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This communication pertains to the study of radiative heat transfer in boundary layer flow over an exponentially shrinking per-
meable sheet placed at the bottom of fluid saturated porous medium. The porous medium has permeability of specified form. The
fluid considered here is Newtonian, without phase change, optically dense, absorbing-emitting radiation but a nonscattering
medium. The setup is subjected to suction to contain the vorticity in the boundary layer. The radiative heat flux in the energy equa-
tion is accounted by Rosseland approximation. The thermal conductivity is presumed to vary with temperature in a linear fashion.
The governing partial differential equations are reduced to ordinary differential equations by similarity transformations. The
resulting system of nonlinear ordinary differential equations is solved numerically by fourth-order Runge-Kutta scheme together
with shooting method. The pertinent findings displayed through figures and tables are discussed.

1. Introduction

Flow and heat transfer in boundary layer flow of viscous fluid
due to deforming surface is pivotal in many industrial pro-
cesses cutting across different realms. Crane [1] pioneered a
closed form analytical solution for an incompressible fluid
flow due to a linearly stretching sheet. This novel flow con-
figuration in fluid mechanics was well received by the inves-
tigators to extract pertinent information in real analogous
systems like extrusion processes, hot rolling, wire drawing
and glass wire production, and so forth, to name a few. The
so-called stretching surface flow problem has been studied
for variety of assumptions pertaining to surface velocity (lin-
ear/power law) and surface temperature (constant/variable)/
temperature flux for the simple reason that optimal quality
of desired component squarely depends on the shear and
heat transfer rate at the sheet. The problem has also been
discussed for non-Newtonian fluid, Ferro-fluid and micro-
polar fluid and also by incorporating physical features like
suction/injection, MHD, chemical reaction, and so forth [2–
9]. Recently, Liao [10, 11] discovered multiple solutions for
the flow over both impermeable and permeable stretching

sheets. In order to complete the discussion, attempts were
also made to explore flow and/or heat transfer due to rather
unusual exponential stretching surface. Magyari and Keller
[12] discussed boundary layer flow due to a sheet stretch-
ing exponentially and bearing a variable temperature of
exponential fashion. Elbashbeshy [13] furnished numerical
findings about flow and heat transfer over an exponentially
stretching surface subjected to mass suction. Exponentially
stretching surface in the presence of magnetic field was ana-
lysed by Al-Odat et al. [14]. Partha et al. [15] considered dis-
sipative mixed convection flow past an exponentially stret-
ching surface. The problem was also extended to viscoelastic
fluids by Sanjayanand and Khan [16, 17]. Sajid and Hayat
[18] examined radiative boundary layer flow due to expo-
nentially stretching sheet and reported HAM series solution.

Looking at the literature of flow due to deforming boun-
dary, one finds that flow due to shrinking boundary is still a
relatively low explored area. Investigation of boundary layer
flow and heat transfer past shrinking surfaces requires much
attention as it finds important applications in many indus-
tries and manufacturing processes. A heat shrinking sheet
provides a high quality field coating solution for welded pipe
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ends. A heat shrinking tape is used for wrapping junctions.
Wang [19] was probably the first to report the boundary layer
flow over an unsteady shrinking film. In a subsequent study,
Miklavčič and Wang [20] reasoned that flow due to shrinking
sheet cannot exist unless adequate suction is applied across
the boundary layer to contain the vorticity. In their study
they reported a pertinent finding that in shrinking flow
problem one may come across multiple solutions for dif-
ferent suction rates. Wang [21] studied two-dimensional
and axisymmetric stagnation point flow towards a shrinking
sheet and concluded that solutions do not exist for larger
shrinking rates. Appreciating the possibility of exploring
new avenues in flow arising due to shrinking surface, some
attempts have been made recently [22–29]. MHD flow and
heat transfer in a channel bounded by a shrinking sheet and a
plate with a porous substrate was discussed by Chauhan and
Agarwal [30]. Though the work of Bhattacharyya [31] throws
some light on boundary layer flow and heat transfer past
an exponentially shrinking sheet, however, the study of flow
dynamics past an exponentially shrinking surface in porous
media is still unexplored.

