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Ewing’s sarcoma tumors are associated with chromosomal translocation between the EWS gene and the ETS transcription factor
gene. These unique target sequences provide opportunity for RNA interference(i)-based therapy. A summary of RNAi mechanism
and therapeutically designed products including siRNA, shRNA and bi-shRNA are described. Comparison is made between each
of these approaches. Systemic RNAi-based therapy, however, requires protected delivery to the Ewing’s sarcoma tumor site for
activity. Delivery systems which have been most effective in preclinical and clinical testing are reviewed, followed by preclinical
assessment of various silencing strategies with demonstration of effectiveness to EWS/FLI-1 target sequences. It is concluded that
RNAi-based therapeutics may have testable and achievable activity in management of Ewing’s sarcoma.

1. Introduction

The Ewing’s sarcoma family of tumors (ESFT) are a group
of solid bone malignancies most commonly occurring in
children and young adults [1]. About 15–25% of Ewing’s
sarcoma (ES) patients will present with metastasis at diagno-
sis; however, those without detectable metastases frequently
relapse after surgical resection due to the presence of
micrometastases. Patients who present with metastases at
diagnosis have a five-year survival rate of 25% [2]. Though
multimodality treatment has improved survival in patients
with localized disease, patients with metastatic or recurrent
tumors have only limited benefit.

Standard treatment for localized disease includes surgery
and chemotherapy with or without radiotherapy, depend-
ing on whether complete surgery is possible [3]. Mul-
timodal cancer regimens have shown to increase the 5-
year survival rate in patients with localized disease from
<10% to >60%. The approach commonly used includes
chemotherapy, followed by local surgery, with consolidation

chemotherapy over the period of about a year. The most
effective chemotherapeutic regimen has proved to include
an alkylating agent (either ifosfamide or cyclophosphamide)
plus doxorubicin [4]. After a 10-year followup of this
regimen, it was found that 56% of patients remained free of
disease whereas 42% of patients relapsed. Two patients in this
study (0.6%) died from toxicity of the chemotherapy. Other
agents commonly used include vincristine, dactinomycin,
and etoposide.

In patients with metastatic disease, it is recommended
that a similar chemotherapy regimen be administered, in
addition to radiotherapy where appropriate [3]. Derivative
studies have shown that using higher doses or time-
compressed chemotherapy regimens does not confer any
benefit to patients with metastatic disease [5]. The current
multimodality treatments for those with metastatic disease
have a 5-year survival of 20–40%. Patients who experience
relapse fare poorly, with a 5-year survival of <20%. However,
those who relapse more than two years after initial diagnosis
have been shown to have a better outcome following
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retreatment. Regimens for patients who experience relapse
of the disease commonly employ an alkylating agent and
topoisomerase inhibitor, such as topotecan [3].

Ewing’s sarcoma tumors are associated with unique
chromosomal translocation between the EWS gene and the
ETS transcription factor gene [6] of which more than 85%
involve the EWS/FLI-1 fusion gene [7]. In the remaining
ES cases, translocations involve other members of the ETS
family, such as EWS-ERG [8]. It is largely accepted [9, 10]
that the EWS/FLI-1 fusion gene product is involved in
oncogenic properties of ESFT [11].

Although preclinical studies demonstrate oncogenic
properties of EWS/FLI-1 in murine models, transfer of
EWS/FLI-1 to normal human cells in vitro is not sufficient
to transform to a malignant phenotype [12, 13]. This
suggests that, in humans, additional genetic events other
than the chromosomal translocation are required to cause
tumorigenesis. Therefore, it is thought that several of the
fusion’s downstream gene targets also may play a part in
the induced oncogenicity of EWS/FLI-1 in human cells [14].
Several genes, such as NKX2.2, GSTM4, and NR0B1, have in
fact been found to enhance the oncogenicity of EWS/FLI-1
in normal cells [15–17]. EWS/FLI-1 protein has been shown
to act as a transcriptional activator of tumorigenesis [18].
In particular, the EWS/FLI-1 protein expression is associated
with activation of vascular endothelial growth factor (VEGF)
and Caveolin-1 (CAV-1), which are known to contribute
directly to tumor progression [19, 20].

Studies to define the effect of EWS/FLI-1 expression
are limited due to lack of an appropriate model [14]. The
cell of origin of ESFT is also of unknown origin. However,
there is some evidence that Ewing’s sarcoma cells originate
from bone marrow-mesenchymal stem cells (MSCs) [21, 22].
Transfer of EWS/FLI-1 gene into murine bone marrow
cells and murine mesenchymal cells results in small round
cell phenotype tumors histologically similar to Ewing’s
sarcoma [23]. RNAi knockdown of EWS/FLI-1 in ES cell
lines yields an MSC gene expression signaling profile [22].
However, attempts to express EWS/FLI-1 in mice or murine
mesenchymal cells have resulted in the development of
leukemia, not sarcoma, and no tumor formation whatsoever
[24, 25].

