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The velocity field and the adequate shear stress corresponding to the rotational flow of a fractional
Maxwell fluid, between two infinite coaxial circular cylinders, are determined by applying the Lap-
lace and finite Hankel transforms. The solutions that have been obtained are presented in terms of
generalized Ga,b,c(·, t) and Ra,b(·, t) functions. Moreover, these solutions satisfy both the governing
differential equations and all imposed initial and boundary conditions. The corresponding solu-
tions for ordinaryMaxwell andNewtonian fluids are obtained as limiting cases of our general solu-
tions. Finally, the influence of the material parameters on the velocity and shear stress of the fluid is
analyzed by graphical illustrations.

1. Introduction

Due to the several technological applications, the flow analysis of non-Newtonian fluids is
very important in the fields of fluid mechanics. Many investigators have not studied the
flow behavior of non-Newtonian fluids in various flow fields due to the complex stress-
strain relationship [1]. The study of non-Newtonian fluids has got much attention because
of their practical applications. Non-Newtonian characteristics are displayed by a number of
industrially important fluids including polymers, molten plastic, pulps, microfluids, and food
stuff display. Exact analytic solutions for the flows of non-Newtonian fluids are important
provided they correspond to physically realistic problems, and they can be used as checks
against complicated numerical codes that have been developed for much more complex
flows. Many non-Newtonian models such as differential type, rate type, and integral type
fluids have been proposed in recent years. Among them, the rate type fluid models have
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received special attention. The differential type fluids do not predict stress relaxation, and
they are not successful for describing the flows of some polymers.

The flow between rotating cylinders or through a rotating cylinder has applications in
the food industry, it being one of the most important and interesting problems of motion near
rotating bodies. As early as 1886, Stokes [2] established an exact solution for the rotational
oscillations of an infinite rod immersed in a linearly viscous fluid. However, such motions
have been intensively studied since G. I. Taylor (1923) reported the results of his famous
investigations [3]. For Newtonian fluids, the velocity distribution for a fluid contained in
a circular cylinder can be found in [4]. The first exact solutions corresponding to different
motions of non-Newtonian fluids, in cylindrical domains, seem to be those of Ting [5],
Srivastava [6], and Waters and King [7]. A lot of interests and studies were also given to
the unidirectional start-up pipe flows, which has a significant practical and mathematical
meaning. Zhu et al. [8] studied the characteristics of the velocity filed and the shear stress
field for an ordinary Maxwell fluid, and Yang and Zhu [9] studied it for a fractional Maxwell
fluid. In the last decade, the unidirectional flow of viscoelastic fluid with the fractional
Maxwell model was studied by Tan et al. [10, 11] and Hayat et al. [12]. Tong et al. [13, 14] dis-
cussed the unsteady flow with a generalized Jeffrey’s model in an annular pipe. In the mean-
time, a lot of papers regarding such motions have been published. The interested readers can
see for instance the papers [15–25] and their related references.

The purpose of this paper is to provide exact solutions of the velocity field and the
shear stress corresponding to the motion of a fractional Maxwell fluid between two infinite
circular cylinders. The Laplace and finite Hankel transforms are used to solve the problem,
and the solutions obtained are presented in terms of generalized Ga,b,c(·, t) and Ra,b(·, t) func-
tions. The solutions for ordinaryMaxwell andNewtonian fluids are obtained as limiting cases
of our general solutions. Furthermore, the solutions for the motion between the cylinders,
when one of them is at rest, are also obtained as special cases from our general results. At the
end, obtained solutions are discussed graphically for different values of time and material
parameters.

2. Basic Governing Equations

The constitutive equations of an incompressible Maxwell fluid with fractional calculus are
given by [14]

T = −pI + S, S + λ
DS
Dt

= μA, (2.1)

where T is the Cauchy stress tensor, −pI denotes the indeterminate spherical stress, S is the
extrastress tensor, A = L + LT with L the velocity gradient, μ is the dynamic viscosity of the
fluid, λ is the material constant called relaxation time, and DS/Dt is defined by

DS
Dt

= D
β
t S +w · ∇S − LS − SLT . (2.2)



ISRN Mathematical Physics 3

Here, w is the velocity vector, ∇ is the gradient operator, the superscript T denotes the trans-
pose operation, and the Caputo fractional derivative operator Dβ

t is defined as [26]

