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This paper focuses on a sensor network virtualization over multidomain sensor network and proposes an abstraction called “logical
sensor network (LSN)” for sensor data processing. In the proposed abstraction, processing is a directed acyclic graph that consists
of nodes and streams, which represents a small data processor and communication rules between them, respectively. We have added
a notion of a trigger to this graph. A trigger represents a timing of the process execution. We have implemented the middleware
named LSN-Middle to run a virtualized sensor network and proved its feasibility.

1. Introduction

In a future where sensor networks are ubiquitously around
us, applications should interact with multiple sensor net-
works that belong to different domains. Many efforts to make
a platform that provides applications a transparent access
to sensor data from existing sensor networks with different
domains have been made [1–8]. We call this type of platforms
“multidomain sensor network (MDSN).” Sensor networks
in MDSN include various types of hardware, are organized
by different institutions, and are distributed over the world.
Utilizing MDSN from applications has two undesirable fea-
tures that are (1) sensor heterogeneity and (2) raw sensor
data delivery. This means applications can only receive raw
sensor data with heterogeneous data units and they are res-
ponsible for the data translation or the data preprocessing
phases. This is caused by a feature that programmers
cannot neither configure nor program the sensor networks
which consist MDSN. Thus, we consider that an application
development over MDSN will be more complicated than the
development over a single homogeneous sensor network on
which an application programmer has a full configurability
and programmability.

For these undesirable features of MDSN, a virtualization
of a sensor network can be an effective solution. Sensor

network virtualization over MDSN can provide a dedicated
sensor network to each application as shown in Figure 1.
This figure illustrates application and physical, multidomain
and virtualized sensor network. MDSN aggregates physical
sensor networks that have been installed for specific purposes
[9–13]. And virtualized sensor networks recompose MDSN
and create sensor networks for arbitrary applications with
arbitrary specifications. Many researchers have been inves-
tigating middleware which offers applications to create a
virtualized sensor network [14–17]. The middleware allows
an application to define a virtualized sensor network. The
application can be developed and operated as if it has a ded-
icated sensor network with a preferred specification. Virtua-
lized sensor network offers application programmers to
define sensors and sensor data processing. These features
cope with the two undesirable features of MDSN we have
mentioned, respectively.

To enable application programmers to define a virtu-
alized sensor network, well-defined abstractions for both
sensor and sensor data processing are needed. Although the
existing middleware researches and standardizations [18]
have well discussed the abstraction of sensors, they have not
well investigated the abstraction of sensor data processing. In
this research, we propose a sophisticated abstraction for sen-
sor data processing which enables programmers to express
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Figure 1: Architecture of future sensor network environment.

stateful processing, asynchronous eventing, and multistage
data passing. We have also implemented a middleware, which
runs virtual sensor networks.

This paper is organized as follows. First, we clarify the
features of MDSN and how the sensor network virtualization
can contribute to the application development over MDSN
in Section 2. Also the problem of the existing researches
of the virtualized sensor network will be organized in the
section. Section 3, then, proposes LSN and explains details
about the abstraction of sensor data processing. Sections 4
and 5 provide implementation and evaluation of LSN-
Middle. Section 6 examines related researches. Finally, we
summarize this paper in Section 7.

2. Applications on Multidomain
Sensor Network

MDSN is a platform that provides applications a transparent
accessibility to sensor data from existing sensor networks.
To describe usages and features of MDSN, we give an
example scenario of an application called “Just-In-Time
Flurry Forecast.”

Just-In-Time Flurry Forecast. On a sunny day,
Alice decides to go shopping to a supermarket
nearby her house on foot. On the way to the
supermarket, her smartphone suddenly alarms
her. She picks up her phone and sees a message that
says it will be raining so hard in 5 minutes where
she is walking now. Of course she do not have an
umbrella, she starts to walk a little faster towards
her destination. The flurry starts so hard when she
just arrives at the supermarket.

2.1. Applications. The notion of “Just-In-Time Flurry Fore-
cast” is derived from an idea that an application provides
a microscale weather forecast of where you are right now.
The features of MDSN, which offers applications to access

sensor data that published by others, are necessary to make
this application possible. However, there are two undesirable
features to implement this kind of application over MDSN.

