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Quantitative structure-property relationship (QSPR) study on the acid dissociation constant, pKa of various 22 N-base ligands
including pyridines, pyrimidines, purines, and quinolines has been carried out using Codessa Pro methodology and software.
In addition, the formation constant, Kc of these ligands with Pt(II)(bpy)2

2+ (bpy = 2,2′-bipyridine) ion has also been modelled
with the same methodology. Linear regression QSPR models of pKa and Kc were established with descriptors derived from AM1
calculations. Among the obtained QSPR models of pKa presented in the study, statistically the most significant one is a four
parameters linear equation with the squared correlation coefficient,R2 values of ca. 0.95 and the squared cross-validated correlation
coefficient, R2

cv values of ca. 0.89, and external the squared correlation coefficient, R2
ext. values of ca. 0.97. Statistically the most

significant QSPR model of Kc is also a four parameters linear equation with the squared correlation coefficient, R2 values of ca. 0.75
and the squared cross-validated correlation coefficient, R2

cv values of ca. 0.55, and external the squared correlation coefficient, R2
ext.

values of ca. 0.81. An analysis of descriptors that involved in the pKa models indicate that reactivity index and charge distribution
related descriptors play major roles to model acid dissociation constant of ligands of N bases.

1. Introduction

The acid dissociation constant, pKa, which describes the
extent to which a compound dissociates in an aqueous
solution, is a fundamental physical property of a chemical.
The pKa value plays a fundamental role in many analytical
procedures such as acid-base titrations, solvent extraction,
complex formation, and ion transport, and is especially
relevant in medicinal chemistry because it affects ADME and
activity. The degree of ionization determines permeability
and solubility, two properties widely used in pharmaceutical
research to predict the pharmacokinetic profile of a com-
pound. Differences in adsorption, toxicology, solubility, bio-
concentration, and reactivity are common when comparing
the properties of the ionized molecule to its neutral form

[1]. All of these reasons make the pKa a common physico-
chemical property as a descriptor for QSAR and QSPR
(quantitative structure and property relationship) studies.
The experimental pKa values of organic compounds have
been largely determined through well-established methods
such as potentiometry, UV-visible absorption spectrometry,
conductimetry, and competitive reactions. A pKa value
of a compound may have to be determined, as it may
not be available in published literature. Therefore, it is
of interest to develop modeling methods for estimating
the pKa of compounds, and use these methods to predict
the properties of a chemical in a solvent environment.
Appropriate modeling methods may minimize cost and
time to predict accurately pKa values of unknown com-
pounds.
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Numerous computational studies have attempted to
predict pKa of organic compounds by applying different
theoretical models [2–13]. Three main approaches have been
employed in these theoretical models. First approach relieds
upon using linear free energy relationships (LFER). The
primary disadvantage of the purely LFER-based approaches
is the need to derive a vast number of fragment constants
and correction factors which are used in the estimation
methods. Some researchers have also criticized the use of
LFER approaches on more philosophical grounds, arguing
that the prediction of molecular properties by fragment
constant methods lacks solid scientific support [14, 15]. A
second approach is based on accurate energy calculation
of the molecules in their neutral and deprotonated forms
in the gas phase and solvent, to account for the solute-
solvent interaction. In order to obtain adequately accurate
energies to calculate solution phase dissociation constants,
one must account for electron correlation at the ab initio
or density functional theory (DFT) methods, and consider
the effects of solvation on the molecule. When moderate-
or relatively large-sized molecules are considered, due to
the great computational cost of ab initio or DFT calcu-
lations this approach is not feasible, especially for virtual
screening applications. Third is the QSPR approach that is a
mathematical equation relating chemical structure to a wide
variety of physical, chemical, biological, and technological
property.

In the study herein, one of the pKa modeling approaches
described above, the QSPR method has been used to
construct quantitative models to predict pKa values of
various 22 N-bases ligands including pyridines, pyrimidines,
purines, and quinolines. In addition, we have developed
QSPR models to predict the formation constant, Kc of
reactions of these ligands with Pt(II)(bpy)2

2+ (bpy = 2,2′-
bipyridine) ion. After the discovery of the cell division-
inhibiting effect of cisplatin by Rosenberg et al. [16], there
is considerable interest in platinum chemistry. To date, six
platinum complexes (including cisplatin) have been used
in drug anticancer chemotherapy [17]. To obtain pKa and
Kc QSPR models, program Codessa Pro (comprehensive
descriptors for structural and Statistical Analysis), Version
2.7.2 [18] was employed to build a multilinear regression
(MLR) method using observed pKa and Kc values taken from
Kawanishi et al. [19] in combination with the descriptors
which were calculated by the AMPAC [20] semiempirical
quantum chemistry code.

2. Results and Discussion

The structures of 22 N-base ligands are shown in Figure 1.
Table 1 shows the following information QSPR modeling
of pKa of compounds: (i) AM1-based calculated molecular
descriptor values involved in the obtained models; (ii)
experimental pKa values taken from the original references;
(iii) the predicted pK values using Model I, II, and III
obtained in this study. Table 2 shows the obtained QSPR
equations together with their statistical parameters for pKa
modeling. Table 3 shows the intercorrelation of descriptors
involved in the pKa models. The predicted values of pKa

using Model I is plotted versus the experimental values
in Figure 2. Reliability of Model I was tested by the Y-
randomization test. 250 random shuffles of the Y (pKa) were
chosen, and the modeling process was performed for all cases
of Model I. Results are shown in Figure 3. It should be noted
that all of the results of the 250 random shuffles of the Y were
not included, only the highest 60 data points were taken in
the Figure 3. The lower values of R2 and R2

cv in comparison
with the real model’s results support the hypothesis that the
good statistical results obtained by the QSPR model are not
due to a chance correlation, or structural dependency of the
training set.

