: Set of p × q real matrices
Rp: Set of p × 1 real vectors
0: Null matrix or null vector of appropriate dimension
I: Identity matrix of appropriate dimension
GT: Transpose of the matrix (or vector) G
G > 0: G is positive definite symmetric matrix
G ≥ 0: G is positive semidefinite symmetric matrix
G < 0: G is negative definite symmetric matrix.
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