All the above-said investigations regarding “shrinking
surface problems” consider clear fluid region with con-
stant thermal conductivity. The thermal conductivity is an
intrinsic property of fluids which exhibits variations with
temperature. Many authors have reported studies with vari-
able thermal conductivity aspects [32–34]. Khan et al. [35]
studied thin film flow over a shrinking/stretching sheet
taking variable viscosity and thermal conductivity into
account.

The radiative thermal regime in porous medium has
drawn much attention recently due to ample applications,
such as, gasification of oil shale, waste heat storage in aqui-
fers, and so forth. To be specific, in the case of gasification,
large temperature gradient exists in the vicinity of the com-
bustion regime making radiation effect dominant. However,
literature is rather scanty on the radiative flow in porous
media. A few relevant texts/studies have been presented [36–
39]. Radiative flow of Jeffery fluid with variable thermal con-
ductivity in a porous medium was discussed by Hayat et al.
[40]. Elbashbeshy and Emam [41] discussed the effects of
radiation and heat transfer over an unsteady stretching
surface embedded in a porous medium.

The present study envisages the flow past an exponen-
tially shrinking sheet placed at the bottom of fluid saturated
porous medium taking variable thermal conductivity and
radiation into account. It is expected that the present work
would help peep into analogous real world systems.

2. Mathematical Model

Let us consider the steady two-dimensional boundary layer
flow of optically thick viscous Newtonian fluid and asso-
ciated heat transfer over a permeable sheet placed at the
bottom of a fluid saturated porous medium having perme-
ability of specific form. A Cartesian coordinate system is
chosen where the x-axis is taken along the sheet and y-axis
is normal to it. The flow is caused by the sheet shrinking in

an exponential fashion. A suction is applied normal to sheet
to contain the vorticity. The fluid considered here is without
phase change, optically dense, absorbing-emitting radiation
but a nonscattering medium. The thermal conductivity of
the fluid is assumed to vary linearly with temperature. The
radiation flux in the energy equation is presumed to follow
Rosseland approximation. The boundary layer equations for
the considered setup are
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with the following boundary conditions

at y = 0, u = Uw(x) = −cex/L, v = Vw(x) = voe
x/2L,

T = Tw(x) = T∞ + Toe
x/2L and at y −→ ∞,

u −→ 0, T −→ T∞,
(4)

where u, v are the velocity components along x and y direc-
tions, respectively, k is the permeability, cp is the specific heat
at constant pressure, υ is the kinematic viscosity, ρ is the
density, and T , μ, and κ are the temperature, viscosity and
thermal conductivity of the fluid, respectively. Further, L is
the characteristic length, Tw is the variable temperature at
the sheet, T0 is the constant reference temperature, and T∞
is the constant free stream temperature. Uw and Vw are the
shrinking velocity of the sheet and mass transfer velocity,
respectively, where c > 0 is the shrinking constant and vo is a
constant (where vo < 0 corresponds to mass suction).

3. Similarity Transformations

We now introduce the stream function Ψ(x, y) as

u = ∂ψ

∂y
, v = −∂ψ
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. (5)

Thus (1) is identically satisfied and the similarity transfor-
mations can be written as
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On using (5) and (6) we obtain the expressions for velocity
components in nondimensional form as
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In order to obtain the similarity solutions, it is assumed
that the permeability k of the porous medium takes the
following form

k(x) = 2koe−x/L, (8)

where ko is reference permeability.
Following Chiam [42], thermal conductivity of the fluid

is assumed to vary with temperature in a linear fashion as

κ = κ∞(1 + εθ), (9)

where ε is the thermal conductivity variation parameter. In
general ε > 0 for fluids such as water and air, while ε < 0
for fluids such as lubrication oils. The radiative heat flux in
the energy equation is presumed to follow Rosseland appro-
ximation and is given by

qr = −4σ1

3k1

∂T4

∂y
, (10)

where σ1 is the Stephan-Boltzmann constant and k1 is the
mean absorption constant. It is further assumed that the
temperature difference within the fluid is sufficiently small so
that T4 may be expressed as a linear function of temperature
T . This is done by expanding T4 in a Taylor series about T∞
and omitting higher-order terms to yield

T4 ∼= 4T3
∞T − 3T4

∞. (11)

The momentum (2) and the energy (3) thus reduce to the
following nondimensional form
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where

K = cko
Lυ

, Pr = μcp
κ∞

, N = 4σ1T3∞
3k1κ∞

(14)

denote the permeability parameter, Prandtl number, and
radiation parameter, respectively.

