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In the present paper, we have obtained an exact biperiodic, one-phase solution of the Kawahara
evolution equation. Two classes of real periodic waves generated by the biperiodic solution have
been analyzed. A modification of the bilinear-transformation method has been applied allowing
to provide a single solution of the residual equation derived from the bidifferential reduction of
the considered nonintegrable equation. It is shown that the spatial displacements are individual
for each separate harmonic of the real periodic solutions.

1. Introduction

The nonlinear evolution equation

ut + αuux + βuxxx = γuxxxxx (1.1)

was introduced by Kawahara [1] as a model describing one-dimensional waves for which
the angle between the front and the gradient of the external field tends to the critical angle:
ϕc = arctg(

√
m1/m0 −

√
m0/m1). Here, α, β, and γ are real parameters (α/= 0), u = u(x, t) is

the elevation of dispersionmedium, andm0, m1 are the ion and electronmasses, respectively.
Within the zone of the critical angle ϕc, the coefficient in front of uxxx in (1.1) decreases
causing disbalance between the nonlinear and dispersion effects, which is balanced by
the member with the highest-order derivative. Therefore, three varieties of the dispersion
medium are distinguished: medium with positive dispersion (β < 0, γ < 0); medium with
negative dispersion (β > 0, γ > 0) and medium with mixed dispersion (βγ < 0). Yamamoto
[2] obtained the same evolution equation (1.1) in describing the dynamics of a nonviscous
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fluid in the vicinity of the critical depth. In this case, dispersion of the lowest order caused by
the gravitation is balanced by the one caused by the surface tension.

The Kawahara evolution equation (1.1) is nonintegrable, which can be easily estab-
lished by applying the modified criterion of Ablowtz and Segur [3]. Although it does not
possess any conservation law and N- (N ≥ 2), (1.1) has been a subject of research by a
number of authors employing both analytic and numerical methods.

Kano and Nakayama [4] have found elliptic solution of (1.1), from which by means of
appropriate phase modulations they obtained periodic cnoidal solutions, as well as M-type
and W-type solitary waves. Yamamoto and Takizawa [5] have found a stable progressive-
pulse solution

u(x, t) =
105β2

169γα
sech4

⎡

⎣1
2

√
β

13γ

(

x − 36β2

169γ
t

)⎤

⎦, (1.2)

which actually represents one-soliton impulse that can be generated only in a medium with
positive or negative dispersion (i.e., for sign β = sign γ). In the particular case β = 0, (1.1)
is called FKdV (Five Korteweg-de Vries) and has been thoroughly studied numerically and
analytically by Boyd [6]. Summarizing the numerical analysis accomplished by a number of
authors [1, 2, 7], we can say that the Kawahara equation has two types of localized solitary
waves: compressed and fictitiously scattered corresponding to a medium with negative and
positive dispersion, respectively.

Studies on the existence of periodic solutions of (1.1) are considerably fewer. In 1997
Berloff and Howard [8], by applying the singular manifold method adapted for partial differ-
ential equations [9], obtained solitary and approximate periodic solutions of the Kawahara
equation.

In the present paper, two families of real periodic solutions of the aforementioned
equation are obtained. These exact periodic solutions were proved to be dynamically equi-
valent. A “spatial” version [10] of the bilinear-transformation method of Hirota [11] and
Matsuno [12] has been applied to derive them. In its classic form, this analytic model is
inapplicable to nonintegrable partial differential equations.

2. Preliminaries

We could reduce the Kawahara equation in the so-called normal form if instead of the
parameter β we put εβ, that is, β → εβ, where ε = ±1, β > 0, and assume that γ > 0.

As will be seen below, the last condition does not lead to loss of generality since after
the following rescaling:

x −→
√
γ

β
x, t −→ γ

β2

√
γ

β
t, u −→ β2

αγ
u (2.1)

(1.1) is reduced to its normal form

ut + uux + εuxxx = uxxxxx, ε = ±1. (2.2)
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Hence, it is easy to realize that for ε = +1, we have a mediumwith negative dispersion,
for ε = +1 alongwith replacing the variables u → −u, x → −x, t → −t, themediumpossesses
positive dispersion, while for ε = −1, we have a medium with mixed dispersion, that is, we
have all available variations of the dispersion medium.

