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We revisit the problem of optimal power extraction in four-step cycles (two adiabatic and two heat-transfer branches) when the
finite-rate heat transfer obeys a linear law and the heat reservoirs have finite heat capacities. The heat-transfer branch follows a
polytropic process in which the heat capacity of the working fluid stays constant. For the case of ideal gas as working fluid and
a given switching time, it is shown that maximum work is obtained at Curzon-Ahlborn efficiency. Our expressions clearly show
the dependence on the relative magnitudes of heat capacities of the fluid and the reservoirs. Many previous formulae, including
infinite reservoirs, infinite-time cycles, and Carnot-like and non-Carnot-like cycles, are recovered as special cases of our model.

1. Introduction

Curzon-Ahlborn efficiency, ηCA = 1 − √
T2/T1, where T1

and T2 are the reservoir temperatures [1], is regarded as a
landmark result of finite-time thermodynamics. It models
the effect of irreversibilities due to finite rate of heat transfer
on the performance of heat engines. Such models are termed
as endoreversible. The flow of heat between the working
fluid and the reservoirs is assumed to be Newtonian. All
the components maintain an internal equilibrium and losses
due to friction, and heat leak are assumed to be negligible.
Many authors [2–10] extended and clarified the scope of this
model. In fact, various other models of heat engines also
yield maximum power output at efficiencies very close to CA
efficiency [11–15]. This universal-like behaviour of efficiency
has been recently analysed using Bayesian probabilities in the
case of quantum models of engines [16].

In this paper, we revisit the problem of optimal per-
formance with “linear” irreversibilities of finite time and
finite heat reservoirs in classical models of engines. This
question was addressed in [7] using a Lagrangian formalism,
for a one-component working fluid without assuming an
equation of state. However, the generic problem with finite

reservoirs could not be solved in a closed form. Then Gordon
[8] used an ancillary device of intermediate reservoirs to
arrive at a closed form solution. In particular, it was shown
[8] that for Carnot-like engines, finiteness of reservoirs has
no effect on the efficiency at maximum power, and it is still
at Curzon-Ahlborn efficiency. The case of other non-Carnot
heat engines (such as Otto cycle, Joule-Brayton cycle, and
Atkinson cycle) was discussed by using an infinite chain of
Carnot cycles.

The present analysis of the problem is based on the
following features: (a) the working fluid is a classical ideal
gas; (b) the total cycle time as well as switching time is given.
We consider a generic four-step cycle with two adiabatic
and two heat-transfer branches, which follow a polytropic
process with a constant heat capacity C > 0. The process
is described by the relation TVx = k. Here, T is the
temperature of the working fluid, V is the volume of the
working fluid, and k is an arbitrary constant. Consequently,
many popular heat engines like Carnot cycle (x = 0), Otto
cycle (x → ∞), and Joule-Brayton (x = −1) can be
incorporated in this study.

Our key results may be listed as follows. For ideal gas as
the working fluid and the generic four-step cycle (including
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Carnot and non-Carnot heat cycles), the power of the engine
is maximum at CA efficiency, even for finite reservoirs.
Many special cases like infinite time and infinite reservoirs
[11], finite time and infinite reservoirs with isothermal
branches [1] or polytropic branches can be described. We
note that closed form expressions for work can be derived
without invoking a device like an intermediate reservoir [8].
Further, the heat capacities of the working fluid and the
(finite) reservoirs enter explicitly in the expressions, and
their relative sizes appear as the respective ratios of heat
capacities. Also, the explicit expressions of work for these
special cases clearly show that the irreversibilities of finite
time and/or finite reservoirs reduce the maximum amount
of work extracted as compared with infinite time and infinite
reservoirs cases.

2. The Model

2.1. Temperature Profiles. First of all, we calculate how the
temperatures of the two bodies change, when kept in contact
with one another for some time. The heat transfer between
the bodies is Newtonian, and during heat transfer, their heat
capacities remain constant.

