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Let X and Y be infinite dimensional Banach spaces over the real or complex field F, and letA and
B be standard operator algebras on X and Y , respectively. In this paper, the structures of surjective
maps from A onto B that completely preserve involutions in both directions and that completely
preserve Drazin inverse in both direction are determined, respectively. From the structures of these
maps, it is shown that involutions and Drazin inverse are invariants of isomorphism in complete
preserver problems.

1. Introduction

In the last decades, the study of preserver problems is an active topic in operator algebra or
operator space theory (see [1]). In [2], the form of involutivity-preserving maps was given
by using the known results of idempotence-preserving maps, and in [3], the authors gave the
characterization of additive maps preserving Drazin inverse. These results showed that
involutions and Drazin inverse are invariants of isomorphism in preserver problems. Since
completely positive linear maps and completely bounded linear maps are very important
in operator algebra or operator space theory [4], and the concept of completely rank non-
increasing linear maps was introduced by Hadwin and Larson in [5], many mathematicians
began to focus on complete preserver problems, that is, characterizations of maps on operator
spaces (subsets) that preserve some property (or invariant) completely [6]. Cui and Hou dis-
cussed the completely trace-rank-preserving linear maps and the completely invertibility-
preserving linear maps in [7, 8], respectively. Subsequently, in [6, 9], general surjective maps
between standard operator algebras that completely preserve invertibility or spectrum and
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that completely preserve spectral functions are studied, respectively, where a standard
operator algebra is a norm closed subalgebra of some B(X) over a Banach spaceX containing
the identity I and all finite-rank operators. Recently, in [10], the authors discussed completely
idempotents preserving surjective maps and completely square-zero operators preserving
surjective maps. These results showed that idempotents and square-zero operators are
invariants of isomorphism in complete preserver problems. Since involutions and Drazin
inverse are closely related to idempotents, it is interesting to consider whether the involutions
and Drazin inverse are still invariants of isomorphism in complete preserver problems.

Let X and Y be Banach spaces over the real or complex field F, and let B(X) be the
Banach algebra of all bounded linear operators from X to X. An operator A ∈ B(X) is called
an involution (idempotent) if A2 = I (A2 = A), denoted by ΓS = {A : A ∈ S and A2 = I} and
PS = {A : A ∈ S and A2 = A}, where S is an algebra and I is an identity in S. An operator
A ∈ B(X) is said to have a Drazin inverse, or to be Drazin invertible if there exists X ∈ B(X)
such that

Ak+1X = Ak, XAX = X, AX = XA, (1.1)

and X is called the Drazin inverse of A, denoted by AD. The concepts of involution and
Drazin inverse are very useful in various applied mathematical areas. For example, in [11],
the authors showed that involution has applications in Chi-square distribution, combinatorial
problems, and so on. About Drazin inverse, it is helpful in singular differential and difference
equations, Markov chain, multibody system dynamics, and so on [3].

Inspired by the above, the purpose of this paper is to consider the following two
things:

(1) the characterization of surjective maps that completely preserve involutions
between standard operator algebras on Banach spaces;

(2) the characterization of surjective maps that completely preserve Drazin inverse
between standard operator algebras on Banach spaces.

Let A and B be standard operator algebras on X and Y , respectively, and let Φ : A → B be a
surjective map. Define, for each n ∈ N, a map Φn : A ⊗Mn(F) → B ⊗Mn(F) by

Φn

((
sij

)
n×n

)
=
(
Φ
(
sij

))
n×n. (1.2)

Then Φ is called n-involutions preserving in both directions if Φn preserves involutions in
both directions, that is, (sij)

2
n×n = I ⇔ Φ2

n((sij)n×n) = I; Φ is said to be completely involution-
preserving in both directions if Φ is n-involutions preserving in both directions for every
positive integer n. Similarly, Φ is called n-Drazin inverse preserving in both directions if
Φn preserves Drazin inverse in both directions, that is, (sij)