4. Numerical Solution

The coupled and highly nonlinear boundary value problem
(BVP) described by (12) and (13) is not amenable to analytic
closed form solution, therefore we resorted to numerical
solution. The BVP has been solved by fourth-order Runge-
Kutta scheme together with shooting method. The essence of
shooting method to solve a BVP is to first convert the BVP

into system of initial value problems and make suitable
guesses for the unknown quantities such that the end condi-
tions of the solution space are satisfied.

By making some transformations the BVP is reduced to
the following system of initial value problems

f ′ = p, p′ = q, q′ = 2p2 − f q +
p

K
,

θ′ = z, z′ = Pr
(
f ′θ − f z

)− εz2

1 + (4N/3) + εθ

(15)

under the boundary conditions

f (0) = S, p(0) = −1, q(0) = r1,

θ(0) = 1, z(0) = r2.
(16)

Here r1 = f ′′(0) and r2 = θ′(0) are the initial guesses which
are arbitrarily chosen and an iterative procedure is set to
obtain solutions through Runge-Kutta fourth-order method.
The computational procedure involved two challenges, firstly
determination of η∞, that is, maximum value of η for which
f ′(η) → 0 and θ(η) → 0 at η → ∞ and secondly proper
estimates for the unknown quantities f ′′(0) and θ′(0). It
is not out of place to make remark that the “guesses” were
made purely on hit and trial basis and their refinement was
interpolated iteratively with the prescribed error tolerance.
A grid independence study was also carried out to examine
the effect of step size Δη and the edge of the boundary layer
η∞ on the solution in the quest for their optimization. The
ηmax, that is, η at infinity was so chosen that further changes
in it do not produce changes in the values of f ′′(0) and
θ′(0) (constant till 10−7) vis a vis boundary conditions are
satisfied. A step size of Δη = 0.01 was found to be satisfactory
for a convergence criterion of 10−7 in all cases.

5. Results and Discussion

The numerical computations carried out for different sets of
values of the parameters entering into the problem have been
depicted through graphs and tables. The analysis, besides the
effects of parameters on flow and heat transfer, also aims
to compute the range of mass suction for parameter-values
required for laminar flow on the shrinking sheet. Here we
are inclined to recall the works of Miklavčič and Wang [20]
and Fang and Zhang [24] who discussed flow due to linear
shrinking sheet in clear Newtonian fluid. They reported that
to facilitate the steady flow due to shrinking sheet mass suc-
tion parameter of strength greater or equal to 2 is required.
Recently, Bhattacharyya [31] computed values of suction
velocity for the flow due to exponentially shrinking sheet in
clear fluid regime (K → ∞) and reported that laminar flow
does not exist if the suction velocity is less than 2.266684.
Here it is emphasized that due to exponential shrinking
of the sheet, the vorticity grows rapidly in the boundary
layer and tends to go beyond the boundary layer, hence an
adequate mass suction is required for existence of the laminar
flow. Further, here it is worth noting that in the present
analysis the sheet is placed at the bottom of porous medium
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which offers resistance to fluid traversal inside the porous
matrix and contributes in some way in fluid stability, hence
one may expect rather low suction rate as compared to the
case of clear fluid situation. In present investigation, we did
rigorous computations to extract the minimum suction rate
required for ensuring the laminar flow in porous medium
due to exponentially shrinking sheet. We found that in case
of the porous medium one requires lesser suction values
(S ≤ 2.266684 when K /=∞) to contain the vorticity in the
boundary layer depending upon the porous material chosen
(see Table 1). The table shows that similarity solution exists
for the exponential shrinking sheet placed at the bottom of
the fluid saturated porous medium if S ≥ 2.18711 when K =
10; S ≥ 2.22717 when K = 20. Further it is emphasised that
whenK → ∞, then the present problem as far as momentum
equation is concerned reduces to that of Bhattacharyya [31].
We see that when K → ∞, then it is found that S ≥
2.266662. This is in perfect agreement with Bhattacharyya
[31]. Further, Miklavčič and Wang [20] observed that in flow
problems involving shrinking surfaces, one may encounter
nonunique solutions. In the present analysis we get dual solu-
tion regime. These solutions are closely dependent on mass
suction velocity at the surface.