2. RNA Interference

RNA interference is a natural process through which expres-
sion of a targeted gene is knocked down with high specificity
and selectivity [26]. Independent of ribozymes, it was first
used in 1998 in order to regulate muscle protein production
in the nematode C. elegans. Since then, RNAi has been found
to play a much larger role in the physiology of the human
body and control of normal and malignant molecular signal
pathways [27]. RNAi technology is also frequently used to
study the function and signal effect of various genes in
animal models [28].

Small interfering RNAs (siRNAs) are exogenous and
work by regulating the degradation of the mRNA that
is identical to the corresponding siRNA strand, resulting

in the silencing of the respective genetic phenotype. The
primary mechanism of siRNA is an RNase-H-like mRNA
cleavage of the complementary mRNA sequence. After the
mRNA is cleaved and released from its bound small RNA
guide-strand, it is further degraded, while the RNA-induced
silencing complex (RISC) moves on to cleave other mRNA
[29]. In contrast, microRNAs (miRNAs) and short hairpin
RNAs (shRNAs) are endogenous stem-loop structures that
are, following RISC loading and processing, respectively
noncomplementary or complementary (siRNA) to their
cognate mRNA sequences [30]. Unlike siRNAs, which are not
encoded by any genes, specific miRNA genes encode miRNAs
as pri-miRNAs. miRNA effects mRNA degradation, p-body
sequestration, and inhibition of translation [31]. shRNAs are
processed as pre-miRNA in the nucleus of cells and utilize
vectors introduced into cells with promoters to ensure con-
tinued expression of shRNA [32, 33]. Recently, we described
a unique RNAi technology, called bifunctional shRNA (bi-
shRNA), which is designed to concurrently induce target
mRNA cleavage, mRNA degradation, p-body sequestration,
and translational inhibition based on both RISC-loading
cleavage dependent and independent mechanisms [34]. In all
cases, however, the expression of the targeted gene has been
shown to dramatically decrease, which in turn can indicate
the physiological role of the gene product [35, 36].

3. siRNA

Mammalian dicer is an integral component of the RNA-
interference pathway. Dicer processes pre-microRNA and
double-strand RNA (dsRNA) to mature miRNA and siRNA,
respectively, and transfers the processed products to the RISC
[37, 38]. Dicer is a multidomain RNase III-related endonu-
clease responsible for processing dsRNA to siRNAs [39].
Dicer recognizes and preferentially binds to the terminal 2-
nucleotide 3′ over-hang and cleaves dsRNAs into 21 to 22
nucleotide siRNAs [40, 41]. Dicer interacts with the double-
stranded Tat-RNA-binding protein (TRBP) or PACT (PKR
activating protein) to mediate RNA interference and miRNA
processing. Knockdown of both TRBP and PACT in cultured
cells leads to significant inhibition of gene silencing mediated
by short hairpin RNA but not by siRNA, suggesting that
TRBP and PACT function primarily at the step of siRNA
production [42]. TRBP and PACT directly interact with each
other and associate with Dicer to stimulate the cleavage of
double-stranded or short hairpin RNA to siRNA [42]. Dicer
knockout embryonic stem cells can effectively load processed
siRNA onto RISC and carry out RNA interference as
efficiently as Dicer+ embryonic stem cells [43]. So, it appears
that in mammalian cells, a perfectly processed siRNA can
be effectively loaded onto RISC for RNAi without the help
of the TRBP/PACT/Dicer complex. The TRBP/PACT/Dicer
complex, however, is required to process either conventional
shRNA or long dsRNA to appropriate size and form for their
loading onto RISC.

Duplex siRNA in association with holo-RISC, composed
of at least Ago-2, Dicer, and TRBP, is identified as the RISC-
loading complex (RLC) [44]. In the RLC, the two strands of
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the duplex are separated, resulting in the departure of the
passenger strand [45–47]. The passenger strand is cleaved by
the RNase-H-like activity of Ago-2, provided there are ther-
modynamically favorable conditions for passenger strand
departure. This is referred to as the cleavage-dependent
pathway [48]. There is also a cleavage-independent bypass
pathway, in which the passenger strand with mismatches is
induced to unwind and depart by an ATP-dependent helicase
activity [45, 48, 49]. The RISC with single-stranded guide
strand siRNA is then able to execute multiple rounds of RNA
interference. ATP is not required for shRNA processing, RISC
assembly, cleavage-dependent pathway, or multiple rounds
of target-RNA cleavage [50–52]. Which of the duplex siRNA
strands is incorporated into RISC is a matter of strand
biasing favoring the strand with weakest base pair binding
near the 5′ end [53].