D
n×n = (tij)n×n ⇔ Φn((tij)n×n) =

(Φ(sij))
D
n×n; Φ is said to be completely Drazin inverse preserving in both directions if Φ is

n-Drazin inverse preserving in both directions for every positive integer n.
We end this part by some notations. Let X∗ be the dual space of a Banach space X. For

every nonzero x ∈ X and f ∈ X∗, the symbol x ⊗ f standards for the rank one bounded linear
operator on X defined by (x ⊗ f)y = 〈y, f〉x for any y ∈ X. Given P,Q ∈ PA, we say P andQ
are orthogonal if PQ = QP = 0, where 0 is the zero operator in A.
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2. Maps Completely Preserving Involutions

Lemma 2.1 (see [10]). Let X,Y be infinite dimensional Banach spaces over the real or complex field
F and P ⊆ B(X), Q ⊆ B(Y ) be sets of idempotents which contain all rank one idempotents. Let
Φ : P → Q be a bijective map. If Φ preserves orthogonality in both directions, then there exists either
a bounded invertible linear or (in the complex case) conjugate linear operator A : X → Y such that

Φ(P) = APA−1, P ∈ P, (2.1)

or a bounded invertible linear or (in the complex case) conjugate linear operator A : X∗ → Y such
that

Φ(P) = AP ∗A−1, P ∈ P. (2.2)

In the second case, X and Y must be reflexive.

Theorem 2.2. Let X,Y be infinite-dimensional Banach spaces over the real or complex field F and
A,B be standard operator algebras on X and Y , respectively. Let Φ : A → B be a surjective map.
Then the following statements are equivalent:

(1) Φ is completely involutions preserving in both directions.

(2) Φ is 2-involution preserving in both directions.

(3) There exists a bounded invertible linear or (in the complex case) conjugate linear operator
A : X → Y such that

Φ(T) = δATA−1, ∀T ∈ A, (2.3)

where δ = ±1.

Proof. Obviously, (3) ⇒ (1) ⇒ (2). Then, (2) ⇒ (3) is shown by proving the following claims.
Assume that Φ is 2-involution preserving in both directions.

Claim 1. Φ(0) = 0, Φ(I) = δI, where δ = ±1 and Φ is injective.
For any T ∈ A,

(
I T
0 −I

)
∈ ΓB(X2), (2.4)

whereX2 = X×X is a Banach space with a suitable norm, for example, ‖(x1, x2)‖ = ‖x1‖+‖x2‖.
Applying the assumption of Φ, we get

(
Φ(I) Φ(T)
Φ(0) Φ(−I)

)
∈ ΓB(Y 2). (2.5)

Thus

Φ2(I) + Φ(T)Φ(0) = I, (2.6)

Φ(I)Φ(T) + Φ(T)Φ(−I) = 0. (2.7)
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By the surjectivity of Φ, we can find some T0 ∈ A such that Φ(T0) = 0. Let T = T0, (2.6) yields
that Φ2(I) = I. Hence, Φ(T)Φ(0) = 0 holds for all T ; this entails that Φ(0) = 0, since Φ is
surjective.

Taking T = I in (2.7), and also by the invertibility of Φ(I), we have Φ(I) = −Φ(−I).
Then (2.7) yields that Φ(I)Φ(T) = Φ(T)Φ(I) for all T ∈ A. Because of the surjectivity of Φ
and Φ2(I) = I, it is not difficult to get Φ(I) = δI, where δ = ±1.

If we replaceΦ by −Φ, it is still 2-involution preserving, thenwithout loss of generality,
we always assume that Φ(I) = I in the sequel. Next, we show that Φ is injective.

For any T, S ∈ A such that Φ(T) = Φ(S), we have

⎛
⎝ T −2I

−1
2
(
I − T2) −T

⎞
⎠ ∈ ΓB(X2) ⇐⇒

⎛
⎝

Φ(T) Φ(−2I)
Φ
(
−1
2
(
I − T2)

)
Φ(−T)

⎞
⎠ ∈ ΓB(Y 2)

⇐⇒
⎛
⎝

Φ(S) Φ(−2I)
Φ
(
−1
2
(
I − T2)

)
Φ(−T)

⎞
⎠ ∈ ΓB(Y 2)

⇐⇒
⎛
⎝ S −2I

−1
2
(
I − T2) −T

⎞
⎠ ∈ ΓB(X2),

(2.8)

which imply that T = S. Therefore, Φ is injective.

