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We consider coarse-graining applied to nonselfintersecting planar centervortex loops as they
emerge in the confining phase of an SU(2) Yang-Mills theory. Well-established properties of
planar curve-shrinking predict that a suitably defined, geometric effective action exhibits (mean-
field) critical behavior when the conformal limit of circular points is reached. This suggests the
existence of an asymptotic mass gap. We demonstrate that the initially sharp mean center-of-mass
position in a given ensemble of curves develops a variance under the flow as is the case for a
position eigenstate in free-particle quantum mechanics under unitary time evolution. A possible
application of these concepts is an approach to high-Tc superconductivity based (a) on the nonlocal
nature of the electron (1 fold selfintersecting center-vortex loop) and (b) on planar curve-shrinking
flow representing the decrease in thermal noise in a cooling cuprate.

1. Introduction

The problem of how a confining ground state emerges in 4D nonabelian Yang-Mills theory
was addressed by ’t Hooft in terms of the definition of an order parameter that is dual
to the Wilson loop [1]. The lattice-gauge-theory measurement as well as analytical model
approaches to the ’t Hooft loop expectation was performed by several authors starting shortly
thereafter [2–7]. The according confinement scenario is a condensation of magnetic center
vortices which induces narrow electric flux lines in between color-electric sources granting
a potential which rises sufficiently rapid with an increasing distance of separation. Due
to the absence of magnetic center monopoles the associated center vortices form closed
flux loops.

Four-dimensional SU(2) Yang-Mills theory occurs in three phases: a deconfining, a
preconfining, and a confining one. While the former two phases possess propagating gauge
fields, a complete decoupling thereof takes place at a Hagedorn transition towards the
confining phase [8–12]. Namely, by the decay of a preconfining ground state, consisting of
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collapsing magnetic (w.r.t. the gauge fields in the defining SU(2) Yang-Mills Lagrangian)
flux lines of finite core-size d, see also [13], into nonselfintersecting or selfintersecting center-
vortex loops [1], the mass mD of the dual gauge field diverges. This, in turn, implies d → 0.
As a consequence, center-vortex loops (CVLs)with nonvanishing selfintersection numberN
become stable solitons in isolation. These solitons are classified according to their topology
and center charge. That is, for d → 0, the region of negative pressure P is confined to
the vanishing vortex core, and the soliton becomes a particle-like (P = 0) excitation whose
stability is in addition assured topologically by its selfintersection(s).

The purpose of our paper is to investigate the sector with N = 0 in some detail.
Topologically, there is no reason for the stability of this sector’s excitations, and we will
argue that on average, and as a consequence of a noisy environment a planar CVL with
N = 0 shrinks to nothingness within a finite “time.” Here the role of “time” is played
by a variable measuring the decrease of externally provided resolving power applied to
the system. By “planar CVL” we mean an embedding of the N = 0 soliton into a 2D
flat and spatial plane. For an isolated SU(2) Yang-Mills theory the role of the environment
is played by the sectors with N > 0. If the SU(2) theory under consideration is part of
a world subject to additional gauge symmetries, then a portion of such an environment
arises from a mixing with these theories. In any case, a planar CVL at finite length L is
acquiring mass by frequent interactions with the environment after it was generated by
a process subject to an inherent, finite resolution Q0. At the same time, the CVL starts
shrinking towards a circular point. The latter becomes unresolvable starting at some finite
resolution Q∗. That is, all properties that are related to the existence of extended lines
of center flux, observable for Q0 ≥ Q > Q∗, do not occur for Q ≤ Q∗, and the CVL
vanishes from the spectrum of confining SU(2) Quantum Yang-Mills theory. Since CVLs
with N > 0 have a finite mass (positive-integer multiples of the Yang-Mills scale Λ), we
“observe” a gap in the mass spectrum of the theory when probing the system with resolution
Q ≤ Q∗.