(i) Sensor Heterogeneity. Since MDSN consists of physical
sensor networks that belong to a large number of institutions
and individuals, there is a huge variety in sensors. Therefore,
it includes many data units to describe a single physical
information. For example, in Just-In-Time Flurry Forecast
scenario, the application needs to detect a rain amount
(mm/h) within 5 km from the application’s location. How-
ever, MDSN may contain various data units (mm/10 mins,
mm/hour, mm/day), the application have to translate sensor
data with those units into one unit which is mm/10 mins in
this case. In addition, the data sources may change when the
location of the application moves. Therefore, the application
needs to check every sensor data and translate it before the
data processing phase.

(ii) Raw Sensor Data Delivery. Before providing data for
high-level data processing, which we call an application’s
main logic, processing steps of raw sensor data into char-
acteristic values are necessary. For example, Just-In-Time
Flurry Forecast needs (1) noise filtering each sensor data, (2)
averaging multiple sensor data located in certain areas, and
(3) calculating a direction of the rain travel, these are the
required processing steps. Then, the application’s main logic
finally calculates how long it takes before flurry arrives at the
location of the application and decides whether a notification
should be sent or not. Although these steps should be done
in a sensor network [19, 20], it is impossible to program
sensor networks that consist MDSN since they do not belong
to the application programmer. Thus, the application needs
to receive raw sensor data and is responsible for process it
before its main logic.

2.2. Sensor Network Virtualization for MDSN. Sensor net-
work virtualization can be a solution for these features. A
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Figure 2: Steps required to utilize MDSN from application and LSN’s responsibility.

virtualized sensor network that is defined by an application
can act as a dedicated sensor network for the application.
There are some researches proposing methods to create
virtual sensor networks over MDSN [14–16]. They propose
virtual sensors that translate different sensor specifications
into one to hide heterogeneity of sensors and virtual sensor
programs that offer to process sensor data before providing
it to applications. The architecture of MDSN, middleware,
and application is shown in Figure 2, following researches
discussed on both abstractions of sensor and sensor data
processing.

Global sensor network (GSN) [15, 16] is a research that
proposed a mechanism for enabling a concept of virtual sen-
sors and virtual sensor data processing. In the research, the
authors have proposed a virtual sensor, which is an abstrac-
tion of sensors and sensor data. GSN supports four features
to simplify a development of portable application over
MDSN, which are sensor data discovery, distributed query-
ing, filtering, and combining multiple sensor data. Virtual
sensor in GSN consists with metadata, structures of input/
output data, data processing function, and operational pro-
perties. The output values are provided with a certain rate
according to a virtual sensor specification.

Virtual sensors [14] are an abstraction of a sensor
network and sensor data as well. They focused on providing
applications indirect measurement of abstract conditions
that need to process multiple sensor data to figure out. Their
virtual specification includes a type of input/output data
streams, data stream processing functions, and an aggrega-
tion frequency. Their virtual sensor abstraction and GSN’s
abstraction share many features in common.

2.3. Problem. Existing researches of MDSN middleware are
not strongly focused on sensor data processing although they
have well discussed virtual sensors. Their abstractions of
sensor data processing are a single function that has multi-
ple inputs and one output. However, it is insufficient for
expressing the sensor data processing for not supporting the
following three requirements that we have organized. The
application scenario of “Just-In-Time Flurry Forecast” illus-
trates the three requirements.

(i) Stateful Processing. Some processes may use the former
output results or values related to former inputs in their

process. These states cannot be stored in a single function
that is introduced in the related researches. For example, a
noise filter such as lowpass filter that is mentioned in the
scenario requires historical sensor data to calculate the result.

(ii) Asynchronous Eventing. Some processes may wait to
execute their process until all the available data to be
delivered and other processes may want to execute its process
every delivery of sensor data. Process execution eventing is
not considered in the related researches. For example, a noise
filter should be executed on every data delivery, on the other
hand, averaging should wait for its execution until a certain
amount of sensor data to be delivered.

(iii) Multistage Data Passing. Some processes may need
the results of many different processes which are executed
asynchronous timing. Multistage data passing cannot be
expressed in a synchronous function as introduced in the
related researches. For example, the application scenario
requires three steps to calculate final output.

The sensor data processing abstraction should be able to
express these three aspects. This research will focus on these
aspects of sensor data processing and propose an abstrac-
tion of sensor data processing that can be used in MDSN
middleware.