In order to solve the system of initial value problems we
required proper estimates for the unknown quantities f ′′(0)
and θ′(0). A large number of guesses for f ′′(0) were tested
for different values of permeability parameter K . These
guesses were chosen on purely hit and trial basis such that the
end conditions got satisfied. An error tolerance of magnitude
10−7 was prescribed for the computations. Tables 2, 3, 4,
and 5 display rigorously computed values of f ′′(0) for dual
solution regime for momentum equation and the range of
mass suction for various set of values of permeability para-
meter.

The profiles for the skin friction coefficient f ′′(0) and
rate of heat transfer−θ′(0) versus suction velocity parameter
S drawn for various values of permeability parameter K are
shown in Figures 1 and 2, respectively. We find dual solution
regimes for both f ′′(0) and −θ′(0) for the different values
of suction velocity parameter. Further Figure 1 depicts that
the skin friction coefficient f ′′(0) registers increase with an
increase in suction velocity for the first solution whereas it
decays in the case of second solution for increasing values of
S. The figure also shows that with increasing values of per-
meability parameter K , f ′′(0) for the first solution decays
whereas for the second solution it increases. From Figure 2
we see that −θ′(0) increases for the first solution with
increase in S whereas for the second solution it decreases.
Moreover with the increasing values of the permeability
parameter K , −θ′(0) increases for the second solution but
insignificant changes occur in case of first solution.

Figure 3 shows the variation in f ′(η) with respect to the
suction velocity parameter S. For the first solution f ′(η)
decreases numerically within the boundary layer for increas-
ing values of suction parameter S and becomes zero at the
edge of the momentum boundary layer for every value S. The
profiles of second solution exhibit a similar pattern.

The variation in f ′(η) for different values of permeability
parameter K , when the suction parameter is set as S = 2.4
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Figure 1: Profiles for skin friction coefficient ( f ′′(0)) for variation
in permeability parameter K .
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Figure 3: Dual velocity ( f ′(η)) profiles for variation in suction
velocity S.

is shown in Figure 4. We see that for the first solution
f ′(η) increases numerically with the increasing values of K
whereas f ′(η) decreases in the case of second solution for
the increasing values of K . The figure also reveals that effect
of permeability is more significant on the second solution as
compared to the first solution.

Variations in shear stress f ′′(η) in the boundary layer
region for the suction parameter values are shown in
Figure 5. For the first solution, shear stress in the vicinity
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Table 1: Variation of minimum suction velocity Ss required for flow phenomena with the permeability parameter K .

Permeability parameter K
Minimum suction velocity S = Ss

Present paper Bhattacharyya [31]

10 2.18711 —

20 2.22717 —

100 2.258819 —

1000 2.26590 —

50,000 2.266662 2.266684

Table 2: Estimates for guesses of f ′′(0) for both the solutions of the velocity profile when K = 10.

First solution Second solution

Range of suction velocity (S) Guesses for f ′′(0) Range of suction velocity (S) Guesses for f ′′(0)

