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When one would like to describe the relations between multivariate time series, the concepts of
dependence and causality are of importance. These concepts also appear to be useful when one
is describing the properties of an engineering or econometric model. Although the measures of
dependence and causality under stationary assumption are well established, empirical studies
show that these measures are not constant in time. Recently one of the most important classes of
nonstationary processes has been formulated in a rigorous asymptotic framework by Dahlhaus
in (1996), (1997), and (2000), called locally stationary processes. Locally stationary processes
have time-varying spectral densities whose spectral structures smoothly change in time. Here, we
generalize measures of linear dependence and causality to multiple locally stationary processes.
We give the measures of linear dependence, linear causality from one series to the other, and
instantaneous linear feedback, at time t and frequency λ.

1. Introduction

In discussion of the relations between time series, concepts of dependence and causality are
frequently invoked. Geweke [1] and Hosoya [2] have proposed measures of dependence
and causality for multiple stationary processes (see also Taniguchi et al. [3]). They have also
showed that these measures can be additively decomposed into frequency-wise. However,
it seems to be restrictive that these measures are constants all the time. Priestley [4] has
developed the extensions of prediction and filtering theory to nonstationary processes which
have evolutionary spectra. Alternatively, in this paper we generalize measures of dependence
and causality to multiple locally stationary processes.

When we deal with nonstationary processes, one of the difficult problems to solve is
how to set up an adequate asymptotic theory. To meet this Dahlhaus [5–7] introduced an im-
portant class of nonstationary processes and developed the statistical inference. We give the
precise definition of multivariate locally stationary processes which is due to Dahlhaus [8].
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Definition 1.1. A sequence of multivariate stochastic processes Zt,T = (Z(1)
t,T , . . . , Z

(d(Z))
t,T )

′
, (t =

2−N/2, . . . , 1, . . . , T, . . . , T +N/2; T,N ≥ 1) is called locally stationary with mean vector 0 and
transfer function matrix A◦ if there exists a representation

Zt,T =
∫π

−π
exp(iλt)A◦

t,T (λ)dζ(λ), (1.1)

where

(i) ζ(λ) = (ζ(1)(λ), . . . , ζ(d
(Z))(λ))

′
is a complex valued stochastic vector process on

[−π,π] with ζ(a)(λ) = ζ(a)(−λ) and

cum
{
dζ(a1)(λ1), . . . , dζ(ak)(λk)

}
= η

⎛
⎝ k∑

j=1

λj

⎞
⎠ κa1,...,ak

(2π)k−1
dλ1 · · ·dλk−1, (1.2)

for k ≥ 2, a1, . . . , ak = 1, . . . , d(Z), where cum{· · · } denotes the cumulant of kth order,
and η(λ) =

∑∞
j=−∞ δ(λ + 2πj) is the period 2π extension of the Dirac delta function.

(ii) There exists a constantK and a 2π-periodic matrix valued functionA : [0, 1]×R →
C

d(Z)×d(Z)
with A(u,−λ) = A(u, λ) and

sup
t,λ

∣∣∣∣∣A◦
t,T (λ)a,b −A

(
t

T
, λ

)
a,b

∣∣∣∣∣ ≤ KT−1 (1.3)

for all a, b = 1, . . . , d(Z) and T ∈ N. A(u, λ) is assumed to be continuous in u.

We call f(u, λ) := A(u, λ)ΩA(u, λ)∗ the time-varying spectral density matrix of the
process, where Ω = (κa,b)a,b=1,...,d(Z) . Write

εt :=
∫π

−π
exp(iλt)dζ(λ), (1.4)

then {εt} becomes a white noise process with E(εt) = 0 and Var(εt) = Ω.
Our objective is the generalization of dependence and causality measures to locally

stationary processes and construction of test statistics which can examine the nonstationary
effect of actual time series data. The paper, organized as follows. Section 2 explains the gen-
eralization of causality measures to multiple locally stationary processes. Since this extension
is natural, we do is not explain the original idea of the causality measures in stationary
case and recommend to refer Geweke [1] and Hosoya [2] for it. In Section 3 we introduce
the nonparametric spectral estimator of multivariate locally stationary processes and explain
their asymptotic properties. Finally, we propose the test statistics for linear dependence and
show their performance in terms of empirical numerical example in Section 4.
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2. Measurements of Linear Dependence and Causality for
Nonstationary Processes

Here, we generalize measures of dependence and causality to multiple locally stationary
processes. The assumptions and results of this section are straightforward extension of the
original idea in stationary case. To avoid repetition, Geweke [1] and Hosoya [2] should be
referred to for the original idea of causality.