Dynamically, siRNA steadily increases its accumulation
in cells for four hours before plateau [54]. The cytoplasmic
distribution of siRNA, delivered via TAT [41, 42, 44–52]
peptide conjugation, appears to be in the perinuclear region
forming a ring-like pattern around the nucleus [55] and has
also been shown to accumulate rather evenly throughout the
cytoplasm, although this may vary depending on the delivery
mechanisms [56]. At 48 hours after injection, the majority
of siRNA appears to have been degraded with only 1%
fluorescence remaining in the cell. The spatial and temporal
distribution of siRNA within the cell is in accord with
the observed kinetics of siRNA-mediated RNA interference
activity which peaks around 24 hours after delivery and
diminishes within 48 hours. Though the siRNA method is an
efficient means of silencing specific genetic products, there
are a few limitations to in vivo use, including sensitivity to
nucleases and a requirement for frequent dosing [57].

4. shRNA

shRNAs, as opposed to siRNAs, are synthesized in the
nucleus of cells, being transcribed from plasmid or viral-
based expression vectors, modified viruses, and extrachro-
mosomal elements. Processing of shRNA is presumed to
be very similar to the miRNA pathway, so miRNA studies
have helped provided the basis for understanding shRNA
synthesis. The primary transcripts are further processed and
transported to the cytoplasm, and then incorporated into
the RISC for activity [33]. shRNA can be transcribed by
either RNA polymerase II or III through their respective
promoters on the expression cassette. The resultant primary
transcripts contain a hairpin-like stem-loop structure that is
processed in the nucleus by a complex containing the RNase
III enzyme Drosha and the double-stranded RNA binding
domain protein DGCR8 [58]. The complex measures the
hairpin and allows precise processing of the long primary
transcripts into individual shRNAs with a 2 nt 3′ overhang
[59]. The processed primary transcript is the pre-shRNA
molecule. It is transported to the cytoplasm by Exportin 5
(and/or CRM1 for polymerase II), a Ran-GTP-dependent
mechanism [60, 61]. In the cytoplasm the pre-shRNA is
loaded onto another RNase III complex containing the

RNase III enzyme Dicer and TRBP/PACT where the loop
of the hairpin is processed off to form a double-stranded
siRNA with 2 nt 3′ overhangs [62–64], although recent data
support a primary role for Dicer recognition of the 5′ end in
miRNA biogenesis [65]. The Dicer containing complex then
coordinates loading onto the Ago2 protein containing RISC
as described earlier for siRNA. Pre-shRNA has been found to
be part of the RLC; thus, pre-shRNA may potentially directly
associate with RLC rather than through a two steps process
via a different Dicer/TRBP/PACT complex [66].

After loading onto RLC and passenger strand departure;
both siRNA and shRNA in the RISC, in principle, should
behave the same. There are, however, a number of differences
between the two silencing methods. Due to its constant
synthesis in host cells, shRNA offers more durable gene
silencing than siRNA, which virtually disappears in vivo
48 hours after administration. Additionally, cost of manu-
facturing of exogenously delivered shRNA is markedly less
than siRNA because siRNA requires frequent dosing in order
to maximize its efficacy [57] which also has the potential
of increasing off-target side effects [67]. The Argonaute
family of proteins is the major component of RISC [68, 69].
Within the Argonaute family of proteins, only Ago2 contains
target mRNA endonuclease activity necessary to cleave and
release the passenger strand of the double-stranded stem
[45, 46, 48]. Although AGO 1 has limited passenger strand
endonuclease activity [70], the remaining three members
of Argonaute family, Ago1, Ago3 and Ago4, which do not
have identifiable target mRNA endonuclease activity, are also
assembled into RISC. Thus, RISC loading can be further
classified as cleavage dependent and cleavage independent
[48].

The Argonaute family of proteins in RISCs are not only
involved in the loading of siRNA or miRNA, but also impli-
cated in both transcriptional (targeting heterochromatin)
and posttranscriptional gene silencing. Ago protein com-
plexes loaded with passenger strandless siRNA or miRNA
seeks out complementary target sites in mRNAs, where
endonucleolytically active Ago-2 cleaves mRNA to initiate
mRNA degradation [71, 72]. Other Ago protein containing
complexes without endonucleolytic activity predominantly
bind to partially complementary target sites located at the
3′ UTR for translation repression through mRNA sequestra-
tion in processing bodies (p-bodies) [73–75]. The detailed
mechanism of mRNA sequestration in p-bodies and later
release from p-bodies is still a debated issue; deadenylation
of the target mRNA which leads to destabilization of the
mRNA was also observed to occur in p-bodies [76, 77].
Coimmunoprecipitation experiments which showed that
RISCs are also strongly associated with polyribosomes or
the small subunit ribosomes [66] and Ago-2 (actually
identified as elF2c2), strongly suggest that RISC surveillance
is compartmentalized with translational machinery of the
cell. Details of the mechanism involving mRNA scanning
and target mRNA identification are still largely unknown.
Whatever the scanning or surveillance mechanism may be,
once the target mRNA is identified, the target mRNA is
either cleaved or conformationally changed following which
both types of structures are routed to the p-body for either
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Figure 1: RNA interference mechanism comparing point of impact between shRNA, siRNA and bi-shRNA.