Let the two bodies denoted as A and B have heat
capacities, CA and CB, respectively. The bodies are kept in
thermal contact with one another from time, t = 0 to
t = t1. The temperatures of the two bodies at any time t
are TA(t) and TB(t), respectively, and the coefficient of heat
conductivity is K .

At time t, the heat flow between bodies A and B should
be equal to heat gained (lost) by one or heat lost (gained) by
the other. Therefore,

K[TA(t)− TB(t)]dt = −CAdTA(t) = CBdTB(t). (1)

Solving the above equations, temperature profiles of the two
bodies at time t are calculated as

TA(t) = TA(0) +
γ1

γ

(
1− e−γt

)
, (2)

TB(t) = TB(0) +
γ2

γ

(
1− e−γt

)
, (3)

where

γ = K
(

1
CA

+
1
CB

)
, (4)

γ1 = −K
CA

(TA(0)− TB(0)), (5)

γ2 = K

CB
(TA(0)− TB(0)). (6)

2.2. The Cycle. We have two finite heat reservoirs at initial
temperatures T1(0) and T2(0) and heat capacities are C1 and
C2, respectively. A working fluid is chosen to extract work
from the reservoirs. The time period for one working cycle is
t2. One working cycle consists of the following steps.

(i) Working fluid is brought in contact with the hot
reservoir from time t = 0 to t1. The fluid expands

along a path with heat capacity C. Consequently,
temperature of the hot reservoir reduces from T1(0)
to T1(t1), and that of the working fluid rises from
T(0) to T−(t1).

(ii) The fluid is allowed to expand adiabatically. This step
is assumed to be instantaneous and takes negligible
time. As a result, the temperature of the working
fluids jumps from T−(t1) to T+(t1).

(iii) The fluid is brought in contact with the cold reservoir
from time t1 to t2. The fluid contracts along a path
with heat capacity C. Consequently, temperature of
the cold reservoir rises from T2(t1) to T2(t2) and that
of the working fluid reduces from T+(t1) to T−(t2).

(iv) Working fluid is allowed to contract adiabatically.
This step is also assumed to take negligible time. As
a result, the temperature of the working fluids jumps
from T−(t2) to T(0), completing the cycle.

Using (2)–(6), the temperature profiles of the reservoirs
and the working fluid in different steps can be described as
follows:

(i) 0 < t < t1:

T1(t) = T1(0) +
λ1

λ

(
1− e−λt

)
,

T(t) = T(0) +
λ2

λ

(
1− e−λt

)
,

(7)

where

λ = K1

(
1
C1

+
1
C

)
,

λ1 = −K1

C1
[T1(0)− T(0)],

λ2 = K1

C
[T1(0)− T(0)].

(8)

(ii) t = t1:

lim
t−→t−1

T(t) = T(0) +
λ2

λ

(
1− e−λt

)
= T−(t1), (9)

lim
t−→t+

1

T(t) = T+(t1), T+(t1) < T−(t1). (10)

(iii) t1 < t < t2:

T(t) = T+(t1) +
β1

β

(
1− e−β(t−t1)

)
,

T2(t) = T2(t1) +
β2

β

(
1− e−β(t−t1)

)
.

(11)

Since T2(t1) = T2(0), this implies

T2(t) = T2(0) +
β1

β

(
1− e−β(t−t1)

)
, (12)
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Figure 1: Heat cycle of the working fluid.

where

β = K2

(
1
C2

+
1
C

)
,

β1 = −K2

C
(T+(t1)− T2(t1)),

β2 = K2

C2
(T+(t1)− T2(t1)).