3. Logical Sensor Network: Abstraction for
Sensor Data Processing

We propose a simple abstraction of sensor data processing
named “Logical Sensor Network (LSN)” that has ability to
express stateful data processing, asynchronous eventing, and
multistage data passing. This model is a directed graph in
which a node (oval) represents a small data processor and
a stream (arrow) represents communication rules between
nodes. Also, a node can select its process execution timing
with a trigger. Top-level nodes and A bottom-level node of
a graph, which are exceptions, represent data sources and a
data sink, respectively. Data sources are expressed abstractly,
so that physical sensors that match to the condition will be
placed. With this simple abstraction, sensor data processing
in a virtualized sensor network for MDSN becomes simple
and expressive. Figure 3 shows a LSN that expresses sensor
data processing in the scenario of Just-In-Time Flurry
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Figure 3: A simplified LSN expression of sensor data processing
used in Just-In-Time Flurry Forecast scenario.
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Forecast. Ovals and arrows represent nodes and streams,
respectively. Fonts appeared in the nodes represent a type of
a trigger.

The graph shows processing steps of data from rain sen-
sors of two areas (Rain A1, Rain A2). Each stream from these
nodes are connected to a node that represents processing.
Lowpass filtering processes (LPFilter) are connected from
nodes of Rain A1 and Rain A2 and execute filtering process
when the data arrives from these nodes. These lowpass
filtered data are gathered into area averages (Average). Unlike
LPFilter, average waits its execution until all the connected
streams to send at least a data. At last, a processor that calcu-
lates the direction of the rain travel (Direction) executes its
process every 10 seconds. This node retrieves the latest value
from nodes of Average on its execution. Then it pushes the
result value to a sink node. In the following section, we look
at each component of the abstraction and explain in details.

3.1. Node. The abstraction of node represents a data process.
Node can have n input streams from other nodes and m
output streams to other nodes as their input stream. Figure 4
shows possible combinations of the number of input and
output streams. Each node contains states that are available
as long as the node exists. This feature enables stateful data
processing. Source, that is a node with no input stream, is
mapped to physical sensor and provides sensor data. Sink,
that is a node with 0 output stream, represents an interface
to an application. Input streams of a sink can only be accessed
by an application. Therefore, source and sink do not contain

Table 1: Types of nodes.

Name Description

Process Process n inputs and sends n outputs

Source Mapped to physical sensors and provides sensor data

Sink An interface to an applications

Table 2: Definition of source nodes (Rain A1).

Key Value

Data kind Temperature

Data unit Celsius

Data type Number: double

Sampling 3000 ms

Target number All available

Context Within 5 km from current loc.

processing aspect. All input and output stream combinations
which are shown in the Figure 4 can express various kinds
of processing that are necessary for sensor data processing,
especially preprocessing level. Figures 4(b), 4(c), 4(d), and
4(e) can be categorized as a processor.

They can be categorized into three types as shown in
Table 1, which are process, source, and sink.

The number and entity of source nodes need to be
changed dynamically since LSN should support the idea
of virtual sensors. For this reason, source nodes should be
defined in an abstract way. Source node should be defined
with a data kind (e.g., temperature), a data unit (e.g.,
celsius), a data type (e.g., numeric: double), a sampling rate
(3000 ms), a total number, and a condition (e.g., target area).

In Figure 3, Rain A1 and Rain A2, that are expressed as
a shaded oval, are sources. Sink, that is shown as heavy lined
node represents sink, and the other nodes, which are LPFilter,
Average, and Direction, represent process. Rain A1 is defined
as Table 2. Rain A2 are defined just same as Rain A1 with
different context.

3.2. Trigger. Trigger is an element that executes a node’s pro-
cess. Each process node has one trigger. Trigger can be cate-
gorized into three types based on an aspect of a timing of
a process execution. The categories are shown in Table 3.
Flow is a type that executes a process when one of connected
input streams brings sensor data. On the other hand,
Rendezvous waits the execution until a specified percentage
of the connected input streams brings their sensor data.
And Timer executes the process periodically with a specified
interval. The concept of the trigger enables programmers to
easily handle an asynchronous eventing aspect of sensor data
streams.

In Figure 3, the node with italic font has a flow type
trigger. LPFilter has flow type trigger in this case. Nodes with
underlined font, that are Average, have a rendezvous trigger.
The percentage written under the node name specifies the
requirement. Direction, that is expressed with bold font, is a
node with a timer trigger. The time written under the node
name represents the execution interval.
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Table 3: Types of trigger.

Name Representation Description

Flow Italic Each time one of the data from connected input arrives

Rendezvous Underlined When the data from all connected input arrive

Timer Bold At a certain time cycle

Table 4: Process execution timing and available data.

Type Timing Available data

Flow

d1 d1

d2 d2

d3 d3

d4 d4

Rendezvous d4 d1,d2,d3,d4

Timer
t1 d1

t2 d2,d3

Table 5: Types of stream.