The Kawahara equation (2.2) is invariant with respect to the Galilean transformation
x′ = x+λu0, t′ = t, andU = u−u0, where λ = const, u0 = const, that is, ifU(x−v0t) is a solution
of (2.2) with constant phase velocity v0, then the function u(x, t) = u0 +U[x − (v0 + λu0)t] is
also a solution of the same equation but with increased phase velocity v0 → v0 + λu0.

3. Biperiodic Solution

We will represent the solution of (2.2) by means of the Hirota-Satsuma [13] transformation

u(x, t) = a + 2μ
(
ln f(x, t)

)
xx, (3.1)

where a, μ are unknown parameters so far, and f(x, t) is unknown function, but on the
assumption periodic and continuously differentiable to seventh order (with respect to x)
in the semi-infinite domain Ω = {(x, t) ∈ R2, −∞ < x < ∞, t > 0}. By substituting u(x, t)
from (3.1) into (2.2) and employing the bidifferential identities for the Hirota operator (see
Appendix A)

Dn
t D

m
x ϕ(x, t) · ψ

(
x′, t′
)
=
(
∂

∂t
− ∂

∂t′

)n( ∂

∂x
− ∂

∂x′

)m
ϕ(x, t)ψ

(
x′, t′
)
∣∣∣∣ t=t′
x=x′

, (3.2)

we will obtain the following bidifferential form of this equation:

f4
[
DtDx + εD4

x −D6
x − 8C

]
f · f +

f2

2
(
μ − 6ε

)(
D2
xf · f

)2

+D2
xf · f

[
15f2

(
D4
xf · f

)
+ αf4 − 30

(
D2
xf · f

)2]
= 0,

(3.3)

where C is an integration constant assumed to be nonzero. This constant plays a major role in
constructing the periodic solutions though it does not have any dynamic features. If in (3.3)
we put μ = 6ε, then a sufficient condition for the function f(x, t) to be its solution is to satisfy
the following two equations accordingly:

(
DtDx + εD4

x −D6
x − 4C

)
f · f = 0, (3.4)

af4 + 15f2
(
D4
xf · f

)
= 30

(
D2
xf · f

)2
. (3.5)

The first of these equations is called bidifferential (since its structure is such), and the
second one will be called residual. We will search for the solution of (3.4) in the form

f(x, t) = θ3
(
ξ, q
)
=

∞∑

n=−∞
qn

2
e2inξ, (3.6)
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where θ3 is the Jacobi biperiodic function [14]with phase variable ξ = kx+ωt+δ. It is possible
that the parameters k, ω, δ are complex and q = eiπτ , and Im τ > 0 (i.e., 0 < |q| < 1) is the
perturbation parameter. The function θ3(ξ, q) has a real period π/k and an imaginary one
τ/k. We substitute f(x, t) from (3.6) into the bidifferential (3.4). We obtain an infinite system
of algebraic equations

∞∑

m=−∞
F(m)e2imξ = 0, (3.7)

where

Fm(m) =
∞∑

n=−∞

[
−4kω(2n −m)2 + 16εk4(2n −m)4 − 64k6(2n −m)6 + 8C

]
qn

2+(n−m)2 (3.8)

and havingm = 0,±1,±2, . . ..
The bilinear structure of (3.7) makes it possible to apply the index parity principle

therein, which means that if in (3.8) we substitute n → n + 1, we will have the following
relations:

F(m) = F(m − 2)q2(m−1) = F(m − 4)q2(2m−4)

= · · · = F(0)qm2/2 if m is an even number

F(m) = F(m − 2)q2(m−1) = F(m − 4)q2(2m−4)

= · · · = F(1)q(m2−1)/2 if m is an odd number.