Claim 2. Φ preserves idempotents in both directions.
For any P ∈ PA, since

(
I − P P
P I − P

)
∈ ΓB(X2),

(
I − P I
P P − I

)
∈ ΓB(X2), (2.9)

then using the assumption of Φ, we have

Φ2(I − P) + Φ2(P) = I, (2.10)

Φ2(I − P) + Φ(P) = I, (2.11)

Φ(I − P) + Φ(P − I) = 0. (2.12)

From (2.10) and (2.11), it is derived that Φ(P) ∈ PB for any P ∈ PA. Applying (2.11) again,
we see that

Φ(I − P) = I −Φ(P). (2.13)

Since P ∈ PA is arbitrary, then (2.12) yields that

Φ(P) = −Φ(−P), for any P ∈ PA. (2.14)

Thus, combining (2.13) and (2.14) with the bijectivity of Φ, it is not difficult to get the result
that if Φ(P) ∈ PB, then P ∈ PA. Therefore, Claim 2 holds true.
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Claim 3. There exists a bounded invertible linear or (in the complex case) conjugate linear
operator A : X → Y such that Φ(P) = APA−1 for every P ∈ PA.

For every P,Q ∈ PA,

PQ = QP = 0 ⇐⇒
(
I P
Q −I

)
∈ ΓB(X2)

⇐⇒
(
Φ(I) Φ(P)
Φ(Q) Φ(−I)

)
∈ ΓB(Y 2)

⇐⇒ Φ(P)Φ(Q) = Φ(Q)Φ(P) = 0,

(2.15)

that is, Φ preserves orthogonality in both directions from PA to PB. From Lemma 2.1, we see
that there exists either a bounded invertible linear or (in the complex case) conjugate linear
operator A : X → Y such that

Φ(P) = APA−1, P ∈ PA, (2.16)

or a bounded invertible linear or (in the complex case) conjugate linear operatorA : X∗ → Y
such that

Φ(P) = AP ∗A−1, P ∈ PA. (2.17)

Sequently, we show that the second case cannot occur. On the contrary, assume that
Φ(P) = AP ∗A−1 for all P ∈ PA. Similar to the proof of Theorem3.2 in [10], for any linearly
independent vectors x, y ∈ X, there exist f, g ∈ X∗ such that 〈x, f〉 = 〈x, g〉 = 〈y, g〉 = 1 and
〈y, f〉 = −1. Then,

M =
(
I − x ⊗ f x ⊗ g
y ⊗ f I − y ⊗ g

)
∈ ΓB(X2). (2.18)

By the assumption of Φ on PA and (2.14), we see that

Φ2(M) =
(
A 0
0 A

)(
I − f ⊗ x g ⊗ x
f ⊗ y I − g ⊗ y

)(
A−1 0
0 A−1

)
, (2.19)

but Φ2(M) is not an involution, it is a contradiction. Therefore, Claim 3 holds true.
Let Ψ(·) = A−1Φ(·)A, then Ψ is a bijective map preserving 2 involutions in both

directions from A onto the standard operator algebra A−1AA. Furthermore, by Claim 3,
Ψ(P) = P for every P ∈ PA. Hence, without lose of generality, we suppose that

Φ(P) = P, (2.20)

for all P ∈ PA.
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Claim 4. Φ(x ⊗ f) = x ⊗ f for any rank one operator x ⊗ f .
For any rank one operator x ⊗ f , there exists y ∈ X such that y is linearly independent

of x and 〈y, f〉 = 1. Then there exist g1, g2 ∈ X∗ such that 〈x, g1〉 = 〈y, g2〉 = 1, 〈y, g1〉 =
〈x, g2〉 = 0. Let g = g1 + g2, then we have 〈x, g〉 = 1, 〈y, g〉 = 1. Then using (2.20), we have

(
I − x ⊗ g x ⊗ f
y ⊗ g I − y ⊗ f

)
∈ ΓB(X2) ⇐⇒

(
I − x ⊗ g Φ

(
x ⊗ f

)
y ⊗ g I − y ⊗ f

)
∈ ΓB(Y 2). (2.21)

Hence,

Φ
(
x ⊗ f

)(
y ⊗ g

)
= x ⊗ g, (2.22)