Table 4 shows the following information for Kc QSPR
modeling: (i) AM1-based calculated molecular descriptor
values involved in the models; (ii) experimental Kc values
taken from the original references; (iii) the predicted Kc
values using Model IV, V, and VI obtained in this study.
Figure 4 shows plot of experimental versus calculated Kc
using Model IV. Table 5 shows the obtained QSPR equations
together with their statistical parameters for Kc modeling.
Table 6 shows the intercorrelation of descriptors involved
in Kc models. At this point, it should be observed that
Tables 3 and 6 demonstrate that although some descriptors
exhibit relatively high intercorrelation, they are not involved
in the same models as seen in Tables 2 and 5. Reliability
of the best Kc model (Model IV) was also tested by the Y-
randomization test. 250 random shuffles of the Y (Kc) were
chosen, and the modeling process was performed for all cases
of Model IV from which the results are shown in Figure 5.
It should be noted that all of the results of the 250 random
shuffles of the Y were not included, only the highest 60 data
points were taken in the Figure 5. The lower values of R2

and R2
cv in comparison with the real model’s results support

the hypothesis that the good statistical results obtained by
the QSPR model are not due to a chance correlation, or
structural dependency of the training set.

2.1. Analysis of pKa Models. A perusal of Table 2 shows
that nine types of descriptors are involved in the three
pKa models. Among the three models, the best, statistically
speaking, is Model I, as evident from the fact that it has a
very good statistical fit (R2 = 0.95, F = 61.79, S2 = 0.311)
and predictive ability (R2

cv = 0.89, R2
ext. = 0.97, RMSE =

0.51) parameters. By analyzing Model I, it is clear that the
most representative descriptor is HNMVF with the positive
coefficient and the highest t-test value. The magnitude of
HNMVF of a molecule comes from O-H, N-H, or C-H
stretching vibrations. Hybridization state (sp, sp2, and sp3)
also affects the magnitude of HNMVF of a molecule. An
increase in the magnitude of HNMVF favors the exhibitions
of the pKa of a N-base ligands. In this model, FNSA3
and FPSA which are charged partial surface area (CPSA)
descriptors, also have positive coefficients. They describe
the polar interactions between the molecules. MNRI-C
has a negative coefficient, highlighting that the lower the
magnitude of MNRI-C, the lower the pKa. This descriptor
estimates the relative reactivity of the atom (carbon) in
the molecule, and is related to the activation energy of the
corresponding chemical reaction.
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Table 1: Molecular descriptors values involved in the QSPR models for N-bases and predicted pKa values.

Comp.
no.

HNMVF FNSA3 FPSA1 MNRI-C MERI-C
HDSA1/
TMSA

WPSA2 Qmax

ESP-
HDCA1/

TMSA

Exp.
pKa

Model I
pKa

Model II
pKa

Model
III pKa

1 3.2116E + 03 −0.0121 0.6971 0.0236 0.0255 0.0000 67.2803 0.0306 0.0000 5.1700 5.3301 5.2767 4.7608

2a 3.2085E + 03 −0.0126 0.7220 0.0268 0.0298 0.0927 94.9803 0.0310 0.0175 5.6800 5.2118 5.8955 5.9027

3 3.2070E + 03 −0.0106 0.7566 0.0238 0.0254 0.0996 146.4419 0.0308 0.0176 6.0000 6.4286 6.6858 6.5446

4 3.2163E + 03 −0.0177 0.8605 0.0248 0.0283 0.0962 148.5683 0.0330 0.0197 6.4700 6.2635 5.5030 4.4868

5a 3.2047E + 03 −0.0228 0.5736 0.0246 0.0313 0.0000 45.5035 0.0339 0.0000 1.4500 0.7797 3.5730 1.4487

6 3.2032E + 03 −0.0208 0.6012 0.0227 0.0329 0.0000 84.2644 0.0325 0.0000 1.9000 1.7858 2.4557 2.0669

7 3.2167E + 03 −0.0284 0.7932 0.0270 0.0298 0.0825 99.7973 0.0866 0.0228 3.2300 2.5117 2.8526 1.3664

8a 3.2087E + 03 −0.0109 0.6039 0.0236 0.0222 0.0000 117.2082 0.0311 0.0000 4.8000 4.2731 5.5081 5.1457