sequestration or degradation [76, 77]. The active siRNA
or miRNA loaded complex is then released for additional
rounds of gene silencing activity.

5. bi-shRNA

In utilizing the bifunctional technology, the RNAi structure
is modified to take advantage of the endogenous gene
silencing machinery, including both RISC loading path-
ways, to improve its efficiency and durability of action
(see Figure 1). The two processing pathways primarily
dependent on strand complementarity and/or access to
RNase-H cleavage and, presumably, for final target effect,
on interaction with Importin8 (Imp8) [78]. Simultaneous
expression of both cleavage-dependent and -independent

shRNAs (i.e., the bi-shRNA) in cells should achieve a higher
level of efficacy, greater durability compared to siRNA,
and a more rapid onset of gene expression silencing (the
rate dependent on mRNA turnover and protein kinetics)
compared to shRNA. Mechanistically, the “bifunctional”
shRNA is able to simultaneously induce cleavage and non-
RNase-H-mediated degradation of target mRNA, facilitate p-
body sequestration, and also inhibit translation.

The design of the bi-shRNA expression unit is comprised
of two stem-loop structures; one of them is composed of fully
matched passenger and guide strands for cleavage-dependent
RISC loading, the other is composed of a strategically
placed passenger strand mismatch (at the position 9–12)
for cleavage-independent RISC loading. These two shRNA
structures are inserted in a miR-30 scaffold and are encoded
by a plasmid vector [79]. The cleaved product siRNA is
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loaded onto Ago 2 containing RISC, while the cleavage-
independent unit binds to Ago1–4 containing RISC. In
contrast to miRNA, the cleavage-independent unit incor-
porates a guide strand complementary to its target mRNA.
In summary, the enhanced effectiveness of the bi-shRNA
has been shown to have greater durability and efficacy than
other RNAi effectors due to its ability to induce RNase-H-
like cleavage, to decap and deadenylate the target mRNA
through noncleavage mediated processes, and also to inhibit
translation.

There are several experimental observations that support
this approach. In HEK293 cells transfected with tagged-
Ago proteins, coimmunoprecipitation found similar sets of
about 600 transcripts to be bound to Ago1, 2, 3, or 4 [66],
suggesting that all four mammalian Ago protein containing
RISCs are involved in RNAi function. Insofar as most mRNA
have multiple miRNA target sites (with distance constraints)
at their 3′ UTR, the miRNA-mediated RNAi system appears
to be redundant for the targeted mRNAs allowing for
cooperative downregulation to ensure target mRNA knock-
down. The bifunctional shRNA approach mimics the natural
process by mediating target mRNA knockdown through
multiple RNAi pathways and complexes.

In C. elegans, structural features of small RNA precursors
determine Argonaute loading [80]. Recently, Azuma-Mukai
and coworkers observed overlapping association of miRNAs
with hAgo-2 and hAgo-3; however, they presented evidence
of limited discriminate loading onto hAgo-2 or hAgo-3 [81].
Further work is needed to resolve the specificity of miRNA
loading onto different Ago containing RISCs. Although most
miRNA target sites have been identified to be located at
the 3′-UTR region, recent systemic identification of mRNAs
recruited to hAgo-2 have identified additional mRNAs with
target-sites located at the coding region and some at the 5′-
UTR [82] albeit with the 3′-UTR persisting as the preferred
target sequence site. Thus, hAgo-2 could initiate target
mRNA degradation with its slicing activity in the coding
region. Tay and colleagues recently found that many of
the naturally occurring miRNA targets that are located in
the coding region of embryonic regulated genes modulate
embryonic stem cell differentiation [83], further supporting
that miRNA can act through mRNA regions other than 3′-
UTR.