2.18711 ≤ S ≤ 2.200 .9, 1 2.18711 ≤ S ≤ 2.225 .6, .7

2.200 ≤ S ≤ 2.250 1, 1.2 2.225 ≤ S ≤ 2.251 .5, .6

2.250 ≤ S ≤ 2.290 1.2, 1.3 2.251 ≤ S ≤ 2.295 .4, .44

2.290 ≤ S ≤ 2.335 1.3, 1.4 2.295 ≤ S ≤ 2.335 .3, .35

2.335 ≤ S ≤ 2.385 1.4, 1.5 2.335 ≤ S ≤ 2.350 .22, .3

2.385 ≤ S ≤ 2.440 1.5, 1.6 2.350 ≤ S ≤ 2.385 .21, .23

2.440 ≤ S ≤ 2.499 1.6, 1.7 2.385 ≤ S ≤ 2.395 .19, .2

2.499 ≤ S ≤ 2.560 1.7, 1.8 2.395 ≤ S ≤ 2.421 .1, .11

2.560 ≤ S ≤ 2.620 1.8, 1.9 2.421 ≤ S ≤ 2.460 .05, .09

2.620 ≤ S ≤ 2.700 1.9, 2.0 2.460 ≤ S ≤ 2.474 0, .05

2.700 ≤ S ≤ 2.774 2, 2.1 2.474 ≤ S ≤ 2.500 0, −.05

2.774 ≤ S ≤ 2.850 2.1, 2.2 2.500 ≤ S ≤ 2.540 −.1, −.05

2.850 ≤ S ≤ 2.914 2.1, 2.3 2.540 ≤ S ≤ 2.570 −.1, −.15

2.914 ≤ S ≤ 3.010 2.3, 2.4 2.570 ≤ S ≤ 2.590 −.2, −.15

2.590 ≤ S ≤ 2.620 −.2, −.25

2.620 ≤ S ≤ 2.640 −.3, −.25

2.640 ≤ S ≤ 2.670 −.3, −.35

2.670 ≤ S ≤ 2.690 −.35, −.4

2.690 ≤ S ≤ 2.722 −.4, −.45

2.722 ≤ S ≤ 2.770 −.5, −.55

2.770 ≤ S ≤ 2.790 −.55, −.6

2.790 ≤ S ≤ 2.833 −.6, −.7

2.833 ≤ S ≤ 2.875 −.7, −.8

2.875 ≤ S ≤ 2.920 −.8, −.9

2.920 ≤ S ≤ 2.960 −.9, −1

2.960 ≤ S ≤ 3.001 −1, −1.1

Table 3: Estimates for guesses of f ′′(0) for both the solutions of the velocity profile when K = 20.

First solution Second solution

Range of suction velocity (S) Guesses for f ′′(0) Range of suction velocity (S) Guesses for f ′′(0)

2.22717 ≤ S ≤ 2.270 1, 1.1 2.22717 ≤ S ≤ 2.300 .5, .55

2.270 ≤ S ≤ 2.350 1.3, 1.4 2.300 ≤ S ≤ 2.399 .3, .35

2.350 ≤ S ≤ 2.483 1.5, 1.6 2.399 ≤ S ≤ 2.444 .1, .15

2.483 ≤ S ≤ 2.600 1.7, 1.8 2.444 ≤ S ≤ 2.548 0, 0.05

2.600 ≤ S ≤ 2.700 1.9, 2.0 2.548 ≤ S ≤ 2.600 −.05, −.1

2.700 ≤ S ≤ 2.890 2.1, 2.2 2.600 ≤ S ≤ 2.700 −.25, −.3

2.890 ≤ S ≤ 3.000 2.3, 2.4 2.700 ≤ S ≤ 2.802 −.45, −.5

2.802 ≤ S ≤ 2.904 −.70, −.75

2.904 ≤ S ≤ 3.000 −.95, −1
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Table 4: Estimates for guesses of f ′′(0) for both the solutions of the velocity profile when K = 100.

First solution Second solution

Range of suction velocity (S) Guesses for f ′′(0) Range of suction velocity (S) Guesses for f ′′(0)

2.258819 ≤ S ≤ 2.415 1.3, 1.4 2.258819 ≤ S ≤ 2.350 .5, .6

2.415 ≤ S ≤ 2.460 1.4, 1.5 2.350 ≤ S ≤ 2.420 .3, .5

2.460 ≤ S ≤ 2.500 1.5, 1.6 2.420 ≤ S ≤ 2.515 .1, .3

2.500 ≤ S ≤ 2.570 1.6, 1.7 2.515 ≤ S ≤ 2.670 −.1, −.11

2.570 ≤ S ≤ 2.620 1.7, 1.8 2.670 ≤ S ≤ 2.745 −.2, −.3

2.620 ≤ S ≤ 2.700 1.8, 1.9 2.745 ≤ S ≤ 2.870 −.5, −.55

2.700 ≤ S ≤ 2.755 1.9, 2.0 2.870 ≤ S ≤ 2.880 −.5, −.6

2.755 ≤ S ≤ 2.890 2.1, 2.2 2.880 ≤ S ≤ 3.001 −.9, −.8

2.890 ≤ S ≤ 3.011 2.3, 2.4

Table 5: Estimates for guesses of f ′′(0) for both the solutions of the velocity profile when K = 1000.