For the d(Z)-dimensional locally stationary process {Zt,T}, we introduceH, the Hilbert
space spanned by Z

(j)
t,T , j = 1, . . . , d(Z), t = 0,±1, . . ., and call H(Zt,T ) the closed subspace

spanned by Z
(j)
s,T , j = 1, . . . , d(Z), s ≤ t. We obtain the best one-step linear predictor of Zt+1,T by

projecting the components of the vector onto H(Zt,T ), so here projection implies component-
wise projection.We denote the error of prediction by ξt+1,T . Then, for locally stationary process
we have

E
(
ξs,Tξ

′
t,T

)
= δs,tGt,T , (2.1)

where δs,t is the Kronecker delta function. Note that ξt,T ’s are uncorrelated but do not
have identical covariance matrices; namely, Gt,T are time-dependent. Now, we impose the
following assumption on Gt,T .

Assumption 2.1. The covariance matrices of errors Gt,T are nonsingular for all t and T .

Define

ut,T =
∞∑
j=0

Ht,T

(
j
)
ξt−j,T , tr

⎧⎨
⎩

∞∑
j=0

Ht,T

(
j
)
Gt−j,THt,T

(
j
)′
⎫⎬
⎭ < ∞ (2.2)

as a one-sided linear process and

vt,T = Zt,T − ut,T , (2.3)

where coefficient matrices are

Ht,T

(
j
)
= E

(
Zt,Tξ

′
t−j,T

)
G−1

t,T , j ≥ 1, Ht,T (0) = Id(Z) . (2.4)

Note that each Ht,T (j)ξt−j,T , j = 0, 1, . . . is projection of Zt,T onto the closed subspace
spanned by ξt−j,T . Now, we have the following Wold decomposition for locally stationary
processes.

Lemma 2.2 (Wold decomposition). If {Zt,T} is a locally stationary vector process of d(Z) com-
ponents, then Zt,T = ut,T +vt,T , where ut,T is given by (2.1), (2.2), and (2.4), vt,T is deterministic, and
E(vs,Tξ′t,T ) ≡ 0.

If only ut,T occurs, we say that Zt,T is purely nondeterministic.

Assumption 2.3. Zt,T is purely nondeterministic.
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In view of Lemma 2.2, we can see that under Assumptions 2.1 and 2.3, Zt,T becomes
a one-side linear process given by (2.2). For locally stationary process, if we choose an
orthonormal basis ε(j)t , j = 1, . . . , d(Z), in the closed subspace spanned by ξt,T , then {εt}will be
an uncorrelated stationary process. We call {εt} a fundamental process of {Zt,T} and Ct,T (j);
j = 0, 1, . . . denote the corresponding coefficients, that is,

Zt,T =
∞∑
j=0

Ct,T

(
j
)
εt−j . (2.5)

Let ft,T (λ) be the time-varying spectral density matrix of Zt,T . A process is said to have
the maximal rank if it has nondegenerate spectral density matrix a.e.

Assumption 2.4. The locally stationary process {Zt,T} has the maximal rank for all t and T . In
particular

∫π

−π
log|ft,T (λ)|dλ > −∞, ∀t, T, (2.6)

where |D| denotes the determinant of the matrix D.