Name Representation Description

Push A simple arrow
Sends data when a process is

executed

Pull
A two direction

arrow
Sends data when requested from

the other node

Figure 5 shows the model of a data arrival to a node
from three connected streams. A painted circles (d1–d4) on
each stream represent sensor data coming into the node.
Data with smaller number arrives at the node earlier. The
dotted vertical lines (t1, t2) represent time that a timer trig-
ger executes the process. When data arrives at the node
from these streams, Table 4 shows the timing of the process
execution and available sensor data at that time for each
trigger type. In this case, when the node adopts a rendezvous
trigger, the node receives two data from the same stream,
namely, d1 and d3. In such case, whether utilizing the latest
data, that is d3, or utilizing average of both data depends on
the implementation of the node. LSN abstraction does not
concern this issue.

3.3. Stream. Stream connects two nodes and expresses a data
communication as shown in Table 5. An output value from
a node goes through a stream and provided to the other
node as input value. A stream has two types that represent
different communication aspects. One is called push that
pushes data to the other node after a process execution. A
simple arrow represents push link. The other is called pull
which retrieves sensor data from the destination node when a
node executes its process. An arrow with backward direction
tail represents pull link. Connecting nodes by streams enables
multistage data passing. And each node only receives data
that are relevant to its process.

In Figure 3, data will be pushed by former nodes, as for
LPFilter and Average. On the other hand, Direction has pull

Node

Data
Time

Stream A

Stream B

Stream C

t1t2

d1

d2

d3

d4

Figure 5: Data arrival model for a node in LSN.
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Figure 6: The steps for applications to instantiate LSN and receive
data.

stream towards Average, which means Direction retrieves the
latest average data on its process execution.

4. Framework Implementation

We have implemented a framework and middleware for
defining and running LSN that is defined according to our
abstraction of sensors and sensor data processing. Figure 6
shows how an application instantiate LSN. (1) First, an appli-
cation sends a definition of LSN to a server with LSN-
Middle. (2) When LSN-Middle receives the definition, it
instantiate LSN according to the definition. Then it receives
and processes sensor data from MDSN.(3) Finally, LSN-
Middle sends processed sensor data to the application.
Definition of LSN includes source sensor definition (such
as Table 2) and a program of LSN that is described in this
section. All or a part of a LSN definition can be published to
the public and other applications can reuse it.

In this section, we will describe our java framework
implementation for programming sensor data processing
with the abstraction that we have discussed in the last section
using LSN in Figure 3. Each node type shown in Figure 4
has a corresponding java abstract class and an application
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1 public class LowpassFilter extends Filter{
2 private static final double k = 0.1;
3 private double smooth;

4 public LowpassFilter(String n, Trigger t) {
5 super(n, t);
6 }
7 @Override
8 public Data filter(Data d) {
9 smooth += (data.getValue() – smooth) ∗ k;
10 Data res = new ProcessorData(d);
11 res.setValue(smooth Value);
12 return res;
13 }
14 }

Listing 1: Source code for filter node (lowpass filter) node in Java.

1 public class Average extends Aggregator{
2 public Average(String n, Trigger t) {
3 super(n, t);
4 }
5 @Override
6 public Data aggregate(Data[] dList) {
7 double ave, sum = 0;
8 for(Data d : dList)
9 sum += data.getValue();
10 ave = sum/dList.length;
11 Data res = new ProcessorData(dList[0]);
12 res.setSourceName(name);
13 return res;
14 }
15 }

Listing 2: Source code for aggregator node (average) in Java.

developer should extend those abstract classes and override
a data processing method to create his/her original processor
node. Listing 1 is an example implementation for executing
a lowpass filter and Listing 2 is an example source for an
averaging process. Processor nodes can be instantiated with
a name and a trigger object.

Once an application developer implemented processor
nodes, he/she needs to connect them and create LSN. LSN
that is shown in Figure 3 can be expressed as the source
code shown in Listing 3. LSN can be defined within a java
class that extends Logical Sensor Network class. The subclass
should implement onInit() and onUpdate() methods. The
application developer should write initiation code of LSN
in onInit() and reconstruction code in onUpdate() for
when binding of logical/physical sensors are changed. In the
case of Listing 3, instances of Average class are not newly
instantiated, but instances of LowpassFilter class are newly
instantiated according to new sources and reconnected to the
instances of Average class in onUpdate(). setStream(String,

Node) or addStream(String, Node) is used to connect nodes.
These methods need stream name and destination node
as parameters. Stream name is useful for distinguishing
the stream to read/write data when multiple input/output
streams are there.