6. Delivery Systems

Responses in a variety of cancers have been achieved via
gene-specific RNAi in targeting putative or acknowledged
oncogenes and/or presumptive dominant pathways. Using
siRNA treatment, inhibition of proliferation, dysregulation
of molecules involved in signal transduction, and increased
chemosensitivity of malignancies have been demonstrated
[84–86]. Although overexpressed nominated driver cancer
genes are attractive targets for RNAi, many of these molecules
are difficult to target with RNAi not because they are
pharmacologically untargetable as is the case with small
molecular inhibitors, but insofar as they are often essential to
normal tissue homeostasis [87]. Therefore, it is important to

find delivery systems that effectively knockdown gene targets
in cancer cells while preserving normal, healthy cells. While
viral vectors allow for highly efficient transgene expression,
they are difficult to differentially target, can have limited
intracellular cancer uptake as a result of downregulated
or basal-lateral located viral receptors, can induce non-
specific off-target immune/cytokine responses and, in some
cases (e.g., retrovirus. AAV), integrate into the host’s DNA
[88]. Moreover, viral delivery systems, particularly AAV,
although attractive from the standpoint of vector expression
efficiency have unresolved limitations involving prevalence
and induction of neutralizing antibodies [89], chromosome
19 and random DNA (preformed dsDNA strand breaks)
[90] integration, germ line contamination [91], induced
differentiation of human embryonic stem cells [92] and first
trimester abortifaction [93, 94]. Recently, RNAi research
has focused on the use of nonviral vectors, such as lipid-
based carriers and polymers, as delivery systems. Nonviral
systems have been shown to be safe and easier to mass-
produce than viral vectors [95]. Although there continues
to be difficulty in surmounting the obstacles of focused
biodistribution and efficient transfection with systemically
delivered nonviral vectors, research in this area continues
to evolve with the proviso that the delivery system mini-
mize the potential of off-target toxicity. A wide variety of
potential vehicles have been and continue to be developed
to address these issues. There are three major classes
of nonviral delivery vehicle systems: synthetic polymers,
natural/biodegradable polymers, and lipids; many of the
vehicles that are showing promise are actually hybrids of
these classes. For instance, there is a cyclodextrin-based
cationic polymer which has been used successfully to deliver
siRNA targeted to RRM2 in various in vivo cancer models
[96, 97]. This preparation is currently in Phase I clinical trial.
Lipid-based nanoparticles are showing shRNA and siRNA
delivery potential [98]. Protiva Biotherapeutics and Alnylam
have developed nanoparticles composed of a lipid-PEG
conjugate that are capable of encapsulating and protecting
nucleic acids for the purpose of systemic delivery. These
stable nucleic acid lipid particles (SNALPs) were used in the
first successful administration of siRNAs to a nonhuman
primate [36, 99]. Silence Therapeutics has developed a
lipid-based delivery vehicle specifically designed for siRNA
delivery to endothelial cells. This vehicle, called AtuPLEX,
is comprised of cationic and fusogenic lipids [100, 101].
This vehicle has been used effectively to knockdown protein
kinase N3 in murine prostate and pancreatic cancer models,
inhibiting cancer progression [102, 103]. More detailed
discussions of delivery vehicles for shRNA [95, 104] and
siRNA [105–108] as well as general discussions of organ
and tissue-specific RNAi delivery may be found elsewhere
[109–111].

7. Clinical Trials

The BCR-ABL fusion gene in chronic myeloid leukemia
(described below) was the target of the first systemically
administered siRNA drug in humans [112]. Although there
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Table 1: RNAi drugs in human clinical trials [113–115].

Company Product name Disease Target Stage

Alnylam ALN-RSV1 Respratory syncytial virus infection
Nucleocapsid (N) gene of RSV

genome
Expanded
phase II

Alnylam ALN-VSP Liver cancers and solid tumors
Kinesin spindle protein (KSP),

VEGF
Phase I

Alnylam ALN-TTR01 TTR-mediated amyloidosis TTR Phase I

Alnylam ALN-PCS hypercholesterolemia PCSK9 Phase I

Benetec/City of Hope — AIDS lymphoma rHIV7-shI-TAR-CCR5RZ Phase I

Calando
Pharmaceuticals

CALAA-01 Cancer and solid tumors
M2 subunit of ribonucleotide

reductase (RRM2)
Phase I

Cequent
Pharmaceuticals

CEQ508 FAP β-Catenin Phase I

Duke University — Metastatic melanoma LMP2, LMP7, and MECL1 Phase I

OPKO Health Bevasiranib Wet age-related macular degeneration VEGF
Expanded
phase III