(
y ⊗ g

)
Φ
(
x ⊗ f

)
= y ⊗ f, (2.23)

2Φ
(
x ⊗ f

)
= x ⊗ gΦ

(
x ⊗ f

)
+ Φ

(
x ⊗ f

)
y ⊗ f. (2.24)

Combining (2.22) and (2.23) with (2.24), we derive that Φ(x ⊗ f) = Φ(x ⊗ f)(y ⊗ g)Φ(x ⊗ f).
Then using (2.22) and (2.23) again, we get

Φ
(
x ⊗ f

)
= x ⊗ gΦ

(
x ⊗ f

)
,

Φ
(
x ⊗ f

)
= Φ

(
x ⊗ f

)
y ⊗ f.

(2.25)

From (2.25), it is easily seen that there exists μx⊗f ∈ F \ {0} such that

Φ
(
x ⊗ f

)
= μx⊗fx ⊗ f. (2.26)

Taking (2.26) into (2.22), this yields that μx⊗f = 1, Thus, Claim 4 holds true.

Claim 5. Φ(T) = T for all T ∈ A.
For any T ∈ A, since

(
T I

I − T2 −T
)

∈ ΓB(X2) ⇐⇒
(

Φ(T) Φ(I)
Φ
(
I − T2) Φ(−T)

)
∈ ΓB(Y 2). (2.27)

By Φ(I) = I, it follows that

Φ(T) = −Φ(−T), ∀T ∈ A. (2.28)

For any S ∈ A and any invertible operator T ∈ A,

(
TS T

T−1 − STS −ST
)

∈ ΓB(X2) ⇐⇒
(

Φ(TS) Φ(T)
Φ
(
T−1 − STS

)
Φ(−ST)

)
∈ ΓB(Y 2). (2.29)

Applying (2.28), we get

Φ(TS)Φ(T) = Φ(T)Φ(ST). (2.30)
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For any rank one operator x ⊗ f , let S = x ⊗ f in (2.30), and using Claim 4, we know that
T(x ⊗ f)Φ(T) = Φ(T)(x ⊗ f)T . It follows that Tx ⊗Φ(T)∗f = Φ(T)x ⊗ T ∗f . This yields that

Φ(T) = T, for any invertible T ∈ A. (2.31)

For any rank one operator T ∈ A, it is clearly that I − T is either idempotent or inver-
tible. Then using (2.20) or (2.31), we have

Φ(I − T) = I − T, for any rank one operator T ∈ A. (2.32)

For any T, S ∈ A,

(
I − TS −T

−(2I − ST)S ST − I

)
∈ ΓB(X2) ⇐⇒

(
Φ(I − TS) Φ(−T)

Φ(−(2I − ST)S) Φ(ST − I)

)
∈ ΓB(Y 2). (2.33)

By (2.28), we have

Φ(I − TS)Φ(T) = Φ(T)Φ(I − ST), for any T, S ∈ A. (2.34)

For any rank one operator x ⊗ f , let S = x ⊗ f in (2.34), and using (2.32), we still get T(x ⊗
f)Φ(T) = Φ(T)(x ⊗ f)T . Then similarly, we have

Φ(T) = T, ∀T ∈ A. (2.35)

Therefore, the proof of this theorem is finished.

Φ is called n-identity product preserving in both directions if Φn preserves identity
product in both directions, that is, (sij)n×n(tij)n×n = I ⇔ Φn((sij)n×n)Φn((tij)n×n) = I; Φ is said
to be completely identity preserving product in both directions if Φ is n-identity product
preserving in both directions for every positive integer n and Φ is called n-identity Jordan
product preserving in both directions if Φn preserves identity Jordan product in both direc-
tions, that is, (1/2)(sij)n×n(tij)n×n + (1/2)(tij)n×n(sij)n×n = I ⇔ (1/2)Φn((sij)n×n)Φn((tij)n×n) +
(1/2)Φn((tij)n×n)Φn((sij)n×n) = I; Φ is said to be completely identity Jordan product preserv-
ing in both directions if Φ is n-identity Jordan product in both directions for every positive
integer n.

Remark 2.3. Using the result of Theorem 2.2, it is not difficult to give the characterization of
maps completely preserving identity product in both directions and maps completely pre-
serving identity Jordan product preserving in both directions.