The reader may object that the restriction of the shrinking dynamics to a 2D plane
does not justify the conclusion about the aforementioned occurrence of a mass gap since
CVLs evolve in 3D. However, according to the work of [14, 15] and for low-energy SU(2)
Yang-Mills theory the assumption of planar, closed, and smooth curves accurately describing
the late-“time” behavior of the evolution of any given center-vortex loop with N = 0
is valid because the CVL becomes planar after a finite “time” under the curve shrinking
equation. Thus, to discuss the approach of the round-point limit (mass-gap property) we
may pick planar initial conditions and consider the subsequent evolution in the plane. The
formation of a singularity (a loop pinching off to form a cusp) is a planar phenomenon
[15] which, however, is excluded to occur in low-energy, that is, weakly resolved SU(2)
Yang-Mills theory because the energy required to form and resolve such a singularity is
not available.

Notice that by embedding an N = 0 CVL of an isolated SU(2) Yang-Mills theory
into a flat 2D surface at mD < ∞, d > 0, a hypothetical observer measuring a positive
(negative) curvature along a given sector of the vortex line experiences more (less)
negative pressure in the intermediate vicinity of this curve sector leading to this sector’s
motion towards (away from) the observer, see Figure 1. The speed of this motion is a
monotonic function of curvature. On average, this shrinks the CVL. Alternatively, one
may globally consider the limit mD → ∞, d → 0, that is, the confining phase of
an SU(2) Yang-Mills theory, but now take into account the effects of an environment
which locally relaxes this limit (by collisions) and thus also induces curve-shrinking. One
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Figure 1: Highly space-resolved snapshot of an N = 0 CVL curve-sector. The pressure Pi in the region
pointed to by the normal vector n is more negative than the pressure Pe, thus leading to a motion of the
sector along n.

possibility to describe this situation is by the following flow equation in the (dimensionless)
parameter τ

∂τx =
1
σ
∂2sx, (1.1)

where s is arc length, x is a point on the planar CVL, and σ is a string tension effectively
expressing the distortions induced by the environment. After rescaling, x̂ ≡ √

σx, ξ =
√
σs,

(1.1) assumes the following form:

∂τ x̂(u, τ) = ∂2ξ x̂ = k(u, τ)n(u, τ), (1.2)

where u is a (dimensionless) curve parameter (dξ = |∂ux̂|du), n the (inward-pointing)
Euclidean unit normal, and k the scalar curvature, defined as

k ≡
∣
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, (1.3)

|v| ≡ √
v · v, and v · w denotes the Euclidean scalar product of the vectors v and w lying in

the plane. In the following, we resort to a slight abuse of notation by using the same symbol
x̂ for the functional dependence on u or ξ.

It is worth mentioning that (1.2) expresses a special case of the local condition that
the rate of decrease of the (dimensionless) curve length L(τ) =

∫L(τ)
0 dξ =

∫2π
0 du |∂ux̂(u, τ)| is

maximal w.r.t. a variation of the direction of the velocity ∂τ x̂ of a given point on the curve at
fixed |∂τ x̂| [16]:

dL(τ)
dτ

= −
∫L(τ)

0
dξ kn · ∂τ x̂. (1.4)

The 1D heat equation (1.2) is well understood mathematically [17, 18]. The evolution of a
particular initial configuration of a planar CVL (τ = 0) into the round-point limit (τ = T) is
depicted in Figure 2.
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Figure 2: Plot of the evolution of a planar CVL under (1.2). The thick central line depicts the graph of the
CVL’s “center of mass.” The flow is started at τ = 0 and ends at τ = T .

The present work interprets the shrinking of closed and 2D flat-embedded (planar)
curves as a Wilsonian renormalization group evolution governed by an effective action,
which is defined purely in geometric terms. In the presence of an environment represented
by the parameter σ, this action possesses a natural decomposition into a conformal and a
nonconformal factor. One of our goals is to show that the transition to the conformal limit
of vanishing mean curve length really is a critical phenomenon characterized by a mean-
field exponent if a suitable parameterization of the effective action is used. To see this,
various initial conditions are chosen to generate an ensemble whose partition function is
invariant under curve shrinking. A (second-order) phase transition is characterized by the
critical behavior of the coefficient associated with the nonconformal factor in the effective
action. That is, in the presence of an environment the (nearly massless) N = 0 sector in
confining SU(2) Yang-Mills dynamics, generated during the Hagedorn transition, practically
disappears after a finite “time” leading to an asymptotic mass gap. We also believe thatN = 0
CVLs play the role of Majorana neutrinos in physics: their disappearance after a finite time
and the absence of antiparticles would be manifestations of lepton-number violation [19–
21] forbidden in the present standard model of particle physics, see [22] for a discussion of
experimental signatures in this context.