OPKO Health Bevasiranib Diabetic macular edema VEGF Phase II

Quark
Pharmaceuticals

PF4523655/RTP801i14 Wet age-related macular degeneration RTP801 Phase II

Quark
Pharmaceuticals

PF4523655/RTP801i14 Diabetic macular edema RTP801 Phase II

Quark
Pharmaceuticals

QPI-1002/Akli5/I5NP Acute kidney injury P53 Phase I/IIa

Quark
Pharmaceuticals

QPI-1002/DGFi
Delayed graft function in kidney

transplantation
P53 Phase I/II

Sirna Therapeutics
(MERCK)/Allergan

Sirna-027/AGN-745 Wet age-related macular degeneration VEGFRI Phase II

Silence Therapeutics Atu027 Lung cancers Protein kinase N3 (PKN3) Phase I

SENETEK — Brain tumors glioblastomas Tenascin-C Phase I

Tekmira ApoB SNALP High LDL cholesterol Apo B lipoprotein Phase I/II

Tekmira TKM-PLK1 Advanced solid tumor PLK1 Phase I

TransDerm, Inc TD101 Pachyonichia congenita Keratin 6a (K6a) Phase I

University of
Duisbur-Essen

— Chronic myeloid leukaemia bcr-abl Single patient

Gradalis, Inc. FANG Advanced cancer Furin Phase I

Gradalis, Inc. FANG Ovarian Furin Phase II

Gradalis, Inc. FANG Melanoma Furin Phase II

Gradalis, Inc. FANG Colon cancer Furin Phase II

were no adverse effects and an initial decrease of BCR-
ABL was seen, further administrations of siRNA did not
demonstrate continued effect. Several other promising trials
are underway (Table 1 [112–117]), including one investi-
gating the effect of siRNA on vascular endothelial growth
factor (VEGF) kinesin spindle proteins (KSPs), which is
nearing phase I completion [117, 118]. Preliminary results
suggest reasonable safety and correlation of treatment with
reduction in tumor vascular permeability as defined by DCE-
MRI. A recently completed phase I trial of an autologous
whole-cell vaccine expressing GM-CSF and incorporating ex
vivo bi-shRNAi furin knockdown demonstrated significant
reduction (>90% protein expression) of the endogenous
immunosuppressors, TGFβ1 and TGFβ2 (the targets of
the proprotein convertase furin) and suggested enhanced
duration of survival compared to historical experience [116].

8. Knockdown Technologies to EWS/FLI-1

Antisense therapies, ribozymes, and RNAi have been used
to silence EWS/FLI-1 in murine models and human cell
lines [9, 119–123]. Studies have demonstrated fusion protein
knockdown in vitro to correlate with a decreased tumor size
and increased vulnerability of cells to apoptosis. Despite suc-
cessful preclinical results, efforts to translate these therapies
into the clinical arena do not exist. Improved delivery of
RNAi molecules to tumor cells may enhance the effectiveness
of targeted therapies in vivo. Additionally, EWS/FLI-1 lacks
enzymatic function, making it difficult to identify its activity
and discover specific EWS/FLI-1 inhibitors [124]. The small
molecule inhibitor YK-4-279, which blocks the interaction of
EWS/FLI-1 with RNA helicase A, was recently developed as
the first molecule to directly target EWS/FLI-1 with clinical
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potential [125]. A potentially pertinent finding is that YK-4-
279 effectively targets high ALDH activity Ewing’s sarcoma
stem cells [126].

It is believed that the most powerful mechanism of the
fusion oncogene is its dysregulation of a number of down-
stream gene targets. As transfection of EWS/FLI-1 is unable
to transform human mesenchymal progenitor cells (MPCs),
focus has turned to exploration of the downstream products
of EWS/FLI-1 as major cocontributors to oncogenicity [13].
Through these interactions, EWS/FLI-1 maintains a large
degree of control in tumor development and progression, cell
proliferation, and escape from apoptosis [127–129]. Conse-
quently, a major strategy to impede cell transformation has
been to identify each of these genes and develop integrated
targeted therapies against them.

9. NKX2.2

NKX2.2, a target gene upregulated by EWS/FLI-1, acts as a
transcriptional repressor in Ewing’s sarcoma cells. However,
this gene repression accounts for only a portion of the
downregulation caused by the fusion gene product. The
NKX2.2 gene has been shown to be critical for oncogenesis
and the transformed phenotype of ES, making it an attractive
target for gene therapy [129]. It was found, however,
that EWS/FLI-1 did not upregulate NKX2.2 in murine ES
cells, suggesting that the fusion uses different mechanisms
depending on the cellular environment, and further, that
NKX2.2 may not even play a role in murine ES cells [10].
Before therapies can be developed against this gene, it will
be important to identify the exact mechanisms by which
NKX2.2 transforms human ES cell lines. However, it has
been difficult to effectively target transcription factors, so
targeting a gene product of NKX2.2 that contributes to the
oncogenicity of ES may be a more plausible, albeit indirect,
option.