We will say that a function φ(z), analytic in the unit disc, belongs to the class H2 if

H2
(
φ
)
= sup

0≤ρ<1

∫π

−π

∣∣∣φ(ρe−iλ)
∣∣∣2dλ < ∞. (2.7)

Under Assumptions 2.1–2.4, it follows that {Zt,T} has a time-varying spectral density
ft,T (λ)which has rank d(Z) for almost all λ, and is representable in the form

ft,T (λ) =
1
2π

Φt,T

(
eiλ
)
Φt,T

(
eiλ
)∗
, (2.8)

where D∗ denotes the complex conjugate of matrix D and Φt,T (eiλ) is the boundary value of
a d(Z) × d(Z) analytic function

Φt,T (z) =
∞∑
j=0

Ct,T

(
j
)
zj , (2.9)

in the unit disc, and it holds that Φt,T (0)Φt,T (0)
∗ = Gt,T .

Now, we introduce measures of linear dependence, linear causality, and instantaneous
linear feedback at time t. Let Zt,T = (X′

t,T ,Y
′
t,T )

′ be d(Z) = (d(X) + d(Y ))-dimensional locally
stationary process, which has time-varying spectral density matrix:

ft,T (λ) =

⎛
⎜⎝

f(xx)t,T (λ) f(xy)t,T (λ)

f(yx)t,T (λ) f(yy)t,T (λ)

⎞
⎟⎠. (2.10)
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We will find the partitions ξt,T

⎛
⎜⎜⎝

ξ(1)t,T d(X) × 1

ξ(2)t,T d(Y ) × 1

⎞
⎟⎟⎠ and

Cov
(
ξt,T , ξt,T

)
= Gt,T =

⎛
⎜⎝

G
(1,1)
t,T G

(1,2)
t,T

G
(2,1)
t,T G

(2,2)
t,T

⎞
⎟⎠ (2.11)

useful. Meanwhile G(X)
t,T and G

(Y )
t,T denote the covariance matrices of the one-step-ahead errors

ξ(X)
t,T and ξ(Y )t,T when Xt,T and Yt,T are forecasts from their own pasts alone; namely, ξ(X)

t,T and ξ(Y )t,T

are the residuals of the projections of Xt,T and Yt,T onto H(Xt−1,T ) and H(Yt−1,T ), respectively.
We define the measures of linear dependence, linear causality from {Yt,T} to {Xt,T},

from {Xt,T} to {Yt,T} and instantaneous linear feedback, at time t as

M
(X,Y )
t,T = log

∣∣∣G(X)
t,T

∣∣∣
∣∣∣G(Y )

t,T

∣∣∣
|Gt,T | ,

M
(Y →X)
t,T = log

∣∣∣G(X)
t,T

∣∣∣∣∣∣G(1,1)
t,T

∣∣∣ ,

M
(X→Y )
t,T = log

∣∣∣G(Y )
t,T

∣∣∣∣∣∣G(2,2)
t,T

∣∣∣ ,

(2.12)

M
(X·Y )
t,T = log

∣∣∣G(1,1)
t,T

∣∣∣
∣∣∣G(2,2)

t,T

∣∣∣
|Gt,T | , (2.13)

respectively; then we have

M
(X,Y )
t,T = M

(Y →X)
t,T +M

(X→Y )
t,T +M

(X·Y )
t,T . (2.14)

Next, we decompose measures of linear causality into frequency-wise. To define
frequency-wise measures of causality, we introduce the following analytic facts.

Lemma 2.5. The analytic matrix Φt,T (z) corresponding to a fundamental process {εt} (for {Zt,T})
is maximal among analytic matrices Ψt,T (z) with components from the class H2, and satisfying the
boundary condition (2.8); that is,

Φt,T (0)Φt,T (0)∗ ≥ Ψt,T (0)Ψt,T (0)∗. (2.15)

Although the following assumption is natural extension of Kolmogorov’s formula in
stationary case (see, e.g., [9]), it is not straightforward and unfortunately, so far, we cannot
prove it from more simple assumption. We guess it requires another completely technical
paper.
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Assumption 2.6 (Kolmogorov’s formula). Under Assumptions 2.1–2.4, an analytic matrix
Φt,T (z) satisfying the boundary condition (2.8) will be maximal if and only if

|Φt,T (0)|2 = |Gt,T | = exp
1
2π

∫π

−π
log|2πft,T (λ)|dλ. (2.16)

