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We construct the approximate solutions of the time-fractional Schrödinger equations, with zero
and nonzero trapping potential, by homotopy analysis method (HAM). The fractional derivatives,
in the Caputo sense, are used. The method is capable of reducing the size of calculations
and handles nonlinear-coupled equations in a direct manner. The results show that HAM is
more promising, convenient, efficient and less computational than differential transform method
(DTM), and easy to apply in spaces of higher dimensions as well.

1. Introduction

The theory of derivatives of fractional (nonintegers) orders stimulates considerable interest
in the areas of mathematics, physics, engineering, and other sciences. Fractional derivatives
[1–5] provide an excellent tool for the description of memory and hereditary properties of
various material and processes. The beauty of this subject is that a fractional derivative is not
a local point property. This considers the history and nonlocal distributed effects. Perhaps,
this subject translates the reality of nature better. Application of fractional calculus are
found in different areas of sciences such as physics, continuummechanics, signal processing,
electromagnetics, and bioengineering. The electrical properties of nerve cell membranes
and the propagation of electrical signals are well characterized by differential equations
of fractional order. The fractional differential equations (FDE) [6–11] appear more and
more frequently in different research areas and engineering applications. Exact solution of
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nonlinear partial differential equations has become one of the central themes of perpetual
interest in mathematical physics. In order to better understand these phenomena as well as
further apply them in the practical life, it is important to seek their exact solutions.

A great deal of effort has also been expanded in attempting to find robust and stable
numerical and analytical methods for solving fractional differential equations of physical
interest. These methods include Laplace transform method, Fourier transform method,
finite difference method [12], fractional linear multistep methods, Adomian decomposition
method (ADM) [13], variational iteration method (VIM) [14], homotopy perturbation
method (HPM) [15], differential transform method [16], and homotopy analysis method
(HAM) [17–20].

The aim of this paper is to solve the Schrödinger equation with fractional order using
the homotopy analysis method. By introducing an embedding parameter q the nonlinear
fractional differential equation is converted to a linear fractional differential equation at
q = 0. When q evolves, the differential equation becomes the original one at q = 1. The
method has been used in a variety of problems and the details can be found in Liao’s
book [17]. The method gives rapidly convergent successive approximations of the exact
solution if such solution exists; otherwise, a few approximations can be used for numerical
purposes. Wang [12] presented the numerical solution Schrödinger equations by means of
finite difference scheme. Khuri [13] applied ADM to obtain the solution of cubic Schrödinger
equations. Wazwaz [14] presented the exact solution of the linear and nonlinear one-
dimensional Schrödinger equations by VIM. Recently, Ravi Kanth [16] and his colleague
presented the exact solution of the linear and nonlinear Schrödinger equations by differential
transformation method (DTM).

The aim of this paper is to investigate the approximate solutions of the time-fractional
Schrödinger equations, with zero and non-zero trapping potential, by means of HAM. The
convergent region is then obtained by looking at the real and imaginary parts of the series in
plot.

2. Fractional Schrödinger Equations and Preliminaries

The time-fractional Schrödinger equations (FSE) has the following form:

i
∂αψ(X, t)

∂tα
+
1
2
∇2ψ(X, t) − Vd(X)ψ − βd

∣
∣ψ
∣
∣
2
ψ = 0; t ≥ 0,

ψ(X, 0) = ψ0(X), X ∈ �d,

(2.1)

where Vd(X) is the trapping potential and βd is a real constant. The physical model (2.1) and
its generalized forms occur in various areas of physics, including nonlinear optics, plasma
physics, superconductivity, and quantum mechanics.

We give some basic definitions, notations, and properties of the fractional calculus
theory, which will be used later in this work.
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Definition 2.1. The Riemann-Liouville fractional integral operator of order μ on the usual
Lebesgue space L1[a, b] is given by

Jμf(x) =
1

Γ
(

μ
)

∫x

0
(x − t)μ−1f(t)dt; μ > 0, (2.2)

J0f(x) = f(x). (2.3)

This integral operator has the following properties:

(i) JαJβ = Jα+β = JβJα, α, β > 0,

(ii) Jα(x − a)γ = Γ(γ + 1)
Γ(α + γ + 1)

(x − a)α+γ , α > 0, γ > −1.

Definition 2.2. The Caputo definition of fractal derivative operator is given by

Dμf(x) =
1

Γ
(

m − μ)
∫ t

0
(x − τ)m−μ−1f (m)(τ)dτ m − 1 < μ ≤ m, m ∈N, x > 0. (2.4)

It has the following two basic properties:

DμJμf(x) = f(x), (2.5)

and

JμDμf(x) = f(x) −
m−1∑

k=0

f (k)(0+)
(x)k

k!
, x > 0. (2.6)

The Caputo fractional derivative is considered here because it allows traditional initial and
boundary conditions to be included in the formulation of the problem.