10. NR0B1

NR0B1 (DAX1), a nuclear hormone receptor and gene target
of the fusion protein, has been known to act as a tran-
scriptional corepressor and a context-dependent activator
in ES cells, regulating genes due to its own upregulation
by EWS/FLI-1 [130]. Expression of NR0B1 is critical for
transformation and to maintain the phenotype of Ewing’s
sarcoma [16]. When EWS/FLI-1 was reduced using RNAi,
NR0B1 transcription levels were subsequently reduced.
Recently, it was discovered that NR0B1 and EWS/FLI-1 also
physically interact during oncogenesis [130]. Several other
nuclear hormone family members, such as estrogen receptor
(although, unlike others, NR0B1 lacks a conventional DNA
binding domain), have been isolated in a variety of cancers,
and effective therapies have been developed due to an under-
standing of their role in tumorigenesis [131]. With further
clarification of the NR0B1 gene’s mechanisms, antagonists to
modulate its activity and other targeted therapies could be
developed as well.

11. GSTM4

Another direct target gene of EWS/FLI-1 is glutathione
S-transferase M4 (GSTM4). Regulated through GGAA
microsatellites, GSTM4 helps modulate resistance to
chemotherapy in ES cells and is required for the ES
phenotype [17]. Additionally, higher levels of GSTM4
have been found to correlate with a worse prognosis of ES
patients. When RNAi was used to knockdown GSTM4 levels
in patient-derived Ewing’s sarcoma cell lines, an increase
in sensitivity to the chemotherapeutic drug, etoposide, was
seen [17]. Though no small molecule inhibitors for GSTM4
have been developed at this time, these findings suggest
reducing levels of GSTM4 will have a beneficial effect on ES
patients.

12. AURKA

EWS/FLI-1 is also known to upregulate Aurora kinase A
(AURKA), a known transcriptional target of ES [132].
Additionally, AURKA is an important mitotic regulator,
which supports its oncogenic transforming role in ES. This
activity makes AURKA a viable target for the treatment of
this disease. An AURKA inhibitor, MLN8054, was analyzed
in a phase I clinical study in patients with advanced solid
tumors, but no complete or partial responses were seen.
However, another small molecule inhibitor, MLN8237, was
recently shown to have success in reducing levels of the
kinase in ESFT xenografts, as well as increasing sensitivity to
apoptosis in an early phase clinical study [133].

13. EZH2

Members of the polycomb repressor group, comprised of
the Polycomb repressor complexes PRC1 and PRC2/3, are
often highly expressed in ES, and are known to play a large
role in development and differentiation of cells [134]. In
particular, EZH2 (the catalytic unit of the PRC2/3 complex),
which represses gene expression involved in coordinating
induction of tissue differentiation and maintains an undif-
ferentiated, multipotent phenotype [135], is highly regulated
by EWS/FLI-1 and is required for oncogenic transformation
of Ewing’s sarcoma cells [136]. Specifically, EZH2 was found
to upregulate genes directly responsible for neuroectodermal
and endothelial differentiation in Ewing’s sarcoma cells. The
large overexpression of EZH2 in ES cells may even be a result
of direct mediation by EWS/FLI-1. Though EZH2 may be
a novel target for therapy, the mechanisms by which EZH2
transforms ES cells are still unknown and will need to be
understood before any inhibitor can be developed.

14. CAV1

Caveolin-1 (CAV1) is another direct gene target of EWS/FLI-
1 that is overexpressed in ES cells. It is known to connect
EWS/FLI-1 to a critical pathway which enables tumorigenesis
in ES [14]. CAV1 also contains a GGAA microsatellite motif
that EWS/FLI-1 binds to in vivo [137]. Additionally, it
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promotes tumor growth in mouse models, and is necessary
for tumorigenesis in Ewing’s sarcoma [20]. Recently, the
gene target was shown to have some involvement in the
chemoresistance of ES cells [138]. Because CAV1 exists in
such high levels in ES, compared to the low amounts found
in normal cells, it would be a suitable and efficient target
for therapy. As of late, however, no gene silencing or small
molecule inhibiting methods have been developed.

15. GLI1

EWS/FLI-1 is also known to upregulate GLI1, a commonly
known oncogene with transcriptional activity. When GLI1
was inhibited in Ewing’s sarcoma family tumor (ESFT) cell
lines, the full ES phenotype was not seen [139]. In a subse-
quent study, it was shown that some GLI1 and EWS/FLI-1
transcriptional targets overlap [140]. Many hedgehog-GLIs
(HH-GLIs) have been identified as EWS/FLI-1 targets, and
it is thought that the fusion reaches these targets through its
upregulation of GLI1, further implying GLI1’s importance to
ESFT. It would be beneficial to perform a shRNA knockdown
of ES cells in order to identify other common targets of
EWS/FLI-1 and GLI1, so that efficient targeted therapies
could be developed. Currently, GANT58 and GANT61 small
molecule modulators have been shown to inhibit the GLI1
pathway in Ewing’s sarcoma, and GANT61 may even be
effective in vivo [140]. Studies are currently underway
investigating this claim [141].