3. Maps Completely Preserving Drazin Inverse

Theorem 3.1. Let X,Y be infinite-dimensional Banach spaces over the real or complex field F and
A,B be standard operator algebras on X and Y , respectively. Let Φ : A → B be a surjective map.
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Then the following statements are equivalent:

(1) Φ is completely Drazin inverse preserving in both directions.

(2) Φ is 2-Drazin inverse preserving in both directions.

(3) There exists a bounded invertible linear or (in the complex case) conjugate linear operator
A : X → Y such that

Φ(T) = δATA−1 ∀T ∈ A, (3.1)

where δ = ±1.

Proof. Clearly, we only need to prove that (2) ⇒ (3). Assume that Φ is 2-Drazin inverse pre-
serving in both directions.

Claim 1. Φ(0) = 0, Φ(I) = δI, where δ = ±1, and Φ is injective.
For any T ∈ A, since

(
I T
0 0

)D

=
(
I T
0 0

)
⇐⇒

(
Φ(I) Φ(T)
Φ(0) Φ(0)

)D

=
(
Φ(I) Φ(T)
Φ(0) Φ(0)

)
, (3.2)

using (1.1), it entails that

Φ2(I)Φ(T) + Φ(T)Φ(0)Φ(T) + Φ(I)Φ(T)Φ(0) + Φ(T)Φ2(0) = Φ(T), (3.3)

Φ(0)Φ2(I) + Φ2(0)Φ(I) + Φ(0)Φ(T)Φ(0) + Φ3(0) = Φ(0), (3.4)

Φ(0)Φ(I)Φ(T) + Φ2(0)Φ(T) + Φ(0)Φ(T)Φ(0) + Φ3(0) = Φ(0). (3.5)

As Φ is surjective, there exists some T0 ∈ A such that Φ(T0) = 0. Taking T = T0 in (3.4) and
(3.5), respectively, we have

Φ(0)Φ2(I) + Φ2(0)Φ(I) = 0, (3.6)

Φ3(0) = Φ(0). (3.7)

Taking (3.6) and (3.7) into (3.4) again, we see that

Φ(0)Φ(T)Φ(0) = 0, (3.8)

then let T = 0 in (3.8) and use (3.7), we get

Φ(0) = 0. (3.9)

Taking (3.9) into (3.3), this yields that

Φ2(I)Φ(T) = Φ(T), (3.10)
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by the surjectivity of Φ, there exists a T1 ∈ A such that Φ(T1) = I; let T = T1 in (3.10), we see
that

Φ2(I) = I. (3.11)

Since

(
I T
0 I

)D

=
(
I −T
0 I

)
, for any T ∈ A, (3.12)

then by the assumption of Φ and applying (1.1) and (3.11), we see that

Φ(I)Φ(T)Φ(I) = −Φ(−T). (3.13)

Let T = I in (3.13), we have

Φ(I) = −Φ(−I). (3.14)

For any T ∈ A,

(
I T
0 −I

)D

=
(
I T
0 −I

)
, (3.15)

then using (3.14) and (3.11), we have

Φ(I)Φ(T) = Φ(T)Φ(I), ∀T ∈ A. (3.16)

Similar to the proof of Claim 1 in Theorem 2.2, we get Φ(I) = δI, where δ = ±1.
Without loss of generality, we always assume that Φ(I) = I in the sequel. Now, we

show that Φ is injective.
Take Φ(I) = I into (3.13), it yields that

Φ(T) = −Φ(−T), for any T ∈ A. (3.17)

For any T, S ∈ A such that Φ(T) = Φ(S), we have

⎛
⎝ T −2I

−1
2
(I − T2) −T

⎞
⎠

D

=

⎛
⎝ T −2I

−1
2
(
I − T2) −T

⎞
⎠, (3.18)

then

⎛
⎝

Φ(T) Φ(−2I)
Φ
(
−1
2
(
I − T2)

)
Φ(−T)

⎞
⎠

D

=

⎛
⎝

Φ(T) Φ(−2I)
Φ
(
−1
2
(
I − T2)

)
Φ(−T)