9 3.2038E + 03 −0.0111 0.6304 0.0181 0.0201 0.0000 133.0226 0.0319 0.0000 5.4000 4.9922 5.9022 5.0948

10 3.2124E + 03 −0.0186 0.6039 0.0283 0.0359 0.0000 27.6513 0.0356 0.0000 2.3300 2.0476 2.2486 2.7407

11 3.1506E + 03 −0.0184 0.7204 0.0367 0.0353 0.0000 64.1077 0.0426 0.0000 1.3000 1.6466 1.5161 2.8224

12 3.2027E + 03 −0.0146 0.7057 0.0145 0.0180 0.0000 244.6293 0.0311 0.0000 4.8200 5.4933 4.8015 4.0070

13 3.5371E + 03 −0.0258 0.6914 0.0197 0.0246 0.2577 143.8780 0.0564 0.1023 9.7500 9.2987 9.9944 8.0521

14 3.4841E + 03 −0.0386 0.6667 0.0257 0.0359 0.3736 419.7091 0.0840 0.1063 3.3000 4.1432 3.5748 4.3398

15a 3.4711E + 03 −0.0442 0.5711 0.0383 0.0474 0.1807 59.1654 0.0808 0.0538 0.6000 0.0191 0.6357 −1.2911

16 3.5160E + 03 −0.0330 0.6513 0.0439 0.0373 0.2588 139.8377 0.0842 0.0976 4.5800 4.3433 4.5739 5.4486

17 3.2125E + 03 −0.0100 0.7168 0.0254 0.0314 0.0972 129.9713 0.0307 0.0199 5.9600 5.9760 4.9171 6.8860

18 3.2150E + 03 −0.0256 0.6869 0.0282 0.0338 0.0788 83.5174 0.0903 0.0209 1.2500 1.5557 1.5127 2.0909

19a 3.2055E + 03 −0.0272 0.6545 0.0226 0.0252 0.0905 158.3118 0.0890 0.0164 2.2100 2.3704 1.7022 2.9931

20 3.1934E + 03 −0.0255 0.6964 0.0226 0.0226 0.0874 163.0047 0.0833 0.0168 3.2600 2.4503 2.7545 2.7138

21 3.2156E + 03 −0.0195 0.7263 0.0274 0.0334 0.0962 127.2344 0.0461 0.0191 3.0600 3.6848 3.5426 3.8711

22 3.2076E + 03 −0.0081 0.7258 0.0245 0.0246 0.0895 186.8004 0.0233 0.0162 6.7100 6.5386 6.3780 7.1975
a
Compounds in the test set.

Table 2: QSPR models of pKa for N-base ligands.

Models Descriptors involved Ca t-test

Statistical parameters

Training set (N = 17) Test set (N = 5)

R2 R2
cv F S2 R2

ext. RMSE

Model I pKa

Intercept −68.69 −12.73 0.95 0.89 61.79 0.311 0.97 0.51

HNMVF 0.0216 13.60

FNSA3 244.02 10.22

FPSA1 13.96 6.33

MNRI-C −89.88 −3.92

Model II pKa

Intercept 16.23 16.43 0.94 0.89 56.62 0.33 0.85 1.11

MERI-C −328.98 −10.45

HDSA1/TMSA 26.94 11.58

WPSA2 −0.0163 −6.51

Qmax −48.37 −6.38

Model III pKa

Intercept 8.55 10.30 0.76 0.61 23.37 1.32 0.91 0.93

HDCA1/TMSA 73.89 6.43

FNSA3 312.25 6.29
a
C: indicates the coefficients of the descriptors involved in the models, R2: the square of the regression correlation coefficient, R2

cv: the cross-validated square
of the regression correlation coefficient, F: the F-value for the regression, S2: the standard deviation of the regression, R2

pred.: the predicted square of the
regression correlation coefficient, RMSE: the root mean square error.
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Figure 1: Structure of the 22 N-base ligands studied.

Table 3: Correlation matrix for the intercorrelation of various molecular descriptors involved in the Model I, II, and III.

HNMVF FNSA3 FPSA1 MNRI-C MERI-C HDSA1/TMSA WPSA2 Qmax ESP-HA/HDCA

HNMVF 1

FNSA3 −0.665 1

FPSA1 −0.198 0.152 1

MNRI-C 0.252 −0.396 −0.034 1

MERI-C 0.246 −0.508 −0.191 0.784 1

ESP-HA/HDSA 0.888 −0.694 0.033 0.255 0.304 1

ESP-WPSA2 0.451 −0.368 0.065 −0.245 −0.137 0.661 1

Qmax 0.464 −0.87 −0.033 0.389 0.361 0.558 0.228 1

ESP-HA/HDCA 0.971 −0.719 −0.072 0.289 0.293 0.965 0.542 0.559 1

Exp. pKa. 0.390 0.304 0.302 −0.377 −0.546 0.306 0.201 −0.338 0.343
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Table 4: Molecular descriptors values involved in the QSPR models and predicted Kc values for Bis(2,2′-bipyridine)platinum(II)-N-base
adducts reactions.

Comp.
no.

DPSA1-
D in
CPSA

Int.
entropy

ESP-
FNSA3

Min e-
eREP-N

BETA
Pol.

