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A classical epidemiological framework is used to qualitatively assess the impact of early detection
and treatment on the dynamics of HIV/AIDS. Within this theoretical framework, two classes
of infected populations: those infected but unaware of their serological status and those who
are aware of their disease status, are considered. In this context, we formulate and analyze
a deterministic model for the transmission dynamics of HIV/AIDS and assess the potential
population-level impact of early detection in curtailing the epidemic. A critical threshold para-
meter for which case detection will have a positive impact is derived. Model parameters sensitivity
analysis indicates that the number of partners is the most sensitive (in increasing the average
number of secondary transmission) parameter. However, the case detection coverage is the main
drivers in reducing the initial disease transmission. Numerical simulations of the model are pro-
vided to support the analytical results. Early detection and treatment alone are insufficient to
eliminate the disease, and other control strategies are to be explored.

1. Introduction

HIV/AIDS has killed more than 25 million people globally since its emergence in 1981,
making it one of the most destructive epidemics in recorded history. The disease continues to
inflict a significant morbidity, mortality, and social-economic and public health burden. For
the estimated 33.3 million people living with HIV after nearly 30 years into a very complex
epidemic, the gains are real but still fragile, even as the number of annual AIDS-related deaths
worldwide has steadily decreased from the peak of 2.1 million in 2004 to an estimated 1.8
million in 2009 [1].

Various preventative and therapeutic measures have been embarked upon, aiming at
combating one of the greatest pandemics in modern times [2, 3]. In sub-Saharan Africa, many
infected individuals are unaware of their disease status. Recent randomized control trials
have found that treating HIV-positive individuals with antiretroviral drugs reduces the risk
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of them transmitting the disease to their heterosexual partners by more than 90% [4]. As the
current treatment therapy has been proven beyond reasonable doubt to reduce transmission,
it is imperative to identify those who are infected and put them on treatment when eligible. It
is therefore desirable to encourage voluntary testing that will increase case detection, thereby
reducing the number of secondary infections of individuals receiving treatment. There is no
explicit mathematical account of the potential population level impact of case detection when
treatment is available known to us. Thus, a dynamical system model is formulated in order to
assess the trade-off/population-level impact between treatment and early detection of HIV
positive. The results are sensitive to parameter values, and for this reason, a deterministic
sensitivity analysis is carried out.

The rest of this work is organized as follows. The basic model formulation and its anal-
ysis are provided in Section 2. The extended model incorporating case detection and treat-
ment is described and analyzed in Section 3. The model simulation using heuristic parameter
values for the purpose of illustration follows in Section 4.

2. Model Formulation and Analysis

We begin by formulating a deterministic sex-structured basic HIV/AIDS model (i.e., without
interventions). Individuals are identified as male and female only in connection with features
peculiar to their sex. The male to female infectivity rate is greater than the female to male
[5]. We also assume that the mixing between individuals is homogeneous; individuals may
become HIV-infected only through sexual contacts with HIV infected individuals. Those in
the final disease stage are considered too ill to remain sexually active. We ignore impo-
rtant HIV transmission path such as intravenous drug injections, vertical transmission, breast
feeding, blood transfusion, and needle sharing. It is also assumed that there is no recruit-
ment of HIV positive. The total heterosexual population is divided into male and female sub-
populations with the following epidemiological subgroups (the classification is based on in-
dividuals disease status): susceptible male and female (Sm, Sf), infected male and female
(Im, If), and symptomatic individuals in the final disease (AIDS) stage (Am,Af).

New recruits enter the heterosexually active population at constant rates Λm and Λf

for male and female, respectively (all recruits into the population are assumed susceptible).
Male and female susceptible acquire infection at time-dependent rates λm and λf and become
infectious. Infectious individuals exhibit AIDS clinical defining symptoms at rates h and z for
male and female, respectively. In the absence of the disease, individuals in the population die
of natural death at the rate μ. The disease-induced mortality rate is d for both individuals
in the infectious and AIDS classes. A full description of the model variables and parameters
used in the model is described in Tables 2 and 3, respectively.