Now we define the process {ηt,T} as

⎛
⎝η(1)

t,T

η(2)
t,T

⎞
⎠ =

⎛
⎜⎝ Id(X) −G(1,2)

t,T G
(2,2)
t,T

−1

−G(2,1)
t,T G

(1,1)
t,T

−1
Id(Y )

⎞
⎟⎠
⎛
⎝ξ(1)t,T

ξ(2)t,T

⎞
⎠, (2.17)

then η(1)
t,T is the residuals of the projection of Xt,T onto H(Xt−1,T ,Yt,T ), whereas η(2)

t,T is the
residuals of the projection of Yt,T ontoH(Xt,T ,Yt−1,T ).

Furthermore, we have

Cov

⎧⎨
⎩
⎛
⎝ξ(1)t,T

η(2)
t,T

⎞
⎠,

⎛
⎝ξ(1)t,T

η(2)
t,T

⎞
⎠
⎫⎬
⎭ =

⎛
⎝G

(1,1)
t,T 0

0 G
(2,2)
t,T −G

(2,1)
t,T G

(1,1)
t,T

−1
G

(1,2)
t,T

⎞
⎠

=

⎛
⎝G

(1,1)
t,T 0

0 G̃
(2,2)
t,T

⎞
⎠ = G̃t,T = G̃1/2

t,T G̃1/2
t,T ,

(2.18)

so we can see that η(2)
t,T is orthogonal to ξ(1)t,T . For a d

(Z) × d(Z) matrix

Ft,T =

⎡
⎣ Id(X) 0

−G(2,1)
t,T G

(1,1)
t,T

−1
Id(Y )

⎤
⎦, (2.19)

we have
(

ξ
(1)
t,T

η
(2)
t,T

)
= Ft,T

(
ξ
(1)
t,T

ξ
(2)
t,T

)
.

If we set

Φ̃t,T (z) = Φt,T (z)Φt,T (0)−1Ft,T
−1G̃1/2

t,T

= Γt,T (z)G̃
1/2
t,T ,

(2.20)

we have the following lemma.

Lemma 2.7. Φ̃t,T (z) is an analytic function in the unit disc with Φ̃t,T (0)Φ̃t,T (0)
∗ = Gt,T and thus

maximal, such that the time-varying spectral density ft,T (λ) has a factorization

ft,T (λ) =
1
2π

Φ̃t,T

(
eiλ
)
Φ̃t,T

(
eiλ
)∗
. (2.21)
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From this lemma, it is seen that time-varying spectral density is decomposed into two
parts:

f(xx)t,T (λ) =
1
2π

{
Γ(1,1)t,T

(
eiλ
)
G

(1,1)
t,T Γ(1,1)t,T

(
eiλ
)∗

+ Γ(1,2)t,T

(
eiλ
)
G̃

(2,2)
t,T Γ(1,2)t,T

(
eiλ
)∗}

, (2.22)

where Γ(1,1)t,T (z) is a d(X) × d(X) left-upper submatrix of Γt,T (z). The former part is related to

the process {ξ(1)t,T } whereas the latter part is related to the process {η(2)
t,T }, which is orthogonal

to {ξ(1)t,T }. This relation suggests frequency-wise measure of causality, from {Yt,T} to {Xt,T} at
time t:

M
(Y →X)
t,T (λ) = log

∣∣∣f(xx)t,T (λ)
∣∣∣∣∣∣(1/2π){Γ(1,1)t,T

(
eiλ
)
G

(1,1)
t,T Γ(1,1)t,T

(
eiλ
)∗}∣∣∣ . (2.23)