(3.9)

Summing up separately the even and odd addends in (3.7), wewill obtain the followingmore
compact form of this equation:

F(0)θ3
(
2ξ, q2

)
+ q−1/2F(1)θ2

(
2ξ, q2

)
= 0, (3.10)

where θ2(z, q) is the second Jacobi biperiodic function [14] defined by the equality θ2(z, q) =∑∞
n=−∞ q(n+1/2)

2
ei(2n−1)z. Accounting for the linear independence of the functions θ2(2ξ, q2) and

θ3(2ξ, q2) in (3.10), it is reduced to two equations: F(0) = 0 and F(1) = 0. In the context of
equality (3.8) and the functional identities for the θ-functions, given in Appendix B, the last
two equations are reduced to the following algebraic linear system:

(
kθ′3
)
ω +

(
θ3
q

)
C = 8εk4

(
θ′3 + qθ

′′
3
) − 64k6

(
θ′3 + 3qθ′′3 + q

2θ′′′3
)
,

(
kθ′2
)
ω +

(
θ2
q

)
C = 8εk4

(
θ′2 + qθ

′′
2
) − 64k6

(
θ′2 + 3qθ′′2 + q

2θ′′′2
)
,

(3.11)

with respect toω andC. This system is compatible and definite sinceΔ = (k/q)(θ2θ′3−θ3θ′2) =
(k/q)W(θ2, θ3)/= 0, whereW is theWronskian determinant, and the wave number is different
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from zero. We have denoted for convenience θj = θj(0, q2), j = 2, 3, so that all derivatives of
these functions in the system (3.11) are with respect to the parameter q. The solution of system
(3.11) is as follows:

ω = 8εk3
[
1 + q

W ′(θ2, θ3)
W(θ2, θ3)

]
− 64k5

W(θ2, θ3)

{
W(θ2, θ3) + 3qW ′(θ2, θ3)

+q2
[
W ′′(θ2, θ3) −W

(
θ′2, θ

′
3
)]}

,

(3.12)

C = −8εk4q2W
(
θ′2, θ

′
3

)

W(θ2, θ3)
+

64k6q2

W(θ2, θ3)
[
W
(
θ′2, θ

′
3
)
+ 3qW ′(θ′2, θ

′
3
)]
. (3.13)

The residual equation (3.5) does not possess a bilinear structure, which is a typical
feature for the nonintegrable partial differential equations. This means that we cannot apply
the index parity principle to (3.5), that is, we cannot reduce the infinite system generated
by this equation (after substituting f(x, t) with its equal function θ3(ξ, t)) to a system of two
equations. Consequently, we will represent the parameter a in the formal series

a = k4
∞∑

m=−∞
am, (3.14)

by the terms am, which are real parameters unknown at this stage. Substituting (3.6) and
(3.14) into the residual equation (3.5), we will obtain the infinite system

am
∞∑

n=−∞
q2(n−m)2+(2n−3m)2 = 240

∞∑

n=−∞

[
2n2(3n −m)2 − (2n −m)4

]
q2n

2+(2n−m)2 ,

m = 0,±1,±2, . . . .
(3.15)

The infinite series on both sides of the system (3.15) are absolutely convergent for
0 < |q| < 1. It is easy to deduce that in summation term by term of the equalities from (3.15)
for each whole number m, the series (3.14) is an absolutely and uniformly convergent series
under the same condition for the perturbation parameter. Thus, we obtain that the terms of
the functional series (3.14) are determined for every integerm by the formula

am
(
q
)
=

240
∑∞

n=−∞
[
2n2(3n −m)2 − (2n −m)4

]
q2n

2+(2n−m)2

∑∞
n=−∞ q2(n−m)2+(2n−3m)2

, m = 0,±1,±2, . . . . (3.16)

The terms am(q) of the uniformly convergent series (3.14) will be called spatial dis-
placements. This will be explained further.