First solution Second solution

Range of suction velocity (S) Guesses for f ′′(0) Range of suction velocity (S) Guesses for f ′′(0)

2.26590 ≤ S ≤ 2.290 .9, .1 2.26590 ≤ S ≤ 2.400 .4, .5

2.290 ≤ S ≤ 2.470 1.4, 1.5 2.400 ≤ S ≤ 2.540 .1, .2

2.470 ≤ S ≤ 2.640 1.7, 1.8 2.540 ≤ S ≤ 2.710 −.1, −.2

2.640 ≤ S ≤ 2.850 2, 2.1 2.710 ≤ S ≤ 2.850 −.4, −.5

2.850 ≤ S ≤ 3.055 2.3, 2.4 2.850 ≤ S ≤ 3.000 −.8, −.9
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Figure 4: Dual velocity ( f ′(η)) profiles for variation in permeabil-
ity parameter K .

of the wall increases with the increasing values of suction
parameter S but at some critical distance from the wall,
f ′′(η) decays with the increasing values of S. However,
opposite trends in f ′′(η) are observed in the case of second
solution for increasing values of S.

Figure 6 depicts the effect of permeability parameter K
on shear stress f ′′(η) in the boundary layer. We observe that
for the first solution, f ′′(η) decreases near the wall for
the increasing values of K . For the second solution, f ′′(η)
increases with increasing K near the wall. However, varia-
tions in f ′′(η) are reversed for variation in K in both the
solutions at a certain distance from the wall. The figure also
reveals that effect of K on f ′′(η) is more pronounced for the
second solution as compared to that of the first one.

Figure 7 exhibits temperature profiles for various suction
values. It is clear from the figure that the temperature θ(η) for
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Figure 5: Shear stress ( f ′′(η)) profiles for variation in suction velo-
city S.

the first solution decays with the increasing values of suction
parameter S whereas in the second solution case we find that
θ(η) increases with the increasing values of S. We also observe
that for the same set of suction values, the thermal boundary
layer is thicker for the second solution compared to that of
first solution.

Figure 8 displays variation in temperature for varying
values of permeability parameter K . We see that the effect of
permeability K on θ(η) is insignificant for the first solution
whereas permeability has pronounced effect on temperature
for second solution.

Figure 9 shows the variation of temperature θ(η) for dif-
ferent values of the Prandtl number Pr. We see that for both
solutions, θ(η) decays with the increasing Pr values. How-
ever it is interesting to note that thermal boundary layer for
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ability parameter K .
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Figure 9: Dual temperature (θ(η)) profiles for variation in Prandtl
number Pr.
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Figure 10: Dual temperature (θ(η)) profiles for variation in radia-
tion parameter N .
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Figure 11: Dual temperature (θ(η)) profiles for variation in the
parameter ε.

the first solution is thicker as compared to that of second
solution for all Pr values under consideration.

Prandtl number physically characterizes relative impor-
tance of momentum diffusion to thermal diffusion in the
flow field. Low density fluids such as liquid metals (e.g.,
mercury, Pr = 0.023) enjoy low Prandtl number values, that
is, less than unity. In thermal regime with low Prandtl num-
ber values heat diffuses at faster rate. On the contrary, oil
having low thermal conductivity (high Pr values) gives rise
to thinner boundary layer.

The effect of the radiation parameter N on θ(η) is shown
in Figure 10. The radiation parameterN is reciprocal of Stark
number (also known as Stephan number) which measures
the relative importance of thermal radiation transfer to the
conduction heat transfer. Thus larger values of N mean
dominance of thermal radiation over conduction. Conse-
quently, larger values of N indicate that larger amount of
radiative heat energy is poured into the flow field, causing
rise in θ(η). We conclude from the figure that increase in
radiation parameter results in an increase in fluid temper-
ature.

Figure 11 displays the effect of thermal conductivity per-
turbation parameter ε on temperature. It is observed that
θ(η) increases with an increase in parameter ε.
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