D
β
t f(t) =

1
Γ
(
1 − β

)
∫ t

0

f ′(τ)

(t − τ)β
dτ ; 0 ≤ β < 1, (2.3)

where Γ(·) is the Gamma function which is defined as

Γ(x) =
∫∞

0
sx−1e−sds; x > 0. (2.4)

This model can be reduced to ordinary Maxwell model when β → 1, because in this case
D

β
t f(t) → df(t)/dt. Furthermore, this model reduces to the classical Newtonian model for

β → 1 and λ → 0.
In cylindrical coordinates (r, θ, z), the rotational flow velocity is given by

w = w(r, t) = w(r, t)eθ, (2.5)

where eθ is the unit vector in the θ-direction. For such flows, the constraint of incompress-
ibility is automatically satisfied. Since the velocity field w is independent of θ and z, we also
assume that S depends only on r and t. Furthermore, if the fluid is assumed to be at rest at
the moment t = 0, then

w(r, 0) = 0, S(r, 0) = 0. (2.6)

Equations (2.1), (2.5), and (2.6) imply Srr = Szz = Sθz = 0 [18],

(
1 + λD

β
t

)
τ(r, t) = μ

(
∂

∂r
− 1
r

)
w(r, t), (2.7)

where τ(r, t) = Srθ(r, t) is the nontrivial shear stress. In the absence of body forces and a
pressure gradient in the axial direction, the equations of motion lead to the relevant equation

ρ
∂w(r, t)

∂t
=
(

∂

∂r
+
2
r

)
τ(r, t), (2.8)

where ρ is the constant density of the fluid. Eliminating τ between (2.7) and (2.8), we attain to
the governing equation

(
1 + λD

β
t

)∂w(r, t)
∂t

= ν

(
∂2

∂r2
+
1
r

∂

∂r
− 1
r2

)

w(r, t), (2.9)

where ν = μ/ρ is the kinematic viscosity of the fluid. In the following, the fractional partial
differential equations (2.9) and (2.7), with appropriate initial and boundary conditions, will
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be solved by means of Laplace and finite Hankel transforms. In order to avoid lengthy calcu-
lations of residues and contours integrals, the discrete inverse Laplace method will be used
[13, 14].

3. Axial Couette Flow between Two Infinite Circular Cylinders

Let us consider an incompressible fractional Maxwell fluid at rest in an annular region bet-
ween two coaxial circular cylinders of radii R1 and R2(> R1). At time t = 0+, both cylinders
with radii R1 and R2 begin to rotate along their common axis. Owing to the shear, the fluid is
gradually moved, its velocity being of the form (2.5). The governing equations are given by
(2.9), while the appropriate initial and boundary conditions are

w(r, 0) =
∂w(r, 0)

∂t
= 0, τ(r, 0) = 0; r ∈ [R1, R2], (3.1)

w(R1, t) = Ω1R1t, w(R2, t) = Ω2R2t for t ≥ 0, (3.2)

where Ω1 and Ω2 are constants with dimensions T−2.

3.1. Calculation of the Velocity Field

Applying the Laplace transform to (2.9), using the Laplace transform formula for sequential
fractional derivatives [26], and having the initial and boundary conditions (3.1) and (3.2) in
mind, we find that

(
q + λqβ+1

)
w
(
r, q

)
= ν

(
∂2

∂r2
+
1
r

∂

∂r
− 1
r2

)

w
(
r, q

)
; r ∈ [R1, R2], (3.3)

where w(r, q) is the Laplace transform of the function w(r, t)which is defined as

w
(
r, q

)
= L{w(r, t)} =

∫∞

0
e−qtw(r, t)dt, (3.4)

and the image function w(r, q) has to satisfy the conditions

w
(
R1, q

)
=

Ω1R1

q2
, w

(
R2, q

)
=

Ω2R2

q2
. (3.5)

In the following, we denote by [27]

wH

(
rn, q

)
=
∫R2

R1

rw
(
r, q

)
B(r, rn)dr, (3.6)

and the Hankel transform of w(r, q), where

B(r, rn) = J1(rrn)Y1(R2rn) − J1(R2rn)Y1(rrn), (3.7)
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and rn are the positive roots of the transcendental equation B(R1, r) = 0, while J1(·) and Y1(·)
are Bessel functions of the first and second kind of order one.