Due to the lack of a good model system in Ewing’s
sarcoma, concerns have been raised about how well results
from EWS/FLI-1 in murine cells will translate to human cells.
Specifically, it has been shown that some of the gene targets
mentioned, such as NKX2.2 and NR0B1, are not induced
by the fusion in mouse cells, though they are prevalent in
human cells [15, 16].

Suppression of EWS/FLI-1 fusion protein and decreased
tumor growth was seen in ES cells in vitro and in murine
models using antisense ODNs complementary to the fusion
mRNA [120, 122]. Another study using mice showed
decreased tumor size and levels of EWS/FLI-1 after the use
of an antisense ODN nanocapsules [142]. In addition to
successfully knocking down the fusion oncogene, this study
offered a novel, nonviral vector for delivery of antisense
ODNs.

In ES, as previously mentioned, siRNAs have been used
to knockdown the expression of the EWS/FLI-1 fusion gene
in SK-ES cell lines in vitro [9, 143]. This downregulation of
EWS/FLI-1 was shown to significantly decrease proliferation
of the treated cells and increase apoptosis in three-times
as many cells as in the control cells. Additionally, siRNA
knockdown effectively inhibited the metastatic nature of the
SK-ES cell lines, suggesting that the presence of EWS/FLI-
1 fusion protein is required for in vitro invasion. Another
study showed knockdown of EWS/FLI-1 and suppression
of tumor growth by systemic administration of siRNA
in mice [119]. Most recently, siRNA-mediated sequence-
specific suppression of EWS/FLI-1 inhibited proliferation of
mouse ES xenografts in vivo [144].

Despite successful results in preclinical trials, effective
tumor-specific systemic delivery of RNAi effectors has been
elusive. Development of a targeted, nonimmunogenic RNAi
delivery system will be required for efficient use of RNAi gene
therapy in humans [119].

Efforts to knockdown the fusion oncogene in ES by
shRNA in a 2009 study were also successful [145]. Not only
did shRNA maintain a stable knockdown of EWS/FLI-1,
but also a decrease in tumorigenicity of cells and tumor
growth in mice was seen. Specifically, the shRNA treated cells
resulted in smaller ES tumors, with a 40% decrease in size.
This study also uncovered TOPK as a new target gene of
EWS/FLI-1, which was effectively downregulated following
the knockdown of the fusion gene. The downregulation of
TOPK led to the decreased proliferation of the ES cells.
Other studies of shRNA knockdown have likewise shown
significant knockdown of the fusion gene, ultimately leading
to attenuated oncogenicity and decreased proliferation of
cancerous cells [10, 16, 146, 147]. More effective delivery
vehicles, improving the ability of RNAi agents to selectively
target tumor tissue and effectively navigate tumor cell entry,
will be necessary for this therapeutic strategy to achieve
clinical application.

16. Conclusion

The identification of the EWS/FLI-1 oncogenic fusion gene
and demonstration of its broad-based expression in ES
has broadened the potential for RNAi application to ES
therapeusis [148]. An increasing number of RNAi studies
provide a reasonable database to support the feasibility
and effectiveness of EWS/FLI-1 knockdown, particularly
when integrated with related downstream signals. Continued
development of RNAi delivery methodology may permit
more effective, low-morbidity gene silencing [149]. Trans-
lational applications are fast approaching. Our evolving
understanding of the mechanisms through which EWS/FLI-1
protein and its interaction with downstream targets induces
and supports the malignant phenotype further emphasizes
the need for a therapeutic RNAi with multitarget potential
[150].
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interference of EWS-FLI1 in an Ewing sarcoma cell line
impairs IGF-1/IGF-1R signalling and reveals TOPK as a new
target,” British Journal of Cancer, vol. 101, no. 1, pp. 80–90,
2009.

[146] J. Carrillo, E. Garcı́a-Aragoncillo, D. Azorı́n et al., “Cholecys-
tokinin down-regulation by RNA interference impairs Ewing
tumor growth,” Clinical Cancer Research, vol. 13, no. 8, pp.
2429–2440, 2007.

[147] K. Stegmaier, J. S. Wong, K. N. Ross et al., “Signature-based
small molecule screening identifies cytosine arabinoside as an
EWS/FLI modulator in ewing sarcoma,” PLoS Medicine, vol.
4, no. 4, article e122, 2007.

[148] C. Damm-Welk, U. Fuchs, W. Wössmann, and A. Borkhardt,
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