3. Basic Idea of HAM

In this paper, we apply the HAM to the linear and nonlinear problems to be discussed. In
order to show the basic idea of HAM, consider the following nonlinear fractional differential
equation:

NF
[

ψ
(

X, t; q
)]

= 0, (3.1)

whereNF is a nonlinear fractional operator,X and t denote the independent variables, and ψ
is an unknown function. By means of the HAM, we first construct the so-called zeroth-order
deformation equation

(

1 − q)£F
[

φ
(

X, t; q
) − ψ0(X, t)

]

= qħNF
[

φ
(

X, t; q
)]

, (3.2)
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where q ∈ [0, 1] is the embedding parameter, ħ/= 0 is an auxiliary parameter, £F is an auxiliary
linear operator, φ(X, t; q) are unknown functions, and ψ0(X, t) are initial guesses of φ(X, t; q).
It is obvious that for q = 0 and q = 1, (3.3) becomes

φ(X, t; 0) = ψ0(X, t), φ(X, t; 1) = ψ(X, t), (3.3)

respectively. Thus as q = 0 increases from 0 to 1, the solution φ(X, t; q) varies from the initial
guess ψ0(X, t) to the exact solution ψ(X, t). Expanding φ(X, t; q) in Taylor series with respect
to q, one has

φ
(

X, t; q
)

= ψ0(X, t) +
+∞∑

m=1

ψm(X, t)qm, (3.4)

where

ψm(X, t) =
1
m!

∂mφ
(

X, t; q
)

∂qm

∣
∣
∣
∣
∣
q=0

. (3.5)

The convergence of the series (3.4) depends upon the auxiliary parameter ħ. If it is convergent
at q = 1, one has

ψ(X, t) = ψ0(X, t) +
+∞∑

m=1

ψm(X, t), (3.6)

which must be one of the solutions of the original nonlinear equations, as proved by Liao
[17]. Define the vectors

⇀
ψn=

{

ψ0(X, t), ψ1(X, t), ψ2(X, t), . . . , ψn(X, t)
}

. (3.7)

Differentiating the zeroth-order deformation (3.2) m-times with respect to q and then di-
viding them by m!, and finally setting q = 0, we get the following mth-order deformation
equation:

£F
[

ψm(X, t) − χmψm−1(X, t)
]

= ħRm

(

�ψm−1
)

, (3.8)

where

Rm

(

�ψm−1
)

=
1

(m − 1)!
∂m−1NF

[

φ
(

X, t; q
)]

∂qm−1

∣
∣
∣
∣
∣
q=0,

χm =

{

0; m = 1,
1; m > 1.

(3.9)

It should be emphasized that ψm(X, t; q) for m ≥ 1 is governed by the linear equations (3.8)
with boundary conditions that come from the original problem, which can be solved by the
symbolic computation software MATHEMATICA. The success of the technique is based on
the proper selection of the initial guess.
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4. Implementation of the Method

In this section, we introduce the above reliable approach, in a realistic and efficient way, to
handle nonlinear Schrödinger equation with time-fractional derivative.

4.1. Nonlinear-Time Fractional Schrödinger Equation (NLFSE)

Setting ψ(X, t) = v(X, t) + iw(X, t) and ψ(X, 0) = v(X, 0) + iw(X, 0) in (2.1) leads to the
following coupled system of equations

Dαv +
1
2
∇2w − Vdw − βd

(

wv2 +w3
)

= 0, (4.1)

Dαw − 1
2
∇2v − Vdv + βd

(

v3 +w2v
)

= 0, (4.2)

subject to the initial conditions

v(X, 0) = v0 = F(X), w(X, 0) = w0 = G(X). (4.3)

Equations (4.1) and (4.3) suggest that we define the nonlinear operator as

N1
F
[

ϕ1
(

X, t; q
)

, ϕ2
(

X, t; q
)]

= Dαϕ1
(

X, t; q
)

+
1
2
∇2ϕ2

(

X, t; q
) − Vdϕ2

(

X, t; q
)

−ϕ2
(

X, t; q
)

ϕ2
1

(

X, t; q
) − ϕ3

2

(

X, t; q
)

,
(4.4)

N2
F
[

ϕ1
(

X, t; q
)

, ϕ2
(

X, t; q
)]

= Dαϕ2
(

X, t; q
) − 1

2
∇2ϕ1

(

X, t; q
)

+ Vdϕ1
(

X, t; q
)

+ϕ3
1

(

X, t; q
)

+ ϕ2
2

(

X, t; q
)

ϕ1
(

X, t; q
)