In Section 2, we provide information on proven properties of curve-shrinking
evolution. The philosophy underlying the statistics of geometric fluctuations in the N = 0
sector is elucidated in Section 3. In Section 4, we present our results for the renormalization-
group flow of the effective action, give an interpretation, and compute the evolution of a local
quantity. Finally, in Section 5 we summarize our work and give an outlook to theN = 1 case
which we suspect to be relevant to high Tc superconductivity.

2. Prerequisites on Mathematical Results

In this section, we provide knowledge on the properties of the shrinking of embedded
(nonselfintersecting) curves in a plane [17, 18]. It is important to stress that only for curve-
shrinking in a plane are the following results valid. To restrict the motion of a CVL to a plane,
however, is justified when physics close to the round-point limit is considered [14, 15], see
Section 1.

The properties of the τ-evolution of smooth, embedded, and closed curves x̂(u, τ)
subject to (1.2)were investigated in [17] for the purely convex case and in [18] for the general
case. The main result of [18] is that an embedded curve with finitely many points of inflection
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remains embedded and smooth when evolving under (1.2) and that such a curve flows to a
circular point for τ ↗ T , where 0 < T < ∞. That is, asymptotically the curve converges
(w.r.t. the C∞-norm) to a shrinking circle: limτ→ TL(τ) = 0 and limτ→ TA(τ) = 0, A being
the (dimensionless) area enclosed by the curve, such that the isoperimetric ratio L2(τ)/A(τ)
approaches the value 4π from above. For later use, we present the following two identities,
see Lemmas 3.1.2 and 3.1.7 in [17]:

∂τL = −
∫L

0
dξ k2 = −

∫2π

0
du |∂ux̂|k2, (2.1)

∂τA = −2π. (2.2)

Setting A(τ = 0) ≡ A0, the solution to (2.2) is

A(τ)
A0

= 1 − 2πτ
A0

. (2.3)

By virtue of (2.3) the critical value T is related to A0 as

T =
A0

2π
. (2.4)

3. Geometric Partition Function

We now wish to interpret curve-shrinking as a Wilsonian renormalization-group flow taking
place in the N = 0 planar CVL sector. A partition function, defined as a statistical average
(according to a suitably defined weight) over N = 0 CVLs, is to be left invariant under a
decrease of the resolution determined by the flow parameter τ . Notice that, physically, τ
is interpreted as a strictly monotonic decreasing (dimensionless) function of a ratio Q/Q0

where Q (Q0) are mass scales associated with an actual (initial) resolution applied to the
system.

To devise a geometric ansatz for the effective action S = S[x̂(τ)], which is a functional
of the curve x̂ representable in terms of integrals over local densities in ξ (reparametrization
invariance), the following reflection on symmetries is in order. (i) scaling symmetry x̂ →
λx̂, λ ∈ R+: For both, λ → ∞ and λ → 0, implying λL → ∞ and λL → 0 at fixed L, the
action S should be invariant under further finite rescalings (decoupling of the fixed length
scale σ−1/2), (ii) Euclidean point symmetry of the plane (rotations, translations and reflections
about a given axis): Sufficient but not necessary for this is a representation of S in terms of
integrals over scalar densities w.r.t. these symmetries. That is, the action density should be
expressible as a series involving products of Euclidean scalar products of (∂n/∂ξn)x̂, n ∈ N+,
or constancy. However, an exceptional scalar integral over a nonscalar density can be devised.
Consider the area A, calculated as

A =

∣

∣

∣

∣

∣

1
2

∫2π

0
dξ x̂ · n

∣

∣

∣

∣

∣

. (3.1)

The density x̂ · n in (3.1) is not a scalar under translations.
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We now resort to a factorization ansatz as

S = Fc × Fnc, (3.2)

where in addition to Euclidean point symmetry Fc (Fnc) is (is not) invariant under x̂ → λx̂.
In principle, infinitely many operators can be defined to contribute to Fc. Since the evolution
generates circles for τ ↗ T higher derivatives of k w.r.t. ξ rapidly converge to zero [17].
We expect this to be true also for Euclidean scalar products involving higher derivatives
(∂n/∂ξn)x̂. To yield conformally invariant expressions, such integrals need to be multiplied
by powers of