Multiplying both sides of (3.3) by rB(r, rn), integrating with respect to r from R1 to R2,
and taking into account the conditions (3.5) and the identity

∫R2

R1

r

[
∂2

∂r2
+
1
r

∂

∂r
− 1
r2

]

w
(
r, q

)
B(r, rn)dr =

2
πq2

[
Ω2R2J1(R1rn) −Ω1R1J1(R2rn)

J1(R1rn)

]

− r2nwH

(
rn, q

)
,

(3.8)

we find that

wH

(
rn, q

)
=

2ν[Ω2R2J1(R1rn) −Ω1R1J1(R2rn)]
πJ1(R1rn)

1
q2
(
λqβ+1 + q + νr2n

) . (3.9)

Now, for a suitable presentation of the final results, we rewrite (3.9) in the following equiva-
lent form:

wH

(
rn, q

)
=

2[Ω2R2J1(R1rn) −Ω1R1J1(R2rn)]
πr2nJ1(R1rn)

[
1
q2

− 1 + λqβ

q
(
λqβ+1 + q + νr2n

)

]

. (3.10)

Now, applying the inverse Hankel transform formula [27]

w
(
r, q

)
=

π2

2

∞∑

n=1

r2nJ
2
1 (R1rn)B(r, rn)

J21 (R1rn) − J21 (R2rn)
wH

(
rn, q

)
, (3.11)

we obtain the Laplace transform of the velocity field w(r, q) under the form

w
(
r, q

)
=

Ω1R
2
1

(
R2

2 − r2
)
+ Ω2R

2
2

(
r2 − R2

1

)

r
(
R2

2 − R2
1

)
1
q2

− π
∞∑

n=1

J1(R1rn)B(r, rn)
J21 (R1rn) − J21 (R2rn)

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}
1 + λqβ

q
(
λqβ+1 + q + νr2n

) ,

(3.12)

writing the last factor of (3.12) in the following equivalent form:

1 + λqβ

q
(
λqβ+1 + q + νr2n

) =
1
λ

∞∑

k=0

(
−νr2n
λ

)k[
q−k−2

(
qβ + λ−1

)k+1 + λ
qβ−k−2

(
qβ + λ−1

)k+1

]

. (3.13)

Introducing (3.13) into (3.12), applying the discrete inverse Laplace transform, and using the
known result [28, equation (97)],

L−1
{

qb
(
qa − d

)c

}

= Ga,b,c(d, t); Re(ac − b),Re
(
q
)
> 0,

∣∣∣∣
d

qa

∣∣∣∣ < 1, (3.14)
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where the generalized Ga,b,c(·, ·) function is defined by

Ga,b,c(d, t) =
∞∑

j=0

djΓ
(
c + j

)

Γ(c)Γ
(
j + 1

)
t(c+j)a−b−1

Γ
[(
c + j

)
a − b

] , (3.15)

and we find the velocity field under the form

w(r, t) =
Ω1R

2
1

(
R2

2 − r2
)
+ Ω2R

2
2

(
r2 − R2

1

)

r
(
R2

2 − R2
1

) t

− π

λ

∞∑

n=1

J1(R1rn)B(r, rn)
J21 (R1rn) − J21 (R2rn)

{Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}

×
∞∑

k=0

(
−νr2n
λ

)k{
Gβ,−k−2,k+1

(
−λ−1, t

)
+ λGβ,β−k−2,k+1

(
−λ−1, t

)}
.

(3.16)

3.2. Calculation of the Shear Stress

Applying the Laplace transform to (2.7), we find that

τ
(
r, q

)
=

μ

1 + λqβ

(
∂w

(
r, q

)

∂r
− w

(
r, q

)

r

)

, (3.17)

where

∂w
(
r, q

)

∂r
− w

(
r, q

)

r
=

2R2
1R

2
2(Ω2 −Ω1)

r2
(
R2

2 − R2
1

)
1
q2

+ π
∞∑

n=1

J1(R1rn)
(
2/rB(r, rn) − rnB̃(r, rn)

)

J21 (R1rn) − J21 (R2rn)

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}
1 + λqβ

q
(
λqβ+1 + q + νr2n

)

(3.18)

is obtained from (3.12) and

B̃(r, rn) = J0(rrn)Y1(R2rn) − J1(R2rn)Y0(rrn). (3.19)