Based on our model description and assumptions, we establish the following equa-
tions. We note that the red and dash arrows, respectively, in Figures 1 and 2 are the feedback
branches which indicate how the male and female subpopulations are coupled (via the force
of infection)

Male

dSm

dt
= Λm − (μ + λm

)
Sm,

dIm
dt

= λmSm − (μ + d + h
)
Im,

dAm

dt
= hIm − (μ + d

)
Am,

Female
dSf

dt
= Λf −

(
μ + λf

)
Sf ,

dIf

dt
= λfSf −

(
μ + d + z

)
If ,

dAf

dt
= zIf −

(
μ + d

)
Af.

(2.1)
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Figure 1: The basic HIV/AIDS model flowchart.
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Figure 2: Flow diagram of the HIV/AIDS model with interventions.

The forces of infection for male and female are, respectively, given by

λm = ηfβm
If

Nf
, λf = ηmβf

Im
Nm

, (2.2)

where βm, βf and ηm, ηf are, respectively, the probabilities of acquiring HIV and the aver-
age number of male and female sexual partners, respectively. The basic model (2.1) with
nonnegative initial conditions is epidemiologically meaningful and mathematically well
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posed. Thus, system (2.1) is dissipative (i.e., all feasible solutions are uniformly bounded
[6, 7]). System (2.1) has a disease-free equilibrium (DFE) given by

E0 =
(
S0m, I0m,A0m, S0f , I0f ,A0f

)
=
(
Λm

μ
, 0, 0,

Λf

μ
, 0, 0

)
. (2.3)

Using the next-generation operator method [8], the basic model reproduction number R0

of model (2.1), defined as the number of secondary infections caused by a typical infected
individual introduced into the entire susceptible population during his entire period of
infectiousness [9], is given by

R0 =

√
βfηm

(
μ + d + h

)
βmηf

(
μ + d + z

) . (2.4)

The expression of R0 is a geometric mean of the average number of secondary male infections
produced by one female, and the average number of secondary female infections produced
by one male. From Theorem 2 of van den Driessche and Watmough [8], the following result
holds.

Lemma 2.1. The DFE E0 of system (2.1) is locally asymptotically stable if R0 < 1, and unstable if
R0 > 1.

If R0 < 1, then on average an infected individual produces less than one new infection
over its infectious period, and the epidemic cannot grow. That is, a small influx of infected
individuals would not generate large outbreaks if R0 < 1. Conversely, if R0 > 1, then each
infected individual produces on average more than one new infection, and the disease can
invade the population. However, in order for disease elimination to be independent of the
initial sizes of the subpopulations of the model when R0 < 1, global stability of E0 is required.

Lemma 2.2. The E0 is globally asymptotically stable if R0 < 1, and unstable otherwise.

Proof. The proof is based on a comparison theorem [10]. The rate of change of the variables
representing the infected components of the system (2.1) can be written as

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

dIm
dt

dAm

dt

dIf

dt

dAf

dt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= (F − V )

⎛

⎜⎜⎜⎜⎜
⎝

Im

Am

If

Af

⎞

⎟⎟⎟⎟⎟
⎠

−

⎛

⎜⎜⎜⎜⎜
⎝

λmSm

0

λfSf

0

⎞

⎟⎟⎟⎟⎟
⎠

, (2.5)
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where the matrices F and V are given, respectively, by

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0
βmηfΛm

μNf
0

0 0 0 0

βfηmΛf

μNm
0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

μ + d + h 0 0 0

−h μ + d 0 0

0 0 μ + d + z 0

0 0 −z μ + d

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(2.6)

Thus,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

dIm
dt

dAm

dt

dIf

dt

dAf

dt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≤ (F − V )

⎛

⎜⎜⎜⎜⎜
⎝

Im

Am

If

Af

⎞

⎟⎟⎟⎟⎟
⎠

. (2.7)

Using the fact that the eigenvalues of the matrix F − V all have negative real parts, it follows
that the linearized differential inequality above is stable whenever R0 < 1. Consequently,
(Im,Am, If ,Af) → (0, 0, 0, 0) as t → ∞. By a comparison Theorem [10], (Im,Am, If ,Af) →
(0, 0, 0, 0) as t → ∞. Thus, (Sm, Im,Am, Sf , If ,Af) → (Λm/μ, 0, 0,Λf/μ, 0, 0) as t → ∞ for
R0 < 1, and hence, the DFE is globally asymptotically stable if R0 < 1.