√
A and/or L or the inverse of integrals involving lower derivatives. At this

stage, we are not capable of constraining the expansion in derivatives by additional physical
or mathematical arguments. To be pragmatic, we simply set Fc equal to the isoperimetric
ratio:

Fc(τ) ≡ L(τ)2

A(τ)
. (3.3)

We conceive the nonconformal factor Fnc in S as a formal expansion in inverse powers of L.
Since we regard the renormalization-group evolution of the effective action as induced by the
flow of an ensemble of curves, where the evolution of each member is dictated by (1.2), we
allow for an explicit τ dependence of the coefficient c of the lowest nontrivial power 1/L. In
principle, this sums up the contribution to Fnc of certain higher-power operators which do
not exhibit an explicit τ dependence. Hence, we make the following ansatz

Fnc(τ) = 1 +
c(τ)
L(τ)

. (3.4)

The initial value c(τ = 0) is determined from a physical boundary condition such as the mean
length L at τ = 0 which determines the mean massm of a CVL asm = σL.

For latter use, we investigate the behavior of Fnc(τ) as τ ↗ T for an ensemble
consisting of a single curve only and require the independence of the “partition function”
under changes in τ . Integrating (2.1) in the vicinity of τ = T under the boundary condition
that L(τ = T) = 0, we have

L(τ) =
√
8π

√
T − τ. (3.5)

Since Fc(τ ↗ T) = 4π independence of the “partition function” under the flow in τ implies
that

c(τ) ∝
√
T − τ. (3.6)

That is, Fnc approaches constancy for τ ↗ T which brings us back to the conformal limit by
a finite renormalization of the conformal part

∫

Fc of the action. In this parameterization of
S, c(τ) can thus be regarded as an order parameter for conformal symmetry with mean-field
critical exponent.
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Figure 3: Initial curves contributing to the ensembles EM, see text. Points locate the respective positions of
the centers of mass.

4. Renormalization-Group Flow

4.1. Effective Action

Let us now numerically investigate the effective action S[x̂(τ)] resulting from a partition
function Z w.r.t. a nontrivial ensemble E. The latter is defined as the average

Z =
∑

i

exp(−S[x̂i(τ)]) (4.1)

over the ensemble E = {x̂1, . . .}. Let us denote by EM an ensemble consisting of M curves
where EM is obtained from EM−1 by adding a new curve x̂M(u, τ). In Figure 3, eight initial
curves are depicted which in this way generate the ensembles EM forM = 1, . . . , 8.

We are interested in a situation where all curves in EM shrink to a point at the same
value τ = T . Because of (2.3) and (2.4), we thus demand that at τ = 0 all curves in EM initially
have the same areaA0. The effective action S in (3.2) (when associated with the ensemble EM
we will denote it as SM) is determined by the function cM(τ), compared with (3.4), whose
flow follows from the requirement of τ-independence of ZM:

d

dτ
ZM = 0. (4.2)

This is an implicit, first-order ordinary differential equation for c(τ) which needs to be
supplemented with an initial condition c0,M = cM(τ = 0). A natural initial condition is to
demand that the quantity:

LM(τ = 0) ≡ 1
ZM(τ = 0)

M
∑

i=1

L[x̂i(τ = 0)] exp(−SM[x̂i(τ = 0)]) (4.3)

coincides with the arithmetic mean ˜LM(τ = 0) defined as

˜LM(τ = 0) ≡ 1
M

M
∑

i=1

L[x̂i(τ = 0)]. (4.4)
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Figure 4: The square of the coefficient cM(τ) entering the effective action of (3.2) by virtue of (3.4) for
various ensemble sizes. Notice the early onset of the linear drop of c2M(τ) and the saturation in M for
M ≥ 5. The slope of c2M(τ) near τ = T does not depend on c20,M ≡ c2M(τ = 0) and thus not on the initial

choice of L.