,
(4.5)

and the linear operator

£F
[

φ
(

X, t; q
)]

= Dα[φ
(

X, t; q
)]

with the property £F[c1(X)] = 0

£F
[

vm(X, t) − χmvm−1(X, t)
]

= ħR1,m[�vm−1, �wm−1]
(4.6)

£F
[

wm(X, t) − χmwm−1(X, t)
]

= ħR2,m[�vm−1, �wm−1], (4.7)

where

R1,m[�vm−1, �wm−1] = Dαvm−1 +
1
2
∇2wm−1 − Vdwm−1

−βd
(

m−1∑

k=0
vm−k−1

k∑

l=0
vk−lwl +

m−1∑

k=0
wm−k−1

k∑

l=0
wk−lwl

)

R2,m[�vm−1, �wm−1] = Dαwm−1 − 1
2
∇2vm−1 + Vdvm−1

+βd

(
m−1∑

k=0
wm−k−1

k∑

l=0
wk−lvl +

m−1∑

k=0
vm−k−1

k∑

l=0
vk−lvl

)

.

(4.8)
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Obviously, the solution of themth-order deformation (4.8) for m ≥ 1 becomes

vm(X, t) = χmvm−1(X, t) + ħJαR1,m[�vm−1, �wm−1]

wm(X, t) = χmwm−1(X, t) + ħJαR2,m[�vm−1, �wm−1].
(4.9)

Example 4.1. We first consider the one-dimensional NLFSE with zero trapping potential
(i.e., Vd(x) = 0) and βd = −1

iDα
t ψ(x, t) +

1
2
∂2ψ(x, t)
∂x2

+
∣
∣ψ
∣
∣
2
ψ = 0, t ≥ 0, 0 < α ≤ 1. (4.10)

subject to the initial condition ψ(x, 0) = eix.
Solving the above equations

v0 = cos x, w0 = sin x

v1 =
ħtα sin x

2Γ(α + 1)
, w2 =

−ħtα cos x
2Γ(α + 1)

v2 =
ħ(ħ + 1)tα sin x

2Γ(α + 1)
− ħ2t2α cos x

4Γ(2α + 1)
, w2 =

−ħ(ħ + 1)tα cos x
2Γ(α + 1)

− ħ2t2α sin x

4Γ(2α + 1)

v3 =

⎛

⎜
⎝
ħ(ħ + 1)2tα

2Γ(α + 1)
−
ħ3t3α

(

5(Γ(α + 1))2 − 2Γ(2α + 1)
)

8(Γ(α + 1))2Γ(3α + 1)

⎞

⎟
⎠ sinx − ħ2(ħ + 1)t2α cos x

2Γ(2α + 1)
,

w3 =

⎛

⎜
⎝

−ħ(ħ + 1)2tα

2Γ(α + 1)
+
ħ3t3α

(

5(Γ(α + 1))2 − 2Γ(2α + 1)
)

8(Γ(α + 1))2Γ(3α + 1)

⎞

⎟
⎠ cosx − ħ2(ħ + 1)t2α sin x

2Γ(2α + 1)
,

(4.11)

and so on, in this manner the rest of the components can be obtained. Therefore, the
approximate solution is

ψ(x, t) =
7∑

n=0
(vn + iwn). (4.12)

The exact solution of (4.10) for α = 1 is ψ = ei(x+(t/2)). When ħ = −1, α = 1, the solution
obtained by [13–16] is recovered as a special case.

Example 4.2. Consider the one-dimensional NLFSE with trapping potential, that is, Vd(x) =
cos2x and βd = −1

iDα
t ψ(x, t) +

1
2
∂2ψ(x, t)
∂x2

− ψ cos2x − ∣∣ψ∣∣2ψ = 0, t ≥ 0, 0 < α ≤ 1. (4.13)

subject to the initial condition ψ(x, 0) = sin x.
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Solving above equations we obtain the solution in a series form

v0 = sinx, w0 = 0

v1 = 0, w1 =
3ħtα sin x

2Γ(α + 1)

v2 = −9ħ
2t2α sin x

4Γ(2α + 1)
, w2 =

3ħ(ħ + 1)tα sin x

2Γ(α + 1)

v3 = −9ħ
2(ħ + 1)t2α sin x

2Γ(2α + 1)
,

w3 =
3ħ(ħ + 1)2tα sin x

2Γ(α + 1)
+
9ħ3t3α sin x

(

(−5 + 2 cos x)(Γ(α + 1))2 + 2Γ(2α + 1)sin2 x
)

8(Γ(α + 1))2Γ(3α + 1)
,

ψ(x, t) =
7∑

n=0
(vn + iwn).