The above result indicates that HIV could be eliminated from the community if the
threshold quantity R0 can be brought to (and maintained at) a value less than unity. The
endemic equilibrium (EE) of (2.1) is given by

E∗ =
(
S∗
m, I

∗
m,A

∗
m, S

∗
f , I

∗
f ,A

∗
f

)
, (2.8)

where

S∗
m =

Λm(
λ∗m + μ

) , I∗m =
Λmλ

∗
m(

λ∗m + μ
)(
μ + d + h

) , A∗
m =

hΛmλ
∗
m(

λ∗m + μ
)(
μ + d + h

)(
μ + d

) ,

S∗
f =

Λf
(
λ∗
f
+ μ
) , I∗f =

Λfλ
∗
f

(
λ∗
f
+ μ
)(

μ + d + z
) , A∗

f =
zΛfλ

∗
f

(
λ∗
f
+ μ
)(

μ + d + z
)(
μ + d

) ,

(2.9)
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where λ∗m = ηfβm(I∗f/N
∗
f) and λ∗f = ηmβf(I∗m/N

∗
m). Solving for λ∗m using the values of I∗m,

I∗
f

in (2.9) and the value of λ∗
f
, after some lengthy algebraic manipulations, the endemic

equilibrium of HIV/AIDS basic model satisfies the following linear equation:

Aλ∗m − B = 0, (2.10)

where

A = μNmNf

(
μ + d + h

)(
μ + d + z

)
+NfηmβfΛm

(
μ + d + z

)
,

B = μ2NmNf

(
μ + d + h

)(
μ + d + z

)
[

1 − ηfβmΛfηmβfΛm

μ2NmNf

(
μ + d + h

)(
μ + d + z

)

]

= μ2NmNf

(
μ + d + h

)(
μ + d + z

)[
1 − R2

0

]
,

(2.11)

A > 0 while B < 0 provided R0 > 1, and consequently, the linear system Aλ∗m − B = 0 has a
unique positive solution λ∗m = B/A, whenever R0 > 1. The components of the endemic equi-
librium E∗ are then determined by substituting λ∗m = B/A into (2.9). Noting that R0 < 1 im-
plies B > 0; thus, for R0 < 1, the force of infection λ∗m at steady state is negative (and bio-
logically meaningless). Hence, the model has no endemic equilibrium in this case. Thus, we
have established the following result.

Lemma 2.3. The HIV/AIDS model (2.1) has a unique positive EE E∗ whenever R0 > 1 and none
otherwise.

The uniqueness of E∗ and the global stability of the DFE imply that the model does
not exhibit the phenomenon of backward or subcritical bifurcation where a locally stable EE
coexists with a stable DFE when the reproduction number is less than unity. Because the
model parameters are taken from different sources, a deterministic sensitivity analysis is car-
ried out using the approach in [11]. Sensitivity indices (of the reproduction number) which
measure initial disease transmission allow us to estimate the relative change in a state variable
when a parameter changes. The sensitivity indices of R0 to the parameters for the HIV/AIDS
model are given in Table 1. The negative parameters simply means that an increase in that
parameter leads to a decrease in the reproductive number. For instance, a 10% increase of
the number of sexual partners will lead to a 5% increase of the value of R0 (initial dis-
ease transmission threshold).