Min
Re.E-
CN

Avg 1-e RI-C
Max n-n
Re.-CN

Exp.
Kc

Model IV
Pre. Kc

Model V
Pre. Kc

Model VI
Pre. Kc

1a 101.94 2.7079 −0.1000 131.2770 −28.47 11.0890 0.0000E + 00 157.2510 2.700 3.1828 2.2619 4.3376

2 130.35 2.4482 −0.0810 131.1470 6.91 10.5260 −7.2350E − 04 157.3980 8.600 7.8093 7.1075 7.2795

3 149.83 2.8800 −0.1108 131.4820 33.70 10.4940 5.1936E − 07 157.2830 6.100 4.5208 4.2888 3.9780

4 216.70 2.8167 −0.1159 132.5050 84.58 10.6180 4.1645E − 05 157.0280 7.000 7.2678 5.1309 5.3312

5 45.10 3.1756 −0.0879 125.3510 13.48 11.0730 1.5784E− 03 157.3760 0.130 1.2985 −0.6526 −0.9633

6 61.70 3.1473 −0.1144 124.9290 44.92 11.0780 −1.5936E − 07 157.3900 0.420 −0.1410 0.0666 0.6984

7a 159.34 2.9009 −0.1551 132.4970 59.29 11.0750 1.6798E − 04 156.9030 0.720 1.5647 2.2465 3.5789

8 66.98 2.4303 −0.0970 130.8520 −21.34 11.0650 1.4414E − 03 156.8270 3.800 4.6372 4.6507 4.2829

9a 82.19 2.4327 −0.1034 131.2590 −14.11 11.0710 4.3553E − 04 157.1140 9.000 4.5363 4.7271 5.4907

10 50.59 2.9265 −0.0670 126.4770 −55.00 11.1310 −1.6359E − 05 156.5620 0.510 1.7989 −0.0543 1.4260

11 97.85 2.9292 −0.1397 132.6640 −18.38 11.0550 2.7492E − 03 156.6200 0.140 −0.5596 0.8269 0.2038

12a 152.49 2.6136 −0.1088 130.9570 −0.021 11.0830 −3.1001E − 07 157.0540 5.400 3.7888 3.4930 5.7044

13b — — — — — — — — — — — —

14 154.02 3.1831 −0.1271 127.1010 68.32 10.5540 −8.2424E − 05 159.2140 2.100 0.7716 2.2433 3.4761

15 40.09 3.3032 −0.1669 140.9640 −10.75 11.0700 1.7900E − 03 157.9870 0.130 0.3506 −2.0398 −1.6271

16 84.92 3.1387 −0.2321 135.7030 206.26 10.9990 −1.3541E − 03 155.2190 0.590 1.4546 3.0979 0.4967

17 126.62 2.8740 −0.0974 131.5120 −55.20 10.5360 3.5327E − 04 157.2230 0.540 1.6894 2.7082 3.3170

18a 101.25 2.9361 −0.1388 131.5760 −100.44 11.0590 −1.7656E − 03 156.0350 0.130 −5.0899 −0.5915 3.1158

19 105.84 3.2014 −0.1071 128.8170 4.00 10.6630 6.5902E − 04 155.8870 0.100 0.7196 0.6116 −0.5665

20 137.24 3.1625 −0.1072 130.0300 −38.43 10.6630 4.1303E − 06 157.0020 0.210 −0.4779 0.2191 1.5778

21 135.54 2.8629 −0.1047 131.6770 −79.47 10.6040 1.6487E − 03 156.2280 0.190 −0.1194 2.1270 1.8236

22 143.20 3.0683 −0.0898 131.7610 −100.11 10.5380 7.1287E − 04 154.6840 0.210 −0.2504 0.4383 0.0360
a
Compounds in the test set.

bCompound 13 is an outlier in all the Kc model.
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Figure 2: Plot of experimental versus calculated pKa using Model I.

Model II is also a four-parametric model, similar to
Model I. This model also has very good statistical fit (R2 =
0.94, F = 56.62, and S2 = 0.33) and good predictive
ability (R2

cv = 0.89, R2
ext. = 0.85, RMSE = 1.11) param-

eters. The descriptors involved in this model are MERI-
C, HDSA1/TMSA, WPSA2, and Qmax. In this model, only
HDSA1/TMSA has a positive coefficient. HDSA1/TMSA is
statistically the most significant descriptor, as evident from

0

0.3

0.6

0.9

0 0.2 0.4 0.6 0.8 1

R2

R
2 cv

Figure 3: Y-randomization test associated to pKa Model I. Squares
represent the randomly ordered activities, and the triangle corre-
sponds to the real model.

the fact that it has the highest t-test value. HDSA1 is the
hydrogen bonding donor ability of a molecule and TMSA is
total molecular surface area of a molecule. An increase in the
magnitude of HDSA1/TMSA favours the exhibitions of the
pKa of N-base ligands. MERI-C is the the second statistically
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Figure 4: Plot of experimental versus calculated Kc using Model IV.

significant descriptor with a negative coefficient. This is
a relative reactivity index, and corresponds to activation
energy of a corresponding chemical reaction. WPSA2, and
Qmax are related to charge distribution of the molecules. In
this model, negative coefficients of MERI-C, WPSA2 and
Qmax indicate that decreases in the magnitudes of MERI-C,
WPSA2 and Qmax are not favorable for an increase of pKa of
the molecules.