(13)

(iv) t = t2:

lim
t−→t−2

T(t) = T+(t1) +
β1

β

(
1− e−β(t−t1)

)
= T−(t2), (14)

lim
t−→t+

2

T(t) = T(0). (15)

The complete cycle is depicted in Figure 1.
We will now use the above temperatures to evaluate the

work performed by the engine. Due to the cyclic process,
the first law of thermodynamics implies that the net heat
exchanged by the working fluid during the cycle equals the
work performed. Thus

W =
∫ T−(t1)

T(0)
CdT +

∫ T−(t2)

T+(t1)
CdT. (16)

Since specific heat is not a function of temperature,

W = C[T−(t1)− T(0)] + C[T−(t2)− T+(t1)]. (17)

Using (9), (10), and (14), we obtain

W = C
λ2

λ

(
1− eλt1

)
+ C

β1

β

(
1− e−β(t2−t1)

)
. (18)

Substituting values for λ, λ2, β and β1 from (8) and (13), we
have

W = CC1

C + C1
[T1(0)− T(0)]

(
1− e−K1((1/C1)+(1/C))t1

)

− CC2

C + C2
[T+(t1)− T2(0)]

(
1− e−K2((1/C2)+(1/C))(t2−t1)

)
.

(19)

Heat absorbed from the hot reservoir (Q1) is given by

Q1 =
∫ T−(t1)

T(0)
CdT = CC1

C + C1
[T1(0)− T(0)]

×
(

1− e−K1((1/C1)+(1/C))t1
)
.

(20)

There is no change in the entropy of the working fluid after
one cycle. Since the change in the entropy of the working
fluid occurs only in the nonadiabatic branches ((i) and (iii)),

∮

dS = C
∫ T−(t1)

T(0)

dT

T
+ C

∫ T−(t2)

T+(t1)

dT

T
= 0, (21)

which yields

T+(t1) = T−(t1)T−(t2)
T(0)

. (22)

Here, it should be noticed that no heat leakage or entropy
production is considered in this model.
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3. Case I: Finite Time Studies with
Infinite Reservoirs

In this section, we will first optimize the work per cycle over
the initial temperature T(0) of the working fluid and then
with respect to the switching time t1.

Under the infinite reservoirs condition (C1 → ∞, C2 →
∞), the temperatures of hot and the cold reservoirs remain
fixed at values T1(0) and T2(0), respectively. Using (9), (14),
and (22) and substituting λ = K1/C and β = K2/C, we can
calculate temperature of working fluid after the adiabatic step
as

T+(t1) =
[
T2(0)

(
1− e−(K2/C)(t2−t1)

)

×
(
T1(0) + T(0)e−(K1/C)t1 − T1(0)e−(K1/C)t1

)]

×
[
T(0)− T1(0)e−(K2/C)(t2−t1)

+ (T1(0)− T(0))e−(K1/C)t1−(K2/C)(t2−t1)
]−1

.

(23)

Substituting the above expression forT+(t1) in (19), the work
obtained is given by

W = C(T1(0)− T(0))
(

1− e−(K1/C)t1
)

×
⎡

⎣1−
T2(0)

(
1− e−(K2/C)(t2−t1)

)

α

⎤

⎦,
(24)

where for convenience, we have defined

α = T(0)− T1(0)e−(K2/C)(t2−t1)

+ (T1(0)− T(0))e−(K1/C)t1−(K2/C)(t2−t1).
(25)

On using (20) with the infinite reservoir condition, and (24),
the efficiency of the heat engine (η =W/Q1) is given by

η = 1−
T2(0)

(
1− e−(K2/C)(t2−t1)

)

α
. (26)

Now we will optimize the work per cycle with respect to
initial temperature of the working medium, for a fixed
switching time, and later, optimise with respect to the
switching time also

(
∂W

∂T(0)

)

t1

= 0. (27)

Solving the above equation, we observe that at maximum
work,

α =
(

1− e−(K2/C)(t2−t1)
)√

T1(0)T2(0). (28)

T(0) =
[√

T1(0)T2(0)
(

1− e−(K2/C)(t2−t1)
)

+ T1(0)e−(K2/C)(t2−t1)
(

1− e−(K1/C)t1
)]

×
[

1− e−(K1/C)t1−(K2/C)(t2−t1)
]−1

.

(29)

Substituting the optimum values of α and T(0) in (24), we
obtain

Wopt = C
(√

T1(0)−
√
T2(0)

)2

×
(

1− e−(K1/C)t1
)(

1− e−(K2/C)(t2−t1)
)

1− e−(K1/C)t1−(K2/C)(t2−t1)
.