3. Analysis of the Model with Interventions

The basic model is extended to include screening (detected classes, Dm, Df) and treatment
classes (Tm, Tf). It is assumed that the number of contacts made by susceptible individuals
under treatment is less than or equal to the number of contacts made with an untreated
infective due to behavioral change. This is captured via the parameters rm and rf which
are both less than or equal to unity (0 ≤ rm, rf ≤ 1). Also, treatment reduces infectivity,
accounted herein by the parameters pm, pf < 1. The model compartments and flow are
depicted in Figure 2, while the additional variables and parameters for the extended model
are described in Tables 2 and 3, respectively.
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Table 1: Numerical values of sensitivity indices of R0.

Parameter symbol Sensitivity index
d −0.6935
Λm, Λf , ηm, ηf , βm, βf +0.5000
h −0.1302
z −0.1302

Table 2: Model variables and their description.

Symbol Description
Sm(t) Number of susceptible males at time t

Im(t) Number of infectious males at time t

Am(t) Number of fully symptomatic AIDS males at time t

Sf (t) Number of susceptible females at time t

If (t) Number of infectious females at time t

Af (t) Number of fully symptomatic AIDS females at time t

Dm(t) The number of detected (screened) males at time t

Tm(t) The number of treated males at time t

Df (t) The number of detected (screened) females at time t

Tf (t) The number of treated females at time t

With the above assumptions and terminology, the model is given by the following
system of nonlinear equations:

Male

dSm

dt
= Λm − (λm + μ

)
Sm,

dIm
dt

= λmSm − (μ + d + h + σm

)
Im,

dDm

dt
= σmIm − (μ + d + τm

)
Dm,

dTm
dt

= τmDm − (μ + d + αm

)
Tm,

dAm

dt
= αmTm + hIm − (μ + d

)
Am,

Female

dSf

dt
= Λf −

(
λf + μ

)
Sf ,

dIf

dt
= λfSf −

(
μ + d + z + σf

)
If ,

dDf

dt
= σfIf −

(
μ + d + τf

)
Df,

dTf

dt
= τfDf −

(
μ + d + αf

)
Tf ,

dAf

dt
= αfTf + zIf −

(
μ + d

)
Af.

(3.1)

The force of infections of male and female is, respectively, given by

λm = ηfβm
If + rfDf + pfTf

Nf
, λf = ηmβf

Im + rmDm + pmTm
Nm

. (3.2)

The DFE of model system (3.1) denoted by E00 is given by

E00 =
(
Λm

μ
, 0, 0, 0, 0, 0,

Λf

μ
, 0, 0, 0, 0, 0

)
. (3.3)
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Table 3: Parameter definitions and their values.

Parameter Definition Value (yr)−1 Source
μ Natural mortality rate 0.0222 [1]
d Disease-induced death rate 0.333 [12]
βm Male effective contact rate 0.025 Assumed
βf Female effective contact rate 0.015 Assumed
ηm Average number of male partners per female 3 BMC
ηf Average number of female partners per male 5 BMC
τm Treatment rate of detected male 0 < τm < 1 Assumed
τf Treatment rate of detected female 0 < τf < 1 Assumed
h Progression rate of infected females to AIDS 0.125 [13]
z Progression rate of infected males to AIDS 0.125 [13]
αm Progression rate of males under treatment to AIDS 0.004 Assumed
αf Progression rate of females under treatment to AIDS 0.004 Assumed
pm Reduction in transmission of HIV from treated males 0.02 BMC
pf Reduction in transmission of HIV from treated females 0.02 BMC
rm Reduction in transmission of HIV from detected male 0.004 Assumed
rf Reduction in transmission of HIV from detected female 0.0025 Assumed
σm Rate at which infected males are detected 0.512 BMC
σf Rate at which infected females are detected 0.675 BMC
Λm Net flow rate into the susceptible male class 100,000 STH
Λf Net flow rate into the susceptible female class 100,000 STH

Using the next-generation matrix operator [8], the reproduction number of (3.1) is

RT =
√
RmTRfT , (3.4)

where

RmT =
βfηm

μ + d + h + σm

(

1 +
rmσm

μ + d + τm
+

pmτmσm
(
μ + d + τm

)(
μ + d + αm

)

)

,

RfT =
βmηf

μ + d + z + σf

(

1 +
rfσf

μ + d + τf
+

pfτfσf
(
μ + d + τf

)(
μ + d + αf

)

)

.