Thus, (3.17) becomes

τ
(
r, q

)
=

2μR2
1R

2
2(Ω2 −Ω1)

r2
(
R2

2 − R2
1

)
1

q2
(
1 + λqβ

) + πμ
∞∑

n=1

J1(R1rn)
(
2/rB(r, rn) − rnB̃(r, rn)

)

J21 (R1rn) − J21 (R2rn)

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)} 1
q
(
λqβ+1 + q + νr2n

) ,

(3.20)
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applying again the discrete inverse Laplace transform as well as using the known relation
[28, equation (21)],

L−1
{

qb

qa − c

}

= Ra,b(c, t); Re(a − b) > 0, Re
(
q
)
> 0, (3.21)

where the generalized Ra,b(c, t) functions are defined by [28]

Ra,b(c, t) =
∞∑

n=0

cnt(n+1)a−b−1

Γ[(n + 1)a − b]
(3.22)

and the expansion

1
q
(
λqβ+1 + q + νr2n

) =
1
λ

∞∑

k=0

(
−νr2n
λ

)k
q−k−2

(
qβ + λ−1

)k+1 , (3.23)

and we obtain the shear stress τ(r, t) under the form

τ(r, t) =
2μR2

1R
2
2(Ω2 −Ω1)

λr2
(
R2

2 − R2
1

) Rβ,−2
(
−λ−1, t

)
+
πμ

λ

∞∑

n=1

J1(R1rn)
(
2/rB(r, rn) − rnB̃(r, rn)

)

J21 (R1rn) − J21 (R2rn)

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}
∞∑

k=0

(
−νr2n
λ

)k

Gβ,−k−2,k+1
(
−λ−1, t

)
.

(3.24)

4. Limiting Cases

4.1. Classical Maxwell Fluid

Making β → 1 into (3.16) and (3.24), we obtain the velocity field

wM(r, t) =
Ω1R

2
1

(
R2

2 − r2
)
+ Ω2R

2
2

(
r2 − R2

1

)

r
(
R2

2 − R2
1

) t

− π

λ

∞∑

n=1

J1(R1rn)B(r, rn)
J21 (R1rn) − J21 (R2rn)

{Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}

×
∞∑

k=0

(
−νr2n
λ

)k{
G1,−k−2,k+1

(
−λ−1, t

)
+ λG1,−k−1,k+1

(
−λ−1, t

)}

(4.1)
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and the shear stress

τM(r, t) =
2μR2

1R
2
2(Ω2 −Ω1)

λr2
(
R2

2 − R2
1

) R1,−2
(
−λ−1, t

)
+
πμ

λ

∞∑

n=1

J1(R1rn)
(
2/rB(r, rn) − rnB̃(r, rn)

)

J21 (R1rn) − J21 (R2rn)

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}
∞∑

k=0

(
−νr2n
λ

)k

G1,−k−2,k+1
(
−λ−1, t

)
,

(4.2)

corresponding to an ordinary Maxwell fluid, performing the same motion. Of course, in view
of the identities

∞∑

k=0

(
−νr2n
λ

)k

G1,−k−1,k+1
(
−λ−1, t

)
=

eq2nt − eq1nt

q2n − q1n
,

∞∑

k=0

(
−νr2n
λ

)k

G1,−k−2,k+1
(
−λ−1, t

)
=

λ

νr2n

(

1 +
q1ne

q2nt − q2ne
q1nt

q2n − q1n

)

,

R1,−2
(
−λ−1, t

)
= λt − λ2

(
1 − e−t/λ

)
; q1n, q2n =

−1 ±
√
1 − 4νλr2n
2λ

,

(4.3)

the expressions (4.1) and (4.2) can be written in the simplified form

wM(r, t) =
Ω1R

2
1

(
R2

2 − r2
)
+ Ω2R

2
2

(
r2 − R2

1

)

r
(
R2

2 − R2
1

) t − π

ν

∞∑

n=1

J1(R1rn)B(r, rn)
r2n
[
J21 (R1rn) − J21 (R2rn)

]

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}
{

1 − λ
q21ne

q2nt − q22ne
q1nt

q2n − q1n

}

,

τM(r, t) =
2μR2

1R
2
2(Ω2 −Ω1)

r2
(
R2

2 − R2
1

)
{
t − λ

(
1 − e−t/λ

)}
+ πρ

∞∑

n=1

J1(R1rn)
(
2/rB(r, rn) − rnB̃(r, rn)

)

r2n
[
J21 (R1rn) − J21 (R2rn)

]

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}
{

1 +
q1ne

q2nt − q2ne
q1nt

q2n − q1n

}

.