(30)

Using (26) and (28), the efficiency at optimum work is
found to be

η = 1−
√

T2(0)
T1(0)

≡ ηCA. (31)

Note that the efficiency is independent of the switching time
t1.

We can further maximize the work with respect to the
switching time:

∂Wopt

∂t1
= 0. (32)

Solving the above equation, we get

K1e
−(K1/C)t1

(
1− e−(K2/C)(t2−t1)

)2 = K2e
−(K2/C)(t2−t1)

×
(

1− e−(K1/C)t1
)2
.

(33)

Though we have not obtained an explicit formula for t1, (33)
can be solved numerically to get the optimum t1.

3.1. The Isothermal Limit: C → ∞. When we take the
nonadiabatic paths to be isothermal, that is, C → ∞, we
obtain the following results for the maximum work:

T(0) = κ
√
T1(0), (34)

T+(t1) = κ
√
T2(0), (35)

κ =
√
K1T1(0) +

√
K2T2(0)

√
K1 +

√
K2

. (36)

The temperature of the working fluid is equal to that given by
(34) from time, t = 0 to t = t1 and to that given by (35) from
time t = t1 to t = t2. Further, with the isothermal condition
(C → ∞), we can simplify (33) to calculate the optimum
switching time explicitly as

t1 = t2
1 +

√
K1/K2

. (37)

Using this switching time and the isothermal condition, the
maximum work that can be extracted from the heat engine is
calculated to be

Wmax = K1K2t2

[√
T1(0)− √T2(0)
√
K1 +

√
K2

]2

. (38)

The above results are exactly those obtained for an endore-
versible cycle [1]. We observe that in the isothermal limit, our
heat engine becomes identical to the Curzon-Ahlborn cycle.
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4. Case II: Finite Time Studies with
Finite Reservoirs

In this section, we carry out the optimisation of work under
the constraints of both finite reservoirs and finite cycle time.
Solving similarly as in Section 3, the work becomes optimal
when the initial temperature of the fluid is given by

T(0) =
[√

T2(0)T1(0)(C + C1)
(

1− e−β(t2−t1)
)

+ C1T1(0)e−β(t2−t1)
(

1− e−λt1
)]

×
[
C
(

1− e−λt1
)

+ C1

(
1− e−λt1−β(t2−t1)

)]−1
.

(39)

The optimal work is explicitly given as

Wopt =
[

CC1C2

(√
T1(0)−

√
T2(0)

)2

×
(

1− e−λt1
)(

1− e−β(t2−t1)
)]

×
[
CC1

(
1− e−λt1

)
+ CC2

(
1− e−β(t2−t1)

)

+ C1C2

(
1− e−λt1−β(t2−t1)

)]−1
.

(40)

The impact of finiteness of time can be seen on the work
obtained, in Figure 2. It is shown that when time is large
enough, the maximum work obtained is approximately
equal to that in infinite time case (43). The efficiency at
optimal work is again found to be CA value. To the best of
our knowledge, only for Carnot-like cycles with isothermal
branches (C → ∞) [8], it has been shown that finiteness
of the reservoirs does not affect the efficiency at maximum
power. Here, we have seen that the generic heat cycle with two
adiabatic and two polytropic branches obtains maximum
power at the CA efficiency. This efficiency is still unaffected
by the switching time, even with the finite reservoirs.

We may further maximize the work with respect to the
switching time:

∂Wopt

∂t1
= 0. (41)

The optimal switching time is the solution to the following
equation:

λe−λt1
(

1− e−β(t2−t1)
)2 = βe−β(t2−t1)

(
1− e−λt1

)2
, (42)

where λ and β are given by (8) and (13). The impact
of finiteness of reservoirs on the optimal switching time
can be seen in Figure 3. The optimal switching time with
infinite reservoirs (but finite C for working fluid) for the
parameters in Figure 3 is approximately 0.792, whereas the
corresponding Curzon-Ahlborn expression, (37) (infinite
reservoirs and infinite C working fluid), will yield about
0.828. In short, from numerical results we observe that
optimal switching time varies significantly from the above
limiting values if the reservoirs and working fluid are finite.
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4.1. Infinite Time Limit. Further, if in (33), we keep the
constraints of finite reservoirs, but let the nonadiabatic
branches proceed very slowly (t1 → ∞ and (t2 − t1) → ∞),
we get the following expression for the maximum possible
work that can be extracted from the heat engine:

Ŵopt =
C
(√

T1(0)− √T2(0)
)2

(1 + (C/C1) + (C/C2))
. (43)
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The factor 1/(1 + (C/C1) + (C/C2)) accounts for finiteness of
the reservoirs but with an infinite cycle time. In the limit of
both infinite reservoirs as well as infinitely slow cycles, the
above expression for the maximum work goes back to the
one derived by Leff [11] (particularly Otto cycle and Joule-
Brayton cycle),

Ŵopt = C
(√

T1(0)−
√
T2(0)

)2

, (44)

where C is the heat capacity of the working fluid.

5. Summary

In this paper, the maximum power point characteristics of
a generalized four-step heat engine are studied. The heat
cycle has two adiabatic steps and in the remaining two
steps the working fluid follows a polytropic process with a
constant heat capacity. It is observed that some common heat
cycles such as Otto cycle, Joule-Brayton cycle, and Carnot
cycle can be incorporated as special cases of this model.
Curzon and Ahlborn in their seminal paper derived the
expression for efficiency at maximum power for a Carnot-
like engine with infinite reservoirs. Later, Gordon proved
that even with finite reservoirs, Carnot-like engines show
this efficiency at maximum power. Here we have analysed
this result for the generalised heat cycle and shown that CA
efficiency is obtained by optimizing the initial temperature
of the working fluid and is independent of the switching
time. However, we can further maximize this work over the
switching time. Finally, the effect of finiteness of cycle time
alone, the finiteness of the reservoirs alone, and the finiteness
of both the cycle time and the reservoirs together on the
maximum work per cycle can be respectively attributed to
the following factors:

(
1− e−(K1/C)t1

)(
1− e−(K2/C)(t2−t1)

)

1− e−(K1/C)t1−(K2/C)(t2−t1)
, (45)

1
(1 + (C/C1) + (C/C2))

, (46)

C1C2

(
1− e−λt1

)(
1− e−β(t2−t1)

)

CC1(1−e−λt1 )+CC2
(
1−e−β(t2−t1)

)
+C1C2

(
1− e−λt1−β(t2−t1)

) .

(47)

It can be easily shown (see the appendix) that all these
factors are less than unity, and thus, the irreversibilities due
to the finiteness of time and/or the reservoirs actually reduce
the maximum work that can be performed by these model
engines, over the infinite-time and infinite-reservoir models.

Appendix

A. Time- and Reservoir-Irreversibility Factors
Are Less Than Unity

A.1. Finite Cycle-Time Irreversibility. The factor in (45)
is attributed to the finite cycle-time irreversibility. Let

e−(K1/C)t1 = a and e−(K2/C)(t2−t1) = b. Since K1, K2, C, t1,
(t2 − t1) are all greater than zero, we have 0 < a < 1 and
0 < b < 1. It follows that ab < b and ab < a. Adding the last
two inequalities, we get 2ab < a + b, which may be rewritten
as (1− a− b + ab) < 1− ab. So finally, we get

(1− a)(1− b)
1− ab

< 1. (A.1)

Thus we see that the finite cycle-time irreversibility factor is
less than one.

A.2. Finite-Reservoir Irreversibility. Since C, C1, C2 are all
greater than zero, we have

1
(1 + (C/C1) + (C/C2))

< 1. (A.2)

A.3. Finite-Time and Finite-Reservoir Irreversibility. Using
similar procedure as to time irreversibility, we can show that

C1C2

(
1− e−λt1

)(
1− e−β(t2−t1)

)

C1C2
(
1− e−λt1−β(t2−t1)

) < 1. (A.3)