Model III is a two-parametric model. HDCA1/TMSA and
FNSA descriptors are involved in this model with positive
coefficients. These are CPSA descriptors, and describe the
polar interactions between the molecules. Although, the
goodness of fit of this model is only satisfactory, evident from
the fact that it has R2 = 0.76, F = 23.37, and S2 = 1.32, its
external predictive power is very good (R2

ext. = 0.91). It is
worthy here to mention that model validation is historically
a hot topic for discussions within the QSAR community.
Some researchers use only internal R2

cv for model validation,
and some others strongly believe that external validation is
vital for a reliable QSAR model. If one surveys the QSAR
literature, it can be shown that many QSAR models have
been published only with internal validation until a study
published by A. Golbraikh and A. Tropsha, entitled “Beware
of q2!” [21]. In that study, the authors reexamined several
published QSAR data sets, and demonstrated that there
is lack of any relationship between R2

cv and R2
ext.. They

concluded that the high value of R2
cv appears to be the

necessary, but not sufficient condition, for the model to have
a high predictive power and the external validation is the only
way to establish a reliable QSAR model. Our results regarding
the pKa models support these conclusive remarks. Model II
has a higher internal validation value, R2

cv = 0.89, but its
external validation value, R2

ext. is only 0.85, whereas Model
III has a lower internal validation value, R2

cv = 0.61, and its
external validation value, R2

ext. is very good 0.91.

2.2. Analysis of Kc Models. A perusal of Table 5 shows
that nine types of descriptors are involved in the three Kc
models. Among the three Kc models, Model IV has good
fit (R2 = 0.89, F = 23.33, andS2 = 1.16) parameters,
whereas its predictive ability only is acceptable (R2

cv = 0.74,

R2
ext. = 0.53, RMSE = 3.18). BETA (β)Polarizability, Internal

Entropy, ESP-FNS3, and Min e-e REP-N are involved in this
model. BETA (β)Polarizability which has a positive coef-
ficientisthe most representative descriptor,as evident from
the fact that it has the highest t-test value. Internal Entropy
divided by number of atoms in the molecules which has a
negative coefficient in the model, is the least representative
descriptor, as evident from the fact that it has the lowest t-
test value. Also, the positive sign of coefficient of ESP-FNS3
and Min e-e REP-N indicate that increases in the magnitude
of ESP-FNS3, and Min e-e REP-N are favorable for an
increase of Kc of Bis(2,2′-bipyridine)platinum(II)-N-base
adduct reactions. Mechanistic interpretation of the model
is quite complex due to the diverse nature of the involved
descriptors. BETA (β)Polarizability reflects information
about possible inductive interactions in the molecule. It also
characterizes the properties of a molecule as an electron
acceptor. ESP-FNS3 is a CPSA descriptor, and describes the
polar interactions between the molecules. Min e-e REP-
N describes the electron repulsion driven processes in the
molecule, and may be related to the atomic reactivity in the
molecule [22].

In Model V, BETA (β)Polarizability and Internal Entropy
have the same sing of coefficients as Model IV. Internal
Entropy is the most representative descriptor in this model.
The third descriptor is the Min Re. E-CN which is an
energy-related descriptor with a positive sign of coefficient.
Statistical parameters of this model are similar to Model III
in term of validation parameters. Although this model has
the lowest internal validation (R2

cv = 0.44) value, its external
predictive ability, R2

ext. = 0.77 is relatively high. When these
six Kc and pKa models are considered together, one could
draw a conclusion that there is not any relationship between
R2

cv and R2
ext..

The final model, Model VI has four descriptors. Internal
Entropy is also the most representative descriptor in this
model. Internal Entropy and avg. 1-e RI-C have a positive
sign of coefficient whereas max n-n Re.-CN and DPSA1D
in CPSA have negative sign of coefficient. As observed
for Model IV and V, an increase of in the magnitude
of Internal Entropy divided by number of atoms in the
molecules favours the exhibitions of the Kc for Bis(2,2′-
bipyridine)platinum(II)-N-base adduct reactions. It may
be concluded that the entropy changes seem to have an
important effect on the Bis(2,2′-bipyridine)platinum(II)-N-
base adduct reactions. Although, it has not been included as
a Model in Table 5, but Internal Entropy divided by number
of atoms in the molecules, itself as a monoparametric model
has an acceptable statistical parameter, R2 = 0.48, F = 12.91,
S2 = 4.5, R2

cv = 0.3, R2
ext. = 0.97 and RMSE = 1.89.

It is worthy to mention that all of the Kc models have
one nitrogen-related descriptor (Min e-e REP-N, Min Re.
E-CN and Max n-n Re.-CN). When the proposed Bis(2,2′-
bipyridine)platinum(II)-N-base adduct by formation of N-
Pt(II) bond [19] is considered, the appearance of N-related
descriptors in all of the models is not a surprise.

Finally, as mentioned in the introduction section, pKa
can be seen as a descriptor for QSAR and QSPR studies in
literature. In this study, pKa has been tested as a descriptor
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Table 5: QSPR models of Kc for Bis(2,2′-bipyridine)platinum(II)-N-base adducts reactions.