(4.14)

The exact solution of (4.13) for α = 1 is u = sinxe−3it/2. When ħ = −1, α = 1, the solution
obtained by [13–16] is recovered as a special case.

Example 4.3. Consider the two dimensional NLFSE with trapping potential

iDαψ +
1
2

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

+ Vd
(

x, y
)

ψ + βd
∣
∣ψ
∣
∣
2
ψ = 0,

t ≥ 0, 0 < α ≤ 1,
(

x, y
) ∈ [0, 2π] × [0, 2π] .

(4.15)

Here Vd(x, y) = 1 − sin2 x sin2 y, βd = 1, subject to the initial condition ψ(x, y, 0) = sinx siny.
Solving the above equation we obtain the approximate solution in a series form

v0 = sinx siny, w0 = 0

v1 = 0, w1 =
2ħtα sinx siny

Γ(α + 1)

v2 =
4ħ2t2α sinx siny

Γ(2α + 1)
, w2 =

2ħ(ħ + 1)tα sinx siny
Γ(α + 1)

v3 =
−8ħ2(ħ + 1)t2α sinx siny

Γ(2α + 1)
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w3 = −
4ħ3t3α sinx siny

(

2
(

1 + sin2xsin2y
)

(Γ(α + 1))2 − Γ(2α + 1)sin2x sin2y
)

(Γ(α + 1))2Γ(3α + 1)

+
2ħ(ħ + 1)2tα sinx siny

Γ(α + 1)
,

ψ
(

x, y, t
)

=
7∑

n=0
(vn + iwn).

(4.16)

The exact solution of (4.15) for ħ = −1, α = 1 is ψ = sin x sin y e−2it.

Example 4.4. Consider the three-dimensional NLFSE with trapping potential

iDαψ +
1
2

(

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)

− Vd
(

x, y, z
)

ψ − ∣∣ψ∣∣2ψ = 0, t ≥ 0, 0 < α ≤ 1, (4.17)

(

x, y, z
) ∈ [0, 2π] × [0, 2π] × [0, 2π], (4.18)

where Vd(x, y, z) = 1 − sin2 x sin2 y sin2 z subject to the initial condition

ψ
(

x, y, z, 0
)

= sin x sin y sin z. (4.19)

Solving the above equations,

v0 = sinx siny sin z,w0 = 0

v1 = 0, w1 =
5ħtα sinx siny sin z

2Γ(α + 1)

v2 =
−25ħ2t2α sinx siny sin z

4Γ(2α + 1)
, w2 =

−5ħ(ħ + 1)tα sinx siny sin z
2Γ(α + 1)

.

(4.20)

Finally the approximate solution in the series form is

ψ
(

x, y, z, t
)

=
7∑

n=0
(vn + iwn). (4.21)

The exact solution of (4.17) for α = 1 is ψ = sin x sin y sin z e−5it/2.

5. Closing Comments

The basic goal of this work has been to extend the works made in the nonlinear physical
problem to construct solutions for nonlinear Schrödinger equation with time-fractional
derivatives. The goal has been achieved and new solutions of have been derived for nonlinear
equations with time fractional derivatives. The proposed approach works successfully
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Figure 1: The ħ-curve for Example 4.1 x = 0.2, t = 0.2, α = 0.7.
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Figure 2: The ħ-curve for Example 4.2 x = 0.2, t = 0.2, α = 0.7.

in handling nonlinear fractional Schrödinger equations directly with a minimum size of
calculations.

Borhanifer and Abazari [11] applied the differential transformation method (DTM) to
solving Schrödinger and coupled Schrödinger equations. The major lacks of DTM are that
it requires transformation, and the given differential equation and related initial conditions
are transformed into a recurrence equation that finally leads to the solution of a system of
algebraic equations as coefficients of a power series solution. The main disadvantage of DTM
is that it requires transformation, which will be complicated and computational cost will
be too much. This emphasizes the fact that the presented approach can be used in a wider
class of system of nonlinear fractional differential equations. HAM is a powerful and efficient
technique in finding exact and approximate solutions for linear and nonlinear models. HAM
provides more realistic solutions that converge very rapidly in real physical problems. The
numerical examples show that the solutions are in good agreement with their respective exact
solutions for α = 1.

In the last, we present the ħ-curves to see the convergent region of ħ as in Figures 1–4.
We plot the imaginary and real part of each example in the same figure, and the convergent
region is the region of intersection between the convergent regions of the imaginary and real
parts. In all figures ħ = −1 is in the convergent region.
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Figure 3: The ħ-curve for Example 4.3 x = 0.1, y = 0.1, t = 0.5, α = 0.9.
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Figure 4: The ħ-curve for Example 4.4 x = 0.1, y = 0.1, z = 0.1, t = 0.5, α = 0.9.
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