Since, C1, C2, C, λ, β, t1, (t2 − t1) > 0, therefore, (1 −
e−λt1 ) > 0 and (1 − e−β(t2−t1)) > 0. So, adding (CC1(1 −
e−λt1 ) + CC2(1 − e−β(t2−t1))) to the denominator of left hand
expression in (A.3) will reduce the expression further and
retain the inequality. Thus we conclude

C1C2

(
1− e−λt1

)(
1− e−β(t2−t1)

)

CC1(1− e−λt1 )+CC2
(
1− e−β(t2−t1)

)
+C1C2

(
1− e−λt1−β(t2−t1)

)

< 1.
(A.4)

Acknowledgments

This work was initiated during the summer program at
IISER Mohali. A. Khanna expresses his gratitude towards
IISER Mohali, for hospitality and financial support. R. S.
Johal acknowledges financial support from the Department
of Science and Technology, India, under the Research Project
no. SR/S2/CMP-0047/2010(G).

References

[1] F. L. Curzon and B. Ahlborn, “Efficiency of a Carnot engine at
maximum power output,” American Journal of Physics, vol. 43,
no. 1, p. 22, 1975.

[2] D. Gutkowicz-Krusin, I. Procaccia, and J. Ross, “On the
efficiency of rate processes. Power and efficiency of heat
engines,” The Journal of Chemical Physics, vol. 69, no. 9, pp.
3898–3906, 1978.

[3] M. H. Rubin, “Optimal configuration of a class of irreversible
heat engines. I,” Physical Review A, vol. 19, no. 3, pp. 1272–
1276, 1979.

[4] M. H. Rubin, “Optimal configuration of a class of irreversible
heat engines. II,” Physical Review A, vol. 19, no. 3, pp. 1277–
1289, 1979.



Journal of Thermodynamics 7

[5] M. J. Ondrechen, B. Andressen, M. Mozurkewich, and R. S.
Berry, “Maximum work from a finite reservoir by sequential
Carnot cycles,” American Journal of Physics, vol. 49, p. 681,
1981.

[6] P. Salamon, Y. B. Band, and O. Kafri, “Maximum power from
a cycling working fluid,” Journal of Applied Physics, vol. 53, no.
1, pp. 197–202, 1982.

[7] M. J. Ondrechen, M. H. Rubin, and Y. B. Band, “The
generalized Carnot cycle: a working fluid operating in finite
time between finite heat sources and sinks,” The Journal of
Chemical Physics, vol. 78, no. 7, pp. 4721–4727, 1983.

[8] J. M. Gordon, “Maximum power point characterstics of heat
engines as a general thermodynamic problem,” American
Journal of Physics, vol. 57, p. 1136, 1989.

[9] L. Chen, F. Sun, and C. Wu, “Effect of heat transfer law on
the performance of a generalized irreversible Carnot engine,”
Journal of Physics D, vol. 32, no. 2, pp. 99–105, 1999.

[10] L. Chen, S. Zhou, F. Sun, and C. Wu, “Optimal configuration
and performance of heat engines with heat leak and finite heat
capacity,” Open Systems and Information Dynamics, vol. 9, no.
1, pp. 85–96, 2002.

[11] H. S. Leff, “Thermal Efficiency at maximum work output: new
results for old heat engines,” American Journal of Physics, vol.
55, p. 602, 1987.

[12] C. Van den Broeck, “Thermodynamic efficiency at maximum
power,” Physical Review Letters, vol. 95, Article ID 190602,
2005.

[13] Z. C. Tu, “Efficiency at maximum power of Feynman’s ratchet
as a heat engine,” Journal of Physics A, vol. 41, Article ID
312003, 2008.

[14] M. Esposito, K. Lindenberg, and C. Van den Broeck, “Ther-
moelectric efficiency at maximum power in a quantum dot,”
Physical Review Letters, vol. 102, Article ID 130602, 2009.

[15] Y. Zhou and D. Segal, “Minimal model of a heat engine:
information theory approach,” Physical Review E, vol. 82,
Article ID 011120, 2010.

[16] R. S. Johal, “Universal Efficiency at optimal work with
Bayesian statistics,” Physical Review E, vol. 82, Article ID
061113, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