Models Descriptors involved Ca t-test
Statistical parameters

Training set (N = 16) Test set (N = 5)

R2 R2
cv F S2 R2

ext. RMSE

Model IV
Kc

Intercept −51.133 −2.9682 0.89 0.74 23.33 1.16 0.53 3.18

(1/2)×BETA (β) polarizability 0.0965 6.5208

Internal entropy at 300 K/no. of atoms in mo. −3.7361 −2.6391

ESP-FNS3 106.17 5.3226

Min e-e REP-N 0.5821 4.5888

Model V
Kc

Intercept 67.834 3.8027 0.74 0.44 11.61 2.58 0.77 2.23

BETA (β) polarizability 0.0164 2.8619

Internal entropy at 300 K/no. of atoms in mo. −7.8412 −4.6956

Min Re. E-CN −3.9563 −2.3851

Model VI
Kc

Intercept −98.836 −1.5907 0.75 0.55 8.7 2.64 0.81 2.53

Internal entropy at 300 K/no. of atoms in mo. −6.9666 −4.1294

Avg. 1-e RI-C −741.89 −1.7774

Max n-n Re.-CN 0.7650 1.9331

DPSA1D in CPSA 0.0170 1.8440
a
C: the coefficients of the descriptors involved in the models, R2: the square of the regression correlation coefficient, R2

cv: the cross-validated square of the
regression correlation coefficient, F: the F-value for the regression, S2: the standard deviation of the regression.

Table 6: Correlation matrix for the intercorrelation of various molecular descriptors involved in the obtained QSPR Kc models.

DPSA1-
D in
CPSA

BETA pol.
Int.

entropy
ESP-

FNSA3
Min

e-eREP-N
Min

re.E-NH
Avg

1-eRI-C
Max n-n
re.-CN

DPSA-1 D in CPSA 1

BETA pol. 0.0589 1

Int. entropy −0.2198 0.1726 1

ESP-FNSA3 0.1137 −0.7118 −0.3991 1

Min e-e REP-N 0.0489 0.1131 0.0110 −0.6106 1

Min re. E-NH −0.8457 0.1517 0.1730 −0.2553 −0.0182 1

Avg 1-e RI-C −0.2928 −0.5384 0.0386 0.1479 0.1486 0.3245 1

Max n-n Re.-CN 0.0004 0.1123 0.0288 0.1108 −0.1606 −0.0185 0.0339 1

Exp. Kc 0.5104 0.2522 −0.6925 0.2009 0.0628 −0.4138 −0.3750 0.2586

for the modeling of Kc, but it has failed during the
preselection of the descriptors by the software (Codessa Pro)
due to its very low squared correlation coefficient of the one-
parameter equation is less than R2

min 0.01 by default.

3. Experimental Section

3.1. Quantum Chemical Calculations. All structures were
optimized without geometry constraints using the standard
AM1 Hamiltonian [23] within the AMPAC quantum chem-
istry code [20]. Structure fundamental vibrations were also
calculated using the same method to check if there were true
minima. All computations were carried out for the ground
states of these molecules as single states. Output files of the
molecules from AMPAC code were used as the input file for
Codessa Pro [18] code for descriptor generation.

3.2. Descriptors Generation and Their Definitions. In the
present work, more than five hundred descriptors were
exploited by using Codessa Pro code, and they were divided
into groups such as constitutional, topological, geometrical,
electrostatic, quantum chemical, thermodynamic, and con-
tracted. Constitutional descriptors are related to the number
of atoms and bonds in each molecule. Topological descrip-
tors include valence and nonvalence molecular connectivity
indices calculated from the hydrogen-suppressed formula of
the molecule, encoding information about the size, composi-
tion, and the degree of branching of a molecule. Geometrical
descriptors are calculated from 3D atomic coordinates of the
molecule and comprise moments of inertia, shadow indices,
molecular volumes, molecular surface areas, and gravitation
indices. Electrostatic descriptors reflect characteristics of the
charge distribution of the molecule. Quantum chemical
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Figure 5: Y-randomization test associated to Kc Model IV. Squares
represent the randomly ordered activities, and the triangle corre-
sponds to the real model.

descriptors encode the polar interactions between molecules
or their chemical reactivity and the activation energy of the
corresponding chemical reaction. Thermodynamic descrip-
tors are quantum mechanically calculated on the basis of
the total partition function of the molecule, Q and its elec-
tronic, translational, rotational, and vibrational components.
Codessa Pro also allows one to construct new descriptors by
using the existing descriptors. In this way, the author con-
structed some common quantum chemical indices, namely,
chemical hardness, electronegativity, and electrophilicity
from HOMO and LUMO orbital energies. More than five
hundred descriptors, andseventeen types of descriptors were
involved in the selected pKa and Kc models as shown in
Table 1 and Table 4. Their definitions are adopted from the
CODESSA Pro Manual [24] as described below.

Highest normal mode vibrational frequency (HNMVF) is
an extreme maximum value of the normal mode vibrational
frequencies in the molecule. Definition of the normal mode
of vibration arises from the quantum mechanical Harmonic
Oscillator model of a diatomic molecule.

Fractional PNSA (PNSA3/TMSA) or FNSA3 is one of the
electrostatics charged partial surface area (CPSA) descrip-
tors, and was invented by Jurs et al. [25, 26]. Definition of
FNSA3 is atomic charge weighted partial negative surface
area (PNSA) divided by total molecular surface area (TMSA)
which has related features responsible for polar interactions
between molecules.

Fractional CPSA (PPSA1/TMSA), FPSA1 is another
CPSA descriptor and its definition is given as partial positive
surface area (PPSA) divided by TMSA.