LSN source code is compiled and sent to LSN-Middle in
jar file by an application and executed remotely. When the
application sends a connect request with its current context
to the LSN, LSN collaborates with MDSN and starts to send
sensor data. Listing 4 shows application code that creates,
connects, and updates a LSN instance on the remote LSN-
Middle.

5. Evaluation

We have done an evaluation test to ensure that the LSN-
Middle’s design and implementation is feasible. In the
evaluation, we have compared the time that required for a
smartphone to acquire data from MDSN and process it with
and without LSN-Middle. The LSN that we have used for the
evaluation is shown in Figure 7. This comparison can dis-
cover whether LSN-Middle’s overhead cost for sending
or dynamically loading jar file is acceptable or not. The
test requires a smartphone to acquire an average value of
{10, 50, 100, 500, 1000} lowpass filtered sensor data from
MDSN with 2 patterns: with and without LSN-Middle. The
test is conducted within a private network with a simulated
delay and bandwidth. Bandwidth is set to 3000 kbps and RTT
between the smartphone (Sensation, 1.2 GHz Dual-Core
Qualcomm MSM8260, Android 2.3.3) and LSN-Middle
(MacBook Air, 1.8 GHz Intel Core i7, MAC OS X 10.7) or
MDSN platform is 25.8 (stddev: 1.44). MDSN platform that
we have used is prepared for this evaluation and it gen-
erates simulated sensor data. A client that needs data from
the MDSN sends a query with sensor conditions, and first the
client gets an address list of matched sensors and then sensor
data follows. All the specified amount of sensor data is gen-
erated within 3000 ms and sent to the client. The last sensor
data is generated exactly on 3000 ms from the request as
an anchor. We have measured a time that the smartphone
took to get the average value from the time sending a
request. This time includes the required time for MDSN
to finish generating all the sensor data. Therefore, we have
defined response time that is related to the efficiency to be
MeasuredTime − 3000 ms.

The graph in Figure 8 shows the result. The error bar
represents standard deviation. As a result, the performance
with LSN-Middle is 12.57% better in average. This means, in
spite of the additional required steps, the performance is bet-
ter with LSN-Middle. There are two reasons that the response
time becomes larger as the number of sensor data becomes
larger. One is that sensor data processing time becomes
larger in proportion to the number of sensor data. The
other reason is that the cost of sending a list for sensor
nodes from MDSN is becoming larger. The performance
with LSN becomes better because these tasks are executed
in the LSN-Middle where there are richer computational
resources than that of a smartphone. When processing a
heavier load task than averaging, the performance difference
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1 public class RainForecastNetwork extends LogicalSensorNetwork{
2 private Source[][] rain;
3 private LowpassFilter[][] lpf;
4 private Average[] ave;
5 private Direction dir;

6 public RainForecastNetwork() throws Exception {
7 super(“conf/rain forecast.lsn”);
8 }
9 @Override
10 public boolean onInit() {
11 rain = new Source[2][]; //Logical Sensors
12 lpf = new LowpassFilter[2][]; //Lowpass Filters
13 ave = new Average[2]; //Average Aggregators
14 dir = new Direction(“Direction”, new TimerTrigger(10000));

15 //Instantiating Processor Nodes
16 for(int i=0; i<2; i++){
17 rain[i] = manager.getNodes(“RainA” + (i+1));
18 lpf[i] = new LowpassFilter[rain[i].length];
19 for(int j=0; j<lpf[i].length; j++)
20 lpf[i][j] = new LowpassFilter(“LPF”+i+j, new
21 FlowTrigger());
22 ave[i] = new Average(“Ave” + i, new RendezvousTrigger());
23 }
24 //Connecting Processor Nodes
25 for(int i=0; i<2; i++){
26 for(int j=0; j<rain[i].length; j++){
27 rain[i][j].setPushStream(“value”, lpf[i][j]);
28 lpf[i][j].setPushStream(“value”, ave[i]);
29 }
30 ave[i].setPullStream(“value”, dir);
31 }
32 dir.setPushStream(“value”, sink);
33 return true;
34 }
35 @Override
36 public boolean onUpdate() {
37 //Disconnect Processor Nodes
38 for(int i=0; i<2; i++){
39 for(int j=0; j<lpf[i].length; j++){
40 lpf[i][j].removeStream(ave[i]);
41 }
42 }
43 //Get new binding and instantiate new LowpassFilters
44 for(int i=0; i<2; i++){
45 rain[i] = manager.getNodes(“RainA” + (i+1));
46 lpf[i] = new LowpassFilter[rain[i].length];
47 for(int j=0; j<lpf[i].length; j++)
48 lpf[i][j] = new LowpassFilter(“LPF“+i+j, new
49 FlowTrigger());
50 }
51 //Connect new LowpassFilters to Averages
52 for(int i=0; i<2; i++){
53 for(int j=0; j<rain[i].length; j++){
54 rain[i][j].setPushStream(“value”, lpf[i][j]);
55 lpf[i][j].setPushStream((“value”, ave[i]);
56 }
57 }
58 return true;
59 }
60 }