(4.4)

4.2. Newtonian Fluid

By now letting λ → 0 into (4.4) or β → 1 and λ → 0 into (3.16) and (3.24), using

lim
λ→ 0

1
λk

G1,b,k

(−1
λ
, t

)
=

t−b−1

Γ(−b) , b < 0, (4.5)
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we obtain the velocity field

wN(r, t) =
Ω1R

2
1

(
R2

2 − r2
)
+ Ω2R

2
2

(
r2 − R2

1

)

r
(
R2

2 − R2
1

) t − π

ν

∞∑

n=1

J1(R1rn)B(r, rn)
r2n
[
J21 (R1rn) − J21 (R2rn)

]

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}
{
1 − e−νr

2
nt
}

(4.6)

and the associated shear stress

τN(r, t) =
2μR2

1R
2
2(Ω2 −Ω1)

r2
(
R2

2 − R2
1

) t + πρ
∞∑

n=1

J1(R1rn)
(
2/rB(r, rn) − rnB̃(r, rn)

)

r2n
[
J21 (R1rn) − J21 (R2rn)

]

× {Ω2R2J1(R1rn) −Ω1R1J1(R2rn)}
{
1 − e−νr

2
nt
}
,

(4.7)

corresponding to a Newtonian fluid, performing the same motion.

5. Special Cases

5.1. When the Inner Cylinder Is at Rest

Making Ω1 = 0 and Ω2 = Ω into (3.16) and (3.24), for instance, we obtain the velocity field

w1(r, t) =
ΩR2

2

(
r2 − R2

1

)

r
(
R2

2 − R2
1

) t − πΩR2

λ

∞∑

n=1

J21 (R1rn)B(r, rn)

J21 (R1rn) − J21 (R2rn)

×
∞∑

k=0

(
−νr2n
λ

)k{
Gβ,−k−2,k+1

(
−λ−1, t

)
+ λGβ,β−k−2,k+1

(
−λ−1, t

)}
(5.1)

and the shear stress

τ1(r, t) =
2μΩR2

1R
2
2

λr2
(
R2

2 − R2
1

)Rβ,−2
(
−λ−1, t

)

+
πμΩR2

λ

∞∑

n=1

J21 (R1rn)
(
2/rB(r, rn) − rnB̃(r, rn)

)

J21 (R1rn) − J21 (R2rn)

∞∑

k=0

(
−νr2n
λ

)k

Gβ,−k−2,k+1
(
−λ−1, t

)
,

(5.2)

corresponding to a fractional Maxwell fluid when the inner cylinder is at rest. Figure 1(a)
shows velocity profile corresponding to (5.1) for different values of time, when the inner
cylinder is at rest. It shows that velocity is an increasing function with regard to t and r on
the whole flow domain.
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Figure 1: Profiles of the velocity w(r, t) given by (5.1) and (5.3) for R1 = 0.3, R2 = 0.5, ν = 0.004, μ = 2.916,
λ = 3, β = 0.8, and different values of t.

5.2. When the Outer Cylinder Is at Rest

Making Ω1 = Ω and Ω2 = 0 into (3.16) and (3.24), we obtain the velocity field

w2(r, t) =
ΩR2

1

(
R2

2 − r2
)

r
(
R2

2 − R2
1

) t +
πΩR1

λ

∞∑

n=1

J1(R1rn)J1(R2rn)B(r, rn)
J21 (R1rn) − J21 (R2rn)

×
∞∑

k=0

(
−νr2n
λ

)k{
Gβ,−k−2,k+1

(
−λ−1, t

)
+ λGβ,β−k−2,k+1

(
−λ−1, t

)}
(5.3)

and the associated shear stress

τ2(r, t) =
2μΩR2

1R
2
2

λr2
(
R2

2 − R2
1

)Rβ,−2
(
−λ−1, t

)
− πμΩR1

λ

×
∞∑

n=1

J1(R1rn)J1(R2rn)
(
2/rB(r, rn) − rnB̃(r, rn)

)

J21 (R1rn) − J21 (R2rn)

∞∑

k=0

(
−νr2n
λ

)k

Gβ,−k−2,k+1
(
−λ−1, t

)
,

(5.4)

corresponding to a fractional Maxwell fluid when the outer cylinder is at rest. Figure 1(b)
shows the profile of the velocity field corresponding to (5.3) for different values of time, when
the outer cylinder is at rest, respectively. It shows that velocity is an increasing function with
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Figure 2: Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (3.16) and (3.24) for R1 = 0.3,
R2 = 0.5, Ω1 = 1, Ω2 = 1, ν = 0.004, μ = 2.916, λ = 4, β = 0.5, and different values of t.

regard to t like Figure 1(a), but it has opposite effect for r, more exact velocity is decreasing
with regard to r on the whole flow domain.