⎞
⎠; (3.19)
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therefore, by (3.17) and Φ(T) = Φ(S), we see that

⎛
⎝

Φ(S) Φ(−2I)
Φ
(
−1
2
(
I − T2)

)
−Φ(S)

⎞
⎠

D

=

⎛
⎝

Φ(S) Φ(−2I)
Φ
(
−1
2
(
I − T2)

)
−Φ(S)

⎞
⎠,

⎛
⎝

Φ(S) Φ(−2I)
Φ
(
−1
2
(
I − T2)

)
−Φ(T)

⎞
⎠

D

=

⎛
⎝

Φ(S) Φ(−2I)
Φ
(
−1
2
(
I − T2)

)
−Φ(T)

⎞
⎠,

(3.20)

then

⎛
⎝ S −2I

−1
2
(I − T2) −S

⎞
⎠

D

=

⎛
⎝ S −2I

−1
2
(
I − T2) −S

⎞
⎠,

⎛
⎝ S −2I

−1
2
(I − T2) −T

⎞
⎠

D

=

⎛
⎝ S −2I

−1
2
(
I − T2) −T

⎞
⎠.

(3.21)

Applying (1.1), we derive that S2 = ST , S − T = T2S − T3 and S2 = T2. By direct computation,
it is easy to get T = S. Thus, Φ is an injective map, and Claim 1 holds true.

Claim 2. Φ preserves idempotents in both directions.
For any T ∈ A,

(
I − T −T
I I

)D

=
(

I T
−I I − T

)
, (3.22)

by the assumption of Φ and (1.1), we have

Φ(I − T) = I −Φ(T), for any T ∈ A. (3.23)

For any P ∈ PA,

(
P 0
0 I − P

)D

=
(
P 0
0 I − P

)
, (3.24)

it follows that Φ3(P) = Φ(P) and Φ3(I − P) = Φ(I − P). Then by (3.23), it derives that Φ(P) ∈
PB. Similarly, we get that if Φ(P) ∈ PB, then P ∈ PA. Therefore, this claim is true.

Claim 3. There exists a bounded invertible linear or (in the complex case) conjugate linear
operator A : X → Y such that Φ(P) = APA−1 for every P ∈ PA.
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For every P , Q ∈ PA,

PQ = QP = 0 ⇐⇒
(
I P
Q −I

)D

=
(
I P
Q −I

)

⇐⇒
(
Φ(I) Φ(P)
Φ(Q) Φ(−I)

)D

=
(
Φ(I) Φ(P)
Φ(Q) Φ(−I)

)

⇐⇒ Φ(P)Φ(Q) = Φ(Q)Φ(P) = 0,

(3.25)

that is,Φ preserves orthogonality in both directions fromPA toPB. It follows from Lemma 2.1
that there exists either a bounded invertible linear or (in the complex case) conjugate linear
operator A : X → Y such that

Φ(P) = APA−1, P ∈ PA, (3.26)

or a bounded invertible linear or (in the complex case) conjugate linear operatorA : X∗ → Y
such that

Φ(P) = AP ∗A−1, P ∈ PA. (3.27)

We show that the second case cannot occur. On the contrary, assume that Φ(P) =
AP ∗A−1 for all P ∈ PA. For any linearly independent vectors x, y ∈ X, similar to the proof
of the Theorem 3.2 in [10], we can find f, g ∈ X∗ such that 〈x, f〉 = 〈x, g〉 = 〈y, g〉 = 1 and
〈y, f〉 = −1. Then

(
I − x ⊗ f x ⊗ g
y ⊗ f I − y ⊗ g

)D

=
(
I − x ⊗ f x ⊗ g
y ⊗ f I − y ⊗ g

)
, (3.28)

but by the assumption of Φ and (1.1), it is easy to check that

(
Φ(I − x ⊗ f) Φ(x ⊗ g)
Φ(y ⊗ f) Φ(I − y ⊗ g)

)D

/=
(
Φ
(
I − x ⊗ f

)
Φ
(
x ⊗ g

)
Φ
(
y ⊗ f

)
Φ
(
I − y ⊗ g

)
)
, (3.29)

which is a contradiction to the hypothesis that Φ2 is Drazin inverse preserving. Therefore,
Φ(P) = APA−1 holds for every P ∈ PA, and Claim 3 holds true.