From LM(τ = 0) = ˜LM(τ = 0) a value for c0,M follows. We also have considered a
modified factor Fnc(τ) = 1 + (c(τ)/A(τ)) in (3.2). In this case the choice of initial condition
LM(τ = 0) = ˜LM(τ = 0) leads to Fnc(τ) ≡ 0. While the geometric effective action thus is
profoundly different for such a modification of Fnc(τ) physical results such as the evolution
of the variance of center-of-mass position agree remarkably well, see Section 4.2. That is, the
geometric effective action itself is not a physical object. Rather, going from one ansatz for
SM to another describes a particular way of redistributing the weight in the ensemble which
seems to have no significant impact on the physics. This is in contrast to quantum field theory
and conventional statistical mechanics, where the action in principle is related to the physical
properties of a given member of the ensemble.

For the curves depicted in Figure 3, we make the convention that A0 ≡ 2π × 100. It
then follows that T = 100 by (2.4). The dependence c2M(τ) is plotted in Figure 4. According
to Figure 4, it seems that the larger the ensemble the closer c2M(τ) to the evolution of a single
circle of initial radius R =

√

A0/π . That is, for growingM the function c2M(τ) approaches the
form:

c2as,M(τ) = kM(T − τ), (4.5)

where the slope kM depends on the strength of deviation from circles of the representatives
in the ensemble EM at τ = 0, that is, on the variance ΔLM at a given value A0. Physically
speaking, the value τ = 0 is associated with a certain initial resolution of themeasuring devise
(the strictly monotonic function τ(Q),Q being a physical scale such as energy or momentum
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transfer, expresses the characteristics of themeasuring device and themeasuring process), the
value of A0 describes the strength of noise associated with the environment (A0 determines
how fast the conformal limit of circular points is reached), and the values of c0,M and kM, see
(4.5), are associatedwith the conditions at which the to-be-coarse-grained system is prepared.
Notice that this interpretation is valid for the action SM = (L(τ)2/A(τ))(1+cM(τ)/L(τ)) only.

4.2. Statistical Uncertainty of Center of Mass Position

We are now in a position to compute the flow of a more local “observable,” namely, the mean
“center-of-mass” (COM) position in a given ensemble and the statistical variance of the COM
position. The COM position x̂COM of a given curve x̂(ξ, τ) is defined as

x̂COM(τ) =
1

L(τ)

∫L(τ)

0
dξx̂(ξ, τ). (4.6)

We will below present only results on the statistical variance of the COM position.
Let as assume that at τ = 0, the ensembles EM are modified such that a translation

is applied to each representative letting its COM position coincide with the origin. Recall
that such a modification EM → E′

M does not alter the (effective) action (Euclidean point
symmetry). That is, at τ = 0 the statistical variance in the position of the COM is prepared
to be nil, physically corresponding to an infinite resolution applied to the system by the
measuring device.

The mean COM position x̂COM over ensemble E′
M is defined as

x̂COM(τ) ≡ 1
ZM

M
∑

i=1

x̂COM,i(τ) exp(−SM[x̂i(τ)]). (4.7)

The scalar statistical deviation ΔM,COM of x̂COM over the ensemble E′
M is defined as

ΔM,COM(τ) ≡
√

varM,COM;x(τ) + varM,COM;y(τ), (4.8)

where

varM,COM;x ≡ 1
ZM

M
∑

i=1

(xCOM,i(τ) − xCOM(τ))2 exp(−SM[x̂i(τ)])

= −x2
COM(τ) +

1
ZM

M
∑

i=1

x2
COM,i(τ) exp(−SM[x̂i(τ)]),

(4.9)

and similarly for the coordinate y. In Figure 5, plots of ΔM,COM(τ) are shown when
ΔM,COM(τ) is evaluated over the ensembles E′

3, . . . , E
′
8 with the action:

SM =
L(τ)2

A(τ)

(

1 +
cM(τ)
L(τ)

)

, (4.10)
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Figure 5: (a) plots of ΔM,COM(τ) forM = 3, . . . , 8 when evaluated with the action SM = (L(τ)2/A(τ))(1 +
(cM(τ)/L(τ))). Notice the rapid generation of an uncertainty in the COM position under the flow and its
saturation when approaching the conformal limit τ ↗ T . There is also a saturation of this limiting value
with a growing ensemble size. (b) plots of ΔM,COM(τ) for M = 3, . . . , 8 when evaluated with the action
SM = (L(τ)2/A(τ))(1 + cM(τ)/A(τ)). Notice the qualitative agreement with the results displayed in (a).
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and subject to the initial condition LM(τ = 0) = ˜LM(τ = 0). In Figure 5(b) the according plots
of ΔM,COM(τ) are depicted as obtained with the action

SM =
L(τ)2

A(τ)

(

1 +
cM(τ)
A(τ)

)

, (4.11)

and subject to the initial condition LM(τ = 0) = ˜LM(τ = 0). In this case, one has cM(τ) =
−A(τ) leading to equal weights for each curve in E′

M.