Similarly, we propose

M
(X→Y )
t,T (λ) = log

∣∣∣f(yy)t,T (λ)
∣∣∣∣∣∣(1/2π){Δ(2,2)

t,T

(
eiλ
)
G

(2,2)
t,T Δ(2,2)

t,T

(
eiλ
)∗}∣∣∣ ,

M
(X,Y )
t,T (λ) = − log

∣∣∣Id(Y ) − f(yx)t,T (λ)f(xx)t,T (λ)−1f(xy)t,T (λ)f(yy)t,T (λ)−1
∣∣∣,

M
(X·Y )
t,T (λ) = log

∣∣∣(1/2π){Γ(1,1)t,T

(
eiλ
)
G

(1,1)
t,T Γ(1,1)t,T

(
eiλ
)∗}∣∣∣∣∣∣(1/2π){Δ(2,2)

t,T

(
eiλ
)
G

(2,2)
t,T Δ(2,2)

t,T

(
eiλ
)∗}∣∣∣

|ft,T (λ)| ,

(2.24)

where Δ(2,2)
t,T (z) is in the same manner of Γ(1,1)t,T (z).

Now, we introduce the following assumption.

Assumption 2.8. The roots of |Γ(1,1)t,T (z)| and |Δ(2,2)
t,T (z)| all lie outside the unit circle.

The relation of frequency-wise measure to overall measure is addressed in the follow-
ing result.

Theorem 2.9. Under Assumptions 2.1–2.8, we have

M
(·)
t,T =

1
2π

∫π

−π
M

(·)
t,T (λ)dλ. (2.25)

If Assumptions 2.1–2.6 hold, but Assumption 2.8 does not hold, then

M
(Y →X)
t,T >

1
2π

∫π

−π
M

(Y →X)
t,T (λ)dλ, M

(X→Y )
t,T >

1
2π

∫π

−π
M

(X→Y )
t,T (λ)dλ. (2.26)
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Remark 2.10. SinceH(Zt,T ) = H(ξt,T ) = H(ηt,T ) andH(Zt,T ) ⊇ H(Xt,T ,η
(2)
t,T ) ⊇ H(ηt,T ), we can

see that H(Zt,T ) = H(Xt,T ,η
(2)
t,T ). Therefore, the best one-step prediction error of the process{ Xt,T

η
(2)
t,T

}
is given by

{
ξ
(1)
t,T

η
(2)
t,T

}
. Let f̃t,T (λ) be a time-varying spectral density matrix of the process{ Xt,T

η
(2)
t,T

}
and denote the partition by

f̃t,T (λ) =

⎛
⎜⎝

f(xx)t,T (λ) f̃(1,2)t,T (λ)

f̃(2,1)t,T (λ)
1
2π

G̃
(2,2)
t,T

⎞
⎟⎠. (2.27)

Then, we obtain another representation of frequency-wise measure of causality, from {Yt,T}
to {Xt,T} at time t:

M
(Y →X)
t,T (λ) = log

∣∣∣f(xx)t,T (λ)
∣∣∣∣∣∣f(xx)t,T (λ) − 2π f̃(1,2)t,T (λ)G̃(2,2)−1
t,T f̃(2,1)t,T (λ)

∣∣∣ . (2.28)

This relation suggests that we apply the nonparametric time-varying spectral density

estimator of the residual process
{ Xt,T

η̂
(2)
t,T

}
. However, this problem requires another paper. We

will make it as a further work.

3. Nonparametric Spectral Estimator of Multivariate Locally
Stationary Processes

In this section we introduce the nonparametric spectral estimator of multivariate locally
stationary processes. First, we make the following assumption on the transfer function matrix
A(u, λ).

Assumption 3.1. (i) The transfer function matrix A(u, λ) is 2π-periodic in λ, and the periodic
extension is twice differentiable in u and λ with uniformly bounded continuous derivatives
∂2/∂u2A, ∂2/∂λ2A and (∂/∂u)(∂/∂λ)A. Furthermore, the uniformly bounded continuous
derivative (∂2/∂u2)(∂/∂λ)A also exists.

(ii)All the eigenvalues of f(u, λ) are bounded from below and above by some constants
δ1, δ2 > 0 uniformly in u and λ.