(3.5)

Thus, using Theorem 2 of van den Driessche and Watmough [8], the following result holds.

Lemma 3.1. The DFE E00 of model system (3.1) is locally asymptotically stable if RT < 1, and
unstable if RT > 1.

RmT and RfT are the reproduction numbers for males and females, respectively (i.e.,
RmT represents the number of females infected by a single male during his entire period of
infectiousness in a population where treatment is available). If the interventions are dropped,
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that is, σm = 0, σf = 0, and τm = 0, τf = 0, then the effective reproduction number RT reduces
to the basic reproduction number R0. The endemic equilibrium of (3.1) denoted by E∗∗ is

E∗∗ =
(
S∗∗
m, I∗∗m ,D∗∗

m , T ∗∗
m ,A∗∗

m, S∗∗
f , I∗∗f ,D∗∗

f , T ∗∗
f ,A∗∗

f

)
, (3.6)

S∗∗
m =

Λm

μ +AI∗∗f
,

S∗∗
f
=

Λf

μ + BI∗∗m
,

D∗∗
m =

σm

μ + d + τm
I∗∗m ,

T ∗∗
m =

σmτm(
μ + d + τm

)(
μ + d + αm

)I∗∗m ,

T ∗∗
f

=
σfτf

(
μ + d + τf

)(
μ + d + αf

)I∗∗f ,

I∗∗m =
AΛf

[
ABΛmΛf−μ2(μ+d+z+σf

)(
μ+d +h+σm

)]

(
μ + d + h + σm

)(
μABΛm +A2BΛmΛf

) ,

I∗∗f =
ABΛmΛf − μ2(μ + d + z + σf

)(
μ + d + h + σm

)

μ
(
μ + d + z + σf

)(
μ + d + h + σm

)
A +ABΛm

,

D∗∗
f

=
σf

μ + d + τf
I∗∗
f
,

A∗∗
m =

αmσmτm + h
(
μ + d + τm

)(
μ + d + αm

)

(
μ + d

)(
μ + d + τm

)(
μ + d + αm

) I∗∗m ,

A∗∗
f
=

αfσfτf + z
(
μ + d + τf

)(
μ + d + αf

)

(
μ + d

)(
μ + d + τf

)(
μ + d + αf

) I∗∗
f
,

(3.7)

where

A =
βmηf

Nf

(

1 +
rfσf

μ + d + τf
+

pfτfσf
(
μ + d + τf

)(
μ + d + αf

)

)

,

B =
βfηm

Nm

(

1 +
rmσm

μ + d + τm
+

pmτmσm
(
μ + d + τm

)(
μ + d + αm

)

)

.

(3.8)

The endemic equilibrium exists provided I∗∗m > 0 and I∗∗
f

> 0. Consider I∗∗
f

given in (3.7), then

I∗∗f =
ABΛmΛf − μ2(μ + d + z + σf

)(
μ + d + h + σm

)

μ
(
μ + d + z + σf

)(
μ + d + h + σm

)
A +ABΛm

= ABΛmΛf − μ2(μ + d + z + σf

)(
μ + d + h + σm

)

=

[
ABΛmΛf

μ2
(
μ + d + z + σf

)(
μ + d + h + σm

) − 1

]

.

(3.9)

Substituting A and B in (3.9), after some rearrangement, we obtain

I∗∗f = R2
T − 1. (3.10)

It is therefore evident that I∗∗
f

> 0 provided RT > 1. A similar expression can be derived for
I∗∗m . Thus, we have established the following result.

Lemma 3.2. The model system (3.1) has a unique positive EE whenever RT > 1 and none otherwise.
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Table 4: Sensitivity indices of RT .