And finally in this section, we can make the conclusion that the continuously differen-
tiable function

u(x, t) = k4
∞∑

m=−∞
am
(
q
)
+ 12εk2

d

dξ

[
θ′3
(
ξ, q
)

θ3
(
ξ, q
)

]

(3.17)
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Figure 1:Discrete values of the spatial displacements am(q) for a mean value of the perturbation parameter
q = e−επ , ε = 1, k = 1, andm = 0, 1, 2, . . ..

is a family of localized biperiodic solutions of the Kawahara equation (2.2). For convenience,
in (3.17), we have denoted

θ′3
(
ξ, q
)
=
d

dξ
θ3
(
ξ, q
)
. (3.18)

Figure 1 shows the discrete values of the spatial displacements am(q) for a mean value
of the perturbation parameter q = e−επ , ε = 1, k = 1, and m = 0, 1, 2, . . .. In addition to the
foregoing, the function u(x, t), expressed by (3.17), is a solution of the considered equation if
the phase velocity ω(k, q) satisfies the dispersion relation (3.12), and the integration constant
C is as in (3.13). The wave number k /= 0 is complex in the general case, but we have to exclude
those values for which the constant C is zero, that is,

k2 /=
ε

8

[

1 + 3q
W ′(θ′2

(
0, q2

)
, θ′3
(
0, q2

))

W
(
θ′2
(
0, q2

)
, θ′3
(
0, q2

))

]−1
. (3.19)

4. Analicity Condition and Real Biperiodic Solutions

The obtained exact biperiodic solution (3.17) of the Kawahara evolution equation (2.2) is
generally speaking a rational complex function of the phase variable ξ = kx + ωt + δ. This
function has twofold poles in the lattice of complex points ξmn = π(m + 1/2) + iτπ(n + 1/2),
m, n ∈ Z, which are zeros of the function θ3(ξ, q). As we are interested in the physical rele-
vance of the obtained biperiodic solution, we can suitably choose the free parameters k, q, δ,
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so that we can achieve real biperiodic analogues of the solution and at the same time avoid
the twofold poles. For this purpose, let us assume that

τ = is, s > 0, that is, q = e−πs < 1. (4.1)

Under these conditions, to avoid the poles of the solution u(x, t) at the points ξmn, it is
sufficient to limit the phase variable within the horizontal strip

−πs < Im(ξ) < πs, (4.2)

which is actually the analicity condition for the solution. To provide real biperiodic solutions
from (3.17), we will consider two possible options for the wave number k, under the condi-
tion of (3.19).

(i) The wave number k is real. Under this assumption and provided the condition of
(4.1) holds, the phase variable ξ = kx + ωt + δ is real for real phase shift δ. The
logarithmic derivative from (3.17) in this case can be expressed in a Fourier series
[14] by the equality

θ′3
(
ξ, q
)

θ3
(
ξ, q
) = 4

∞∑

m=−∞

(−1)mqm
1 − q2m sin(2mξ). (4.3)

Thus, from (3.17), we obtain a well-defined, real function which is periodical on the
real straight line

u(x, t) = k2
∞∑

m=−∞

[
k2am

(
q
)
+ 48εm(−1)mcos ch(mπs) · cos(2mξ)

]
. (4.4)

Figure 2 illustrates the forms of the real periodic solution for a real value of thewave
number k, (k = 1). It can be seen from the last formula that the spatial displacements
am(q) contribute to each separate harmonic of the biperiodic solution.

(ii) The wave number k is imaginary. Let k → ik, and without loss of generality, we
can assume that k > 0. Under this hypothesis, it is possible to generate real periodic
solutions if the phase velocity is an imaginary number and the phase shift is
properly chosen. It is obvious from the dispersion equality (3.12) that the phase
velocity ω is an imaginary number (since ω(k) contains only odd powers of k).
For the phase shift δ, we choose δ → δ + πτ , and hence iξ → iξ + πτ . With this
transition, the dispersion relation (3.12) remains the same. Applying the quasiperi-
odic property for θ3,

θ2
(
iξ, q
)
= q1/4eiξθ3

(
iξ +

πτ

2
, q
)
, (4.5)
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Figure 2: Real sinusoidal periodic solutions for real values of the wave number: k = 1/2, 1 and q = e−π ,
ε = 1.

and from formula (3.17), we have for the logarithmic derivative (see [2])

d2

dξ2
ln θ2

(
iξ, q
)
= −

∞∑

m=−∞
sech2[i(iξ − imπs)]. (4.6)