Maximum nucleophilic reaction index for a C atom,
MNRI-C is one of the quantum-chemically calculated charge
distribution-related reactivity indices. These descriptors rep-
resent or depend directly on the quantum-chemically cal-
culated charge distribution in the molecules, and describes
the polar interactions between molecules or their chemical
reactivity. Definition of MNRI-C in a molecule is given as
follows:

MNRI-C =
∑

i=C

CiHOMO2

(1− εHOMO)
, (1)

where the summations are performed over all of the atomic
orbitals, i of a Carbon atom in a molecule, Ci HOMO
denotes the ith Atomic Orbital (AO) coefficient on the
highest occupied molecular orbital (HOMO) and εHOMO is
the energy of HOMO orbital. The reactivity indices estimate
the relative reactivity of the atoms in the molecule for a given
series of compounds, and refer to the activation energy of the
corresponding chemical reaction.

Maximum electrophilic reaction index for a C atom,
MERI-C is another quantum-chemically calculated charge
distribution-related reactivity index and its definition is
given as follows:

MERI-C =
∑

i=C

CiLUMO2

(εLUMO + 10)
, (2)

where the summations are performed over all atomic
orbitals, i of a carbon atom in a molecule, Ci LUMO denotes
the ith AO coefficient on the lowest unoccupied molecular
orbital (LUMO), and εLUMO is the energy of LUMO.

ESP-HA dependent HDSA1/TMSA, HDSA1/TMSA is one
of the quantum-chemically calculated descriptors.

HDSA1 is the hydrogen bonding donor ability of a
molecule and its definition is given as follows:

HDSA1 =
∑

D

sD D ∈ HH-donor, (3)

where SD is the solvent-accessible surface area of H-bonding
donor H atoms.

ESP-WPSA2 Weighted PPSA (PPSA2 × TMSA/1000),
WPSA2 is the surface-weighted charged partial-positive
charged surface area. This is one of the quantum-chemically
calculated CPSA descriptors. Definition of WPSA2 is given as
follows:

WPSA2 = (PPSA2)× TMSA
1000

, (4)

where PPSA2 is the total charge weighted by partial positive
surface area and TMSA is the total molecular surface area.

Maximum partial charge, Qmax is one of the electrostatics
descriptors and reflects characteristics of the charge distri-
bution of the molecule. The empirical partial charges in
the molecule are calculated using the approach proposed by
Zefirov et al. [27, 28]. This method is based on the Sanderson
electronegativity scale, and uses the concept which represents
the molecular electronegativity as a geometric mean of
atomic electronegativities. Definition of Qmax is given as
follows:

Qmax = maximum (Q+), (5)

where Q+ is the positive atomic partial charges in the
molecule.

ESP-HA/HDCA Dependent, HDCA1/TMSA is the hydro-
gen bonding donor ability of the molecule divided by TMSA.
Definition of HDCA1 is given as:

HDCA1 =
∑

D

sD D ∈ HH-donor, (6)



ISRN Physical Chemistry 9

where SD is the solvent-accessible surface area of the H-
bonding donor H atoms, selected by threshold charge.

DPSA1 Difference in CPSAs (PPSA1-PNSA1) (Zefirov’s
PC), DPSA1D in CPSA is the difference between partial
positively- and negatively-charged surface areas:

DPSA1-D in CPSA- = PPSA1-PNSA1. (7)

ALPHA (α) and BETA (β) Polarizability is the polariza-
tion of a molecule by an external electric field, and is given in
terms of the nth order susceptibility tensors of the molecular
bulk. The first-order term and the second-order term that
contain information about possible inductive interactions
in a molecule are referred to as α and β polarizabilitity,
respectively, [29, 30]:

μ′ = μ + αE +
1
2
βE2 + . . . , (8)

where μ is the permanent dipole moment of the molecule, μ′

is the induced dipole moment of the molecule and E is the
external electric field.

Internal Entropy at 300 K/(Number of atoms in the
molecules) where the definition of internal entropy is given
as

Sinternal = Svibrational + Srotational, (9a)

Svibrational =
α∑

j=1

⎧
⎨
⎩

hν j exp
(
−
(
hν j /2kT

))

kT
[

1− exp
(
−hν j /2kT

)]

− ln

[
1− exp

(
− hν j

2kT

)]⎫⎬
⎭,

(9b)

Srotational = Nk ln

⎡
⎣π

1/2

σ

3∏

j=1

(
8π2I jkT

h2

)1/2
⎤
⎦, (9c)

where ν j are the frequencies of normal vibrations in the
molecule, I j are the principal moments of inertia of the
molecule, σ is the symmetry number of the molecule, h is
the Planck’s constant, kis the Boltzmann’s constant and T is
theabsolute temperature (K).

ESP-FNSA3 Fractional PNSA (PNSA3/TMSA) [Quan-
tum-Chemical PC], ESP-FNS3 is the fractional atomic-charge
weighted partial negative surface area and its definition is
given as

FNSA3 = PNSA3
TMSA

, (10)

where PNSA3 is the total charge-weighted partial negatively
charged molecular surface area.