Parameter Sensitivity index
Λm, Λf , ηm, ηf , βm, βf +0.5000
σf −0.3206
σm −0.2808
h −0.0194
z −0.0072
rf +0.0023
rm +0.0015
τm −0.0003
τf −0.0002
pm +0.0002
pf +0.0001

We analytically investigate the impact of case detection on HIV/AIDS dynamics. By
partially differentiating RmT with respect to the case detection rate σm, we obtain

∂RmT

∂σm
=

βfηm
(
μ + d + h + σm

)2 (Δ − 1), (3.11)

where Δ = ((μ+d+h)/(μ+d+h+ τm))(rm + pmτm/(μ+d+αm)). For Δ < 1, (3.11) is negative
and consequently, early detection will always have a positive impact on the dynamics of
HIV/AIDS. If Δ = 1, then case detection has no impact (this case will only arise if treatment
of those eligible does not follow). From epidemiological and demographical standpoint, the
threshold parameter Δ ≤ 1 is to be expected.

The sensitivity indices of RT are given in Table 4. Next, we numerically investigate the
impact of the number of partners, case detection, and treatment on the disease dynamics. Tan-
zania started HIV/AIDS care and treatment in October 2004, and the target for the first year
was to cover 44,000 patients. About 96 care and treatment providing facilities were selected to
initiate the services, which included four referral hospitals; Muhimbili, Kilimanjaro Christian
Medical Centre (KCMC), Bugando Medical Centre (BMC), and Mbeya Medical Centre. Some
of the parameter values (see Table 3) are provided courtesy of the regional medical officer esti-
mated based on data from the Bugando Medical Centre (BMC) and the Sekou Toure Hospital
(STH) both located in Mwanza City in northern Tanzania. Others are taken from the litera-
ture, and the remaining ones are assumed within realistic range for the purpose of illustration.

Multiple partnerships increase the risk factor of acquiring HIV. When the number of
partners is small over a long time period, the rate of infection is minimal. In this case, the
disease tends to die down (Figure 3(a)). The disease will persist when multiple and concur-
rent partnerships are frequent in the community, in which case infections are on the increase
over time (Figure 3(b)).

Since it is assumed that all detected HIV-positive individuals are treated if eligible, the
shapes of the time trends of detected (Figure 4(a)) and treated individuals (Figure 4(b)) are
similar. The slight difference is due to the rate of developing full blown AIDS from the treated
class.

Figure 5 depicts the effect of increasing early detection and treatment on the repro-
duction numbers R0 and RT .
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Figure 3: Effect of the number of partners on the dynamics of HIV-positive (a) low sexual activity: ηm = 2
and ηf = 3, (b) high sexual activity: ηm = 4 and ηf = 6.

4. Conclusion

The dynamic and determinants of the HIV epidemics are multiple and are shaped by the
sexual patterns which are related to social, cultural, and economic factors: for example, pro-
miscuity, low and inconsistent condom use, intergenerational sex, concurrent sexual partners,
and various opportunistic infections. Screening is a barometer for achieving success in
the fight against the epidemic. It is against this background that a simple deterministic
HIV/AIDS model which accounts for case detection and antiretroviral therapy was formu-
lated and analyzed. Conditions for the global stability which rules out any possibility for
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Figure 4: Time series of susceptible, detected, and treated individuals.

the model to exhibit the phenomenon of backward bifurcation were provided. Therefore, the
classical requirement of the reproduction number to be less than unity might be sufficient for
disease elimination. However, HIV/AIDS is inherently a multifaceted disease with poverty-
drug use-behavioral/attitudinal change and gender inequality are some of the social factors
that need to be addressed. Sensitivity results point to the case detection rate as a driving factor
in stemming the tide of the epidemic. Thus, increasing voluntary and or mass screening will
always have a positive impact on HIV/AIDS control in reducing the disease burden.

Numerical simulations clearly show that early detection and treatment alone are
insufficient to eliminate the disease (Figures 4 and 5). Other control strategies such as condom
and microbicides used are to be explored. The study is not exhaustive and can be extended
in various ways by incorporating a potential (imperfect) vaccine, withdrawal from sexual
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Figure 5: Graphical representation of R0 as detection and treatment rates are varied.

activity of a fraction of individuals in the AIDS defining stage, and development of drug
resistance and superinfection (with different virus strains).
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