6. Conclusions

In this paper, the velocity w(r, t) and the shear stress τ(r, t) corresponding to the flow of an
incompressible Maxwell fluid with fractional derivatives, in the annular region between two
infinite coaxial circular cylinders, have been determined using the Laplace and finite Hankel
transforms. The solutions that have been obtained, written under a series form in terms of
generalized Ga,b,c(·, t)- and Ra,b(·, t)-functions, satisfy the governing equations and all impo-
sed initial and boundary conditions. In the limiting cases, when β → 1 or β → 1 and λ → 0,
the corresponding solutions for the ordinary Maxwell and Newtonian fluids are obtained.
These solutions also satisfy the associated initial and boundary conditions (3.1) and (3.2), res-
pectively. Moreover, the solutions for the motion between the cylinders, when one of them is
at rest, are also obtained from our general results.

In order to reveal some relevant physical aspects of the obtained results, the diagrams
of the velocity field w(r, t) and the shear stress τ(r, t) given by (3.16) and (3.24) have been
drawn against r for different values of the time t and the material parameters. Figures 2 and 3
show the profile of the fluid motion at different values of time when both inner and outer are
rotating with the same angular velocity in the same direction and in the opposite direction,
respectively. From these figures, one can clearly see that both velocity and shear stress in abso-
lute values are increasing function of t. From Figure 3(a), one can also observe that fluid has
zero velocity nearer to inner cylinder.

In Figure 4, the influence of the relaxation time λ on the fluid motion is shown. As
expected, both the velocity and the shear stress (in absolute value) are decreasing functions



12 ISRN Mathematical Physics

r

0.3 0.34 0.38 0.42 0.46 0.5

t = 4
t = 6
t = 8

0

2

4

ω
(r
)

−4

−2

(a)

50

40

30

20

10

0

τ
(r
)

r

0.3 0.34 0.38 0.42 0.46 0.5

t = 4
t = 6
t = 8

(b)

Figure 3: Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (3.16) and (3.24) for R1 = 0.3, R2 =
0.5, Ω1 = −1, Ω2 = Ω = 1, ν = 0.003, μ = 2.916, λ = 4, β = 0.5, and different values of t.
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Figure 4: Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (3.16) and (3.24) for R1 = 0.3, R2 =
0.5, Ω1 = 1, Ω2 = 1, t = 8, ν = 0.003, μ = 2.916, β = 0.5, and different values of λ.

with respect to λ. Effect of fractional parameter β on the fluid motion is represented in
Figure 5, and it is clearly seen that both velocity and shear stress (in absolute value) are
increasing with respect to β.

Finally, for comparison, the diagrams of w(r, t) and τ(r, t) corresponding to the three
models (fractional Maxwell, ordinary Maxwell, and Newtonian) are together depicted in
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Figure 5: Profiles of the velocity w(r, t) and shear stress τ(r, t) given by (3.16) and (3.24) for R1 = 0.3, R2 =
0.5, Ω1 = 1, Ω2 = 1, t = 10, ν = 0.005, μ = 2.916, λ = 4, and different values of β.
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Figure 6: Profiles of the velocity w(r, t) and shear stress τ(r, t) corresponding to the Newtonian, Maxwell,
and fractional Maxwell fluids, for R1 = 0.3, R2 = 0.5, Ω1 = 1, Ω2 = 1, t = 7, ν = 0.002, μ = 5, λ = 2, and
β = 0.4.

Figure 6 for the same values of the common material constants and time t. The Newtonian
fluid is the swiftest, while the fractional Maxwell fluid is the slowest on the whole flow do-
main. One thing is worth of mentioning that the units of the material constants are SI units in
all the figures, and the roots rn have been approximated by nπ/(R2 − R1).
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