4.3. Quantum Mechanical versus Statistical Uncertainty

In view of the results obtained in Section 4.2, we would say that an ensemble of evolving
planar CVLs in the N = 0 sector qualitatively resembles the quantum mechanics of a
free-point particle (it is of no relevance at this point whether this particle carries spin or
not) of mass m in 1D. Namely, an initially localized square of the wave function ψ with
|ψ(τ = 0, x)|2 ∝ exp[−(x2/a20)], where Δx(τ = 0) = a0, according to unitary time evolution
in quantum mechanics evolves as |ψ(τ, x)|2 = | exp[−i(Hτ/�)]ψ(τ = 0, x)|2 ∝ exp[−((x −
(p/m)τ)2/a2(τ))], where H = p2/2m is the free-particle Hamiltonian, p is the spatial

momentum, and a(τ) ≡ a0

√

1 + (�τ/ma20)
2. In agreement with Heisenberg’s uncertainty

relation one has during the process thatΔxΔp = (�/2)
√

1 + (τ�/ma20)
2 ≥ �/2. Time evolution

in quantum mechanics and the process of coarse-graining in a statistical system describing
planar CVLs share the property that in both systems the evolution generates out of a small
initial position uncertainty (corresponding to a large initial resolution Δp) a larger position
uncertainty in the course of the evolution. Possibly, future development will show that
interference effects in quantum mechanics can be traced back to the nonlocal nature of the
degrees of freedom (CVLs) entering a statistical partition function.

5. Summary, Conclusions, and Outlook

5.1. Summary of Present Work

In this exploratory paper an attempt has been undertaken to interpret the effects of an
environment on 2D planar center-vortex loops, as they emerge in the confining phase of
an SU(2) Yang-Mills theory, in terms of a Wilsonian renormalization-group flow carried by
purely geometric entities. Our (mainly numerical) analysis uses established mathematics on
the shrinking of embedded curves in the plane. In the case of nonintersecting CVLs (N = 0)
the role of the environment is played by the entirety of all sectors with N > 0 and, possibly,
an explicit environment. In a particular parametrization of the effective action we observe
critical behavior as the limit of circular points is approached during the evolution. That is,
planar N = 0 CVLs on average disappear from the spectrum for resolving powers smaller
than a critical, finite value. Using this formalism to compute the evolution of the mean
values of local observables, such as the center-of-mass position, a behavior is generated that
qualitatively resembles the associated unitary evolution in quantummechanics. We also have
found evidence that this situation is practically not altered when changing the ansatz for the
effective action.
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Figure 6: An isolated CVL withN = 1, which when associated with the confining phase of an SU(2) Yang-
Mills theory of scale Λ ∼ me = 511 keV, is interpreted as an electron or positron. The arrows depict one out
of two possible directions of center flux responsible for the magnetic moment (spin), the intersection point
is the location of mass and electric charge.

5.2. Outlook on Strongly Correlated Electrons in a Plane

Let us conclude this article with a somewhat speculative outlook on planar N = 1 CVLs.
Setting the Yang-Mills scale (mass of the intersection in the CVL) of the associated SU(2)
theory equal to the electron mass, this soliton is interpreted as an electron or positron, see
[8, 9, 23, 24] for amore detailed discussion on the viability of such an assignment and Figure 6
for a display. Important for our purpose are the facts that the two-fold directional degeneracy
of the center flux represents the two-fold degeneracy of the spin projection and that a large
class of curve deformations (shifts of the intersection point) leaves the mass of the soliton
invariant in the free case.