In the sequel, without lose of generality, we suppose that

Φ(P) = P, ∀P ∈ PA. (3.30)

Claim 4. Φ(x ⊗ f) = x ⊗ f for any rank one operator x ⊗ f .
Similar to the proof of Claim 4 in Theorem 2.1 in [10], for any rank one operator x⊗ f ,

we can find g ∈ X∗ such that 〈x, g〉 = 1 and y ∈ X such that 〈y, f〉 = 1. Then
(
x ⊗ g x ⊗ f
0 0

)D

=
(
x ⊗ g x ⊗ f
0 0

)
,

(
0 x ⊗ f
0 y ⊗ f

)D

=
(
0 x ⊗ f
0 y ⊗ f

)
.

(3.31)
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Using (3.30), we have

(
Φ(x ⊗ g) Φ(x ⊗ f)

0 0

)D

=
(
x ⊗ g Φ

(
x ⊗ f

)
0 0

)
,

(
0 Φ(x ⊗ f)
0 Φ(y ⊗ f)

)D

=
(
0 Φ

(
x ⊗ f

)
0 y ⊗ f

)
.

(3.32)

Therefore, we derive that x ⊗ gΦ(x ⊗ f) = Φ(x ⊗ f) and Φ(x ⊗ f)y ⊗ f = Φ(x ⊗ f). Then, it is
easily seen that there exists μx⊗f ∈ F \ {0} such that

Φ
(
x ⊗ f

)
= μx⊗fx ⊗ f. (3.33)

Similar to the proof of Claim 4 in Theorem 2.2, for any rank one operator x ⊗ f , we can find
y ∈ X such that 〈y, f〉 = 1 and g ∈ X∗ such that 〈x, g〉 = 1, 〈y, g〉 = 1. Then

(
I − x ⊗ g x ⊗ f
y ⊗ g I − y ⊗ f

)D

=
(
I − x ⊗ g x ⊗ f
y ⊗ g I − y ⊗ f

)
, (3.34)

by (3.30) and the assumption of Φ, we see that

(
I − x ⊗ g Φ(x ⊗ f)
y ⊗ g I − y ⊗ f

)D

=
(
I − x ⊗ g Φ

(
x ⊗ f

)
y ⊗ g I − y ⊗ f

)
. (3.35)

It entails that

y ⊗ gΦ
(
x ⊗ f

)
y ⊗ g = y ⊗ g; (3.36)

by (3.33), we know that μx⊗f = 1. Therefore, Claim 4 holds true.

Claim 5. Φ(T) = T for all T ∈ A.
For any T, S ∈ A, since

(
I − TS −T
STS I + ST

)D

=
(
I + TS T
−STS I − ST

)
,

(
I + TS T
−STS I − ST

)D

=
(
I − TS −T
STS I + ST

)
,

(3.37)

then by the assumption of Φ, using (3.17) and (3.23), we have

(
Φ(I − TS) Φ(−T)
Φ(STS) Φ(I + ST)

)D

=
(
I + Φ(TS) Φ(T)
−Φ(STS) I −Φ(ST)

)
,

(
I + Φ(TS) Φ(T)
−Φ(STS) I −Φ(ST)

)D

=
(
I −Φ(TS) −Φ(T)
Φ(STS) I + Φ(ST)

)
.

(3.38)
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For simplification, let N =
(

Φ(TS) Φ(T)
−Φ(STS) −Φ(ST)

)
; then by (1.1), we derive that (I +N)(I −N)(I +

N) = (I +N) and (I −N)(I +N)(I −N) = (I −N). Therefore, we haveN2 = 0. Thus, by direct
computation, we get

Φ(TS)Φ(T) = Φ(T)Φ(ST), for any T, S ∈ A. (3.39)

For any rank one operator x ⊗ f , let S = x ⊗ f in (3.39), and using Claim 4, we have T(x ⊗
f)Φ(T) = Φ(T)(x ⊗ f)T . It follows that Tx ⊗Φ(T)∗f = Φ(T)x ⊗ T ∗f . Then we get

Φ(T) = T, ∀T ∈ A. (3.40)

Therefore, the proof of this theorem is completed.
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