Minimum e-e repulsion for an N atom, Min e-e REP-N
where the extreme (maximum or minimum) values of the
electron-electron repulsion energy are for a given atomic
species (N) in the molecule, calculated as follows:

Eee(A) =
∑

B /=A

∑

μ,ν∈A

∑

λ,σ∈B
PμνPλσ

〈
μν | λσ〉, (11)

where Pμν and Pλσ are the density matrix elements over
atomic basis {μνλσ} and 〈μν | λσ〉 are the electron
repulsion integrals on the atomic basis {μνλσ}. The electron-
electron repulsion energy describes the electron repulsion
driven processes in the molecule, and may be related to the
conformational (rotational, inversional) changes or atomic
reactivity in the molecule [31].

Minimum resonance energy for a C-H bond, Min Re. E-
CN is a quantum mechanical energy-related descriptor and
its definition is given as

ER(AB) =
∑

μ∈A

∑

ν∈B

Pμνβμν, (12)

where A is a given atomic species, B is the another atomic
species, Pμν is the density matrix elements over atomic basis
{μν}, and βμν is the resonance integrals on atomic basis {μν}.

Average 1-electron reaction index for a C atom, Avg. 1-e
RI-C is a charge distribution-related reactivity index and it
estimates the relative reactivity of the atoms in the molecule
for a given series of compounds, and this corresponds to
the activation energy of the corresponding chemical reaction.
Definition is given as

RA =
∑

i∈A
∑

j∈A ciHOMOcjLUMO

εLUMO − εHOMO
, (13)

where ciHOMO is the highest occupied molecular orbital MO
coefficients, and cjLUMO is the lowest unoccupied molecular
orbital MO coefficients.

Maximum n-n repulsion for a C-N bond, Max n-n Re.-
CN is a quantum mechanical energy-related descriptor. This
energy describes the nuclear repulsion-driven processes in
the molecule and may be related to the conformational
(rotational, inversional) changes or atomic reactivity in
the molecule [27, 28]. Maximum nuclear repulsion energy
between two given atomic species (atoms A and B) in the
molecule is calculated as follows:

Enn(AB) = ZAZB

RAB
, (14)

where ZA and ZB are the nuclear (core) charges of atoms A
and B, respectively, and RAB is the distance between them.

3.3. Statistical Analysis. Codessa Pro was also used for
statistical analysis. This code uses diverse statistical structure
property/activity correlation techniques for the analysis of
experimental data in combination with the calculated molec-
ular descriptors. Heuristic and Best Multi-Linear Regression
methods implemented in Codessa Pro were employed for
selecting the “best” regression models [24].

In the study herein, the statistical quality of obtained
QSPR models were assessed by the statistical parameters R2,
R2

cv, F, S2, R2
ext., RMSE, and the Y-randomization test. R2,

the squared correlation coefficient, is a measure of the fit
of the regression equation. R2

cv, the “leave one out” (LOO)
cross-validated squared correlation coefficient, is an internal
validation parameter for a model. The LOO approach
involves developing a number of models with one sample
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omitted at a time. F, the Fisher test value, reflects the ratio
of the variance explained by the model and the variance due
to the error in the model. Higher values of F-test indicate the
significance of the equation. S2 is the standard deviation of
the regression. R2

ext. is the predicted square of the correlation
coefficient for external validation, and is calculated from the
test set by applying the equation developed on the training
set. Prediction accuracy of the models is also given with root
mean square error (RMSE) values. Reliability of the models
is indicated by the Y-randomization test.

3.4. Data Set. The experimental acidic dissociation constants
pKa data of some N-base ligands and their formation
constant, Kc with Bis(2,2′-bipyridine)platinum(II)2+ ion
were taken from [19]. The data set consists of 22 N-base
ligands. For pKa QSPR modeling, 5 of the ligands were
selected as a test set. For Kc QSPR modeling, 4 compounds
were selected as a test set. In the Kc QSPR modeling,
compound 11 was selected as an outlier due to the fact that its
reactivity is several magnitudes higher than the mean value
of the set. While selection of training and test set of the
compounds, attention was paid to all of the sets for spanning
structural and activity diversity for compounds.

4. Conclusions

In the present study herein, the quantum chemical structural
descriptors of 22 N-base ligands including pyridines, pyrim-
idines, purines, and quinolines have been correlated with
their experimental pKa using Codessa Pro methodology.
In addition, the formation constant (Kc) of reactions of
these ligands with Pt(II)(bpy)2

2+ (bpy = 2,2′-bipyridine)
ion has also been modeled using the methodology. We
have introduced three models each for pKa and Kc. pKa
models demonstrated relatively better statistics than the Kc
models.

The best obtained pKa Model I is the four-parametric
regression equation displaying very good statistical fit and
predictive power as evident from its R2 = 0.95, F = 61.79,
s2 = 0.311, and R2

cv = 0.89, R2
ext. = 0.97, RMSE = 0.51 values.

An analysis of descriptors that are involved in the pKa models
indicate that reactivity index and charge distribution-related
descriptors play major roles in the model acid dissociation
constant of N-base ligands.

Obtained Kc models exhibit interesting results in terms
of validations parameters. If one analyses these models, and
conclusion could be drawn that there is not any relationship
between R2

cv and R2
ext.. An analysis of descriptors that are

involved in the Kc models indicate that polarity and internal
entropy considered with the Nitrogen-related index of N base
ligands have dominant effects on the formation constant of
reactions of these ligands with the Pt(II)(bpy)2

2+ (bpy = 2,2′-
bipyridine) ion.
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