It is a remarkable fact that a high level of mathematical understanding exists for the
behavior of curve-shrinking in a 2D plane [17, 18] even in the case of one selfintersection [25].
Incidentally, 2D quantum systems exist in nature which exhibit unconventional behavior.
Specifically, the phenomenon of high Tc superconductivity appears to be strongly related
to the two-dimensionality of electron dynamics as it is enabled by rare-earth doping of
cuprate materials [26]. Apparently, the Coulomb repulsion between the electrons moving
in the would-be valence band within the cuprate planes of high Tc superconductors (Mott
insulators) is effectively screened by the interplane environment also providing for the very
existence of these electrons by doping. The question then is how the long-range order of
electronic spins, which at given (optimal) doping and at a sufficiently low temperature leads
to superconductivity, emerges within the cuprate planes. As it seems, quantum Monte Carlo
simulations of a transformed Hubbard model (t-J model) subject to Gutzwiller projection
yield quantitative explanations of a number of experimental results related to the existence of
the pseudogap phase (Nernst effect, nonlinear diamagnetic susceptibility), see [27, 28] and
references therein.

We would here like to offer a sketch of an alternative approach to high Tc
superconductivity being well aware of our ignorance on the details of present-day research
in this field. The key idea is already encoded in Figure 6. Namely, according to confining
SU(2) Yang-Mills theory the electron is a nonlocal object with the physics of its charge
localization being only loosely related to the physics of its magnetic moment (spin): the
magnetic moment, carried by the core of the flux line, microscopically manifested by
(oppositely) moving (opposite) electric charges, receives contributions from vortex sectors
that are spatially far separated (on the scale of the diameter of the intersection point) from the
location of the isolated electric charge. This suggests that in certain physical circumstances,
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Figure 7: An array of strongly correlated electrons in the plane possibly representing the superconducting
state in a cuprate. The equally directed center flux in adjacent vortex sections provides for an attractive
force (Ampere’s law) at intermediate distances. For a given electron, out of six neighboring vortex sectors
there are four sectors with attraction and two sectors with repulsion. At short distance, there is repulsion
since an overlap of CVL sections, leading to new intersection points each of mass ∼ me, is topologically
forbidden. Thus there is a typical equilibrium configuration contributing to long-range order in the 2D
system. If the externally provided resolution (temperature) falls below a critical value, then statistical
fluctuations of the position of an intersection point relative to another one (the location of the electronic
charge) will vanish. That is, electrons no longer can disperse energy provided by the heat bath (phonons;
spin fluctuations) and thus provide a 2D material free of electric resistivity.

where the ordering effect of interacting vortex lines becomes important, the postulate of a
spinning point particle fails to describe reality.

Concerning the strong correlations in 2D electron dynamics responsible for high Tc
superconductivity, we imagine a situation as depicted in Figure 7. Each electron’s spin in
the plane interacts with the spin of its neighbors as follows. Equally directed electric fluxes
(dually interpreted center fluxes of SU(2)e) attract one another, and there is attraction for
four out of six vortex sectors defined by the neighboring electrons (Ampere’s law), while two
vortex sectors experience repulsion (that the electric charges of confining SU(2)e are seen by
the photon is a consequence of the mixing between the corresponding two gauge groups:
SU(2)e and SU(2)CMB [8, 9, 24]). Notice that for a given electron two of the adjacent electrons
exhibit equal spin projection, while four of the adjacent electrons have opposite spins. This is
in agreement with the observation that high Tc superconductivity is an effect not related to
s-wave Cooper-pair condensation.

An overlap of vortex sectors, hypothetically leading to the creation of extra intersection
points, is topologically forbidden. That is, the fluctuations in the energy density of the system
are far too weak to create an intersection point of massme = 511 keV. Therefore, at very small
spatial separation repulsion must occur between adjacent vortex sectors. At a sufficiently low
temperature and an optimal screening of Coulomb repulsion by the interplane environment
(doping), this would lead to a typical equilibrium configuration as depicted in Figure 7
where the intersection points (electronic charge) do not move relative to one another. A local
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demolition of this highly ordered state would cost a finite amount of energy manifested in
terms of the (gigantic) gaps measured experimentally in the cuprate systems. Applying an
electric field vector with a component parallel to the plane would set into resistivity-free
motion the thus locked electrons. For amacroscopic analogue, imagine a stiff table cloth being
pulled over the table’s surface in a friction-free fashion. The occurrence of the pseudogap
phase would possibly be explained by local defects in the fabric of Figure 7 due to insufficient
Coulomb screening and/or too large thermal noise (macroscopic vorticity; liquid of point-like
defects in 2D).
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