Listing 3: Source code for construction and update for logical sensor network in Java.
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1 public class MicroForecast implements LSNListener, GPSListener{
2 private LSNClient client;

3 public MicroForecast(double lat, double lng) throws Exception{
4 client = new LSNClient(“lsnoperator.org”, 12345, 22345);
5 client.setListener(this);

6 //Create LSN instance on a remote server.
7 client.create(“org.RainForecastNetwork”,“lsn.jar”);

8 //Connect LSN instance on the remote server.
9 client.connect(new Location(lat, lng));
10 }
11 @Override
12 public void dataArrived(LSNDataPacket packet) {
13 //Process data using packet. (Main Logic)
14 }
15 @Override
16 public void gpsUpdated(double lat, double lng) {
17 //Let the remote server know about context update.
18 client.update(new Location(lat,lng));
19 }
20 }

Listing 4: Source code for construction and update for logical sensor network in Java.
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Figure 7: Logical Sensor Network used in the evaluation.

will be more significant. This evaluation verified that when
processing sensor data from MDSN, applications should use
LSN-Middle in the aspect of performance as well.

6. Related Work

Researches that focus on processing of sensor data can be
seen in the field of macroprogramming. Titan [21], proposes
a simple abstraction for sensor data processing for hetero-
geneous physical sensor network. Titan represents data pro-
cessing by a data flow from sensors to recognition results.
The abstraction of processing is represented as task, data,
and connection. Task represents an elementary computational
functions such as classifier and filters, and connection rep-
resents data flow from task. The entire process is expressed
as directional graph in which tasks are connected by connec-
tions. The process execution is distributed among multiple
sensor nodes. For the distributed computation, Titan has a
special task for a communication to send sensor data to a
different sensor node. However, from the aspect of the pro-
cess abstraction, a communication among physical sensors
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Figure 8: Performance evaluation of sensor data processing with
and without LSN-Middle.

nodes should be transparent and not be shown in the process
structure. If our middleware supports a distributed process
execution, we will not change LSN structure, but add these
settings as properties of a Node.

Abstract Task Graph (ATaG) [22] provides a sophisti-
cated abstraction of sensor data processing. ATaG expresses
sensor data processing with notion of task, data, and channel,
which is called connection in Titan. Titan and ATaG have
very close abstraction model, but in ATaG, task and channel
have annotation, which can specify detailed behaviors.
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Annotations for task can specify the policy of task execution
timing. Annotations for channel can specify the policy of data
flow and selection of target tasks. ATaG uses a notion of task
network with a more detailed abstraction in eventing and
a communication aspect. The major difference is that ATaG
has an element for data in its taskgraph. ATaG has to express
data element as a part of the taskgraph structure since ATaG’s
assumption of task or process is too abstract that we can
not recognize the output data from the name of the task or
former tasks that are connected to it. On the other hand, the
assumption of a process in LSN, which is called a task for
ATaG, is a mathematical function that is small and general
enough for people to know the output value from the name
of the process. An implementation of process can be reused
for other applications, by keeping it small and general.

7. Conclusion

In this research, we have claimed that the abstraction of sen-
sor data processing proposed in the existing sensor network
virtualization middleware over MDSN is not sufficient. Thus
we have proposed a new abstraction called LSN to meet the
requirements. An actual middleware and framework for sen-
sor network virtualization was implemented and evaluated
as well. Through the evaluation, we have found that despite
of overhead that LSN-Middle requires, sensor data proces-
sing performance was 12.75% faster with LSN-Middle sup-
port in average compared to the result calculated in an appli-
cation running on a smartphone. There are two future works
for this research. One is to implement a graphical author-
ing tool for LSN to support application programmer to write
and test LSN. And the other is to update the middleware for
distributed execution of LSN since its structure is suitable for
parallel processing. This can improve its performance and
scalability.
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