In this case, we also obtain a real periodic function which is well defined in the strip
(4.2):

u(x, t) =
∞∑

m=−∞

[
k4am

(
q
)
+ 12εk2sech2(ξ −mπs)

]
. (4.7)

Figure 3 visualizes the periodic solitary-wave profiles of the sech2 type for imaginary
values of the wave number k : i, i/2, i/4, and q = e−π . Despite their structural differences,
the two types of real biperiodic solutions of the Kawahara equation obtained in (4.4) and
(4.7) are dynamically equivalent. This comes to confirm the nonlinear superposition principle
established by Toda [15] for the KdV evolution equation. In conclusion, let us note that the
biperiodic real solutions (4.4) and (4.7) actually describe the dynamics of dispersing waves
resulting from the dispersion relation (3.12). Indeed, ω′′(k)/= 0, whichmeans that these waves
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Figure 3: Periodic solitary-wave profiles of sech2 type for imaginary values of the wave number: k =
i, i/2, i/4 and q = e−π .

are propagating in two directions, as periodically repeating groups traveling with group
velocity V = ω′(k).

5. Conclusions

Regardless of the purely technical difficulties arising in the application of the bilinear trans-
formation method, it turns out to be a versatile theoretical instrument in analyzing nonin-
tegrable, nonlinear partial differential equations, such as the Kawahara equation (1.1). The
major intricacy arises from the residual equation after the bilinear reduction of the initial
equation. Harmonization of the bilinear and the residual equation practically means to satisfy
an algebraic systemwith infinite number of equations, but with a finite number of unknowns
(usually one or two). The solution of a similar infinite system is feasible if a suitable
unknown quantity is presented in the form of a convergent numerical or functional series
with unknown terms—a procedure often applied in the Fourier method for linear partial
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differential equations. What is most surprising here is that the terms of these numerical or
functional series have unambiguous physical interpretation. They describe spatial displace-
ments individually for each harmonic. For this reason, we called this modification of the
bilinear-transformation method, as well in [10], “spatial.” Note that for some nonintegrable
nonlinear evolution equations, such as the Kuramoto-Sivashinsky equation

ut + uux + α1uxx + α2uxxx + α3uxxxx = 0, (5.1)

spatial displacements are absent. In this case, their role is taken by the “wave” displacements,
that is, the wave number is presented as a convergent infinite series.

Appendices

A. Logarithmic Derivatives Expressed by the
Hirota’s Bilinear Differential Operators Dt, Dx

Consider the following:

(ln ζ)xx =
D2
xζ · ζ
2ζ2

; (ln ζ)tx =
DtDxζ · ζ

2ζ2
,

(ln ζ)xxxx =
D4
xζ · ζ
2ζ2

− 6

(
D2
xζ · ζ
2ζ2

)2

,

(ln ζ)xxxxxx =
D6
xζ · ζ
2ζ2

− 30

(
D2
xζ · ζ
2ζ2

)(
D4
xζ · ζ
2ζ2

)

+ 120

(
D2
xζ · ζ
2ζ2

)3

.

(A.1)

B. Identities for the Jacobi θ-Functions

Consider the following:

∞∑

n=−∞
q2n

2
= θ3 = θ3

(
0, q2

)
,

∞∑

n=−∞
qn

2+(n−1)2 = q1/2θ2 = q1/2θ2
(
0, q2

)
;

∞∑

n=−∞
n2q2n

2
=
qθ′3
2
,

∞∑

n=−∞
(2n − 1)2qn

2+(n−1)2 = 2q3/2θ′2;

∞∑

n=−∞
n4q2n

2
=
q
(
θ′3 + qθ

′′
3

)

4
,

∞∑

n=−∞
(2n − 1)4qn

2+(n−1)2 = 4q3/2
(
θ′2 + qθ

′′
2
)
;
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∞∑

n=−∞
n6q2n

2
=
q
(
θ′3 + 3qθ′′3 + q

2θ′′′3
)

8
,

∞∑

n=−∞
(2n − 1)6qn

2+(n−1)2 = 8q3/2
(
θ′2 + 3qθ′′2 + q

2θ′′′2
)
.

(B.1)
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