As an estimator of f(u, λ), we use the nonparametric estimator of kernel type defined
by

f̂(u, λ) =
∫π

−π
WT

(
λ − μ

)
IN
(
u, μ

)
dμ, (3.1)
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where WT (ω) = M
∑∞

ν=−∞ W(M(ω + 2πν)) is the weight function and M > 0 depends on T ,
and IN(u, λ) is the localized periodogrammatrix over the segment {[uT]−N/2+1, [uT]+N/2}
defined as

IN(u, λ) =
1

2πH2,N

{
N∑
s=1

h
( s

N

)
Z[uT]−N/2+s,T exp{iλs}

}

×
{

N∑
r=1

h
( r

N

)
Z[uT]−N/2+r,T exp{iλr}

}∗
.

(3.2)

Here h : [0, 1] → R is a data taper and H2,N =
∑N

s=1 h(s/N)2. It should be noted that
IN(u, λ) is not a consistent estimator of the time-varying spectral density. Tomake a consistent
estimator of f(u, λ)we have to smooth it over neighbouring frequencies.

Now we impose the following assumptions on W(·) and h(·).

Assumption 3.2. Theweighted functionW : R → [0,∞] satisfiesW(x) = 0 for x /∈ [−1/2, 1/2]
and is continuous and even function satisfying

∫1/2
−1/2 W(x)dx = 1 and

∫1/2
−1/2 x

2W(x)dx < ∞.

Assumption 3.3. The data taper h : R → R satisfies (i) h(x) = 0 for all x /∈ [0, 1] and h(x) =
h(1 − x); (ii) h(x) is continuous on R, twice differentiable at all x /∈ U where U is a finite set
of R, and supx/∈U|h′′(x)| < ∞. Write

Kt(x) :=

{∫1

0
h(x)2dx

}−1
h

(
x +

1
2

)2

, x ∈
[
−1
2
,
1
2

]
, (3.3)

which plays a role of kernel in the time domain.

Furthermore, we assume the following.

Assumption 3.4. M = M(T) andN = N(T),M 
 N 
 T satisfy

√
T

M2
= o(1),

N2

T3/2
= o(1),

√
T logN
N

= o(1). (3.4)

The following lemmas are multivariate version of Theorem 2.2 of Dahlhaus [10] and
Theorem A.2 of Dahlhaus [7] (see also [11]).

Lemma 3.5. Assume that Assumptions 3.1–3.4 hold. Then
(i)

E(IN(u, λ)) = f(u, λ) +
N2

2T2

∫1/2

−1/2
x2Kt(x)2dx

∂2

∂u2
f(u, λ)

+ o

(
N2

T2

)
+O

(
logN
N

)
,

(3.5)
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(ii)

E
(
f̂(u, λ)

)
= f(u, λ) +

N2

2T2

∫1/2

−1/2
x2Kt(x)2dx

∂2

∂u2
f(u, λ)

+
1

2M2

∫1/2

−1/2
x2W(x)2dx

∂2

∂λ2
f(u, λ)

+ o

(
N2

T2
+M−2

)
+O

(
logN
N

)
,

(3.6)

(iii)

m∑
i,j=1

Var
(
f̂i,j(u, λ)

)
=

M

N

m∑
i,j=1

fi,j(u, λ)
2
∫1/2

−1/2
Kt(x)2dx

×
∫1/2

−1/2
W(x)2dx(2π + 2π{λ ≡ 0 mod π}) + o

(
M

N

)
.

(3.7)

Hence, we have

E
∥∥∥f̂(u, λ) − f(u, λ)

∥∥∥2 = O

(
M

N

)
+O

(
M−2 +N2T−2

)2
= O

(
M

N

)
, (3.8)

where ‖D‖ is the Euclidean norm of the matrix D and ‖D‖ = {tr{DD∗}}1/2.

Lemma 3.6. Assume that Assumptions 3.1–3.4 hold. Let φj(u, λ), j = 1, . . . , k be d(Z)×d(Z) matrix-
valued continuous function on [0, 1] × [−π,π] which satisfies the same conditions as the transfer
function matrix A(u, λ) in Assumption 3.1 and φj(u, λ)

∗ = φj(u, λ), φj(u,−λ) = φj(u, λ)
′. Then

LT

(
φj

)
=
√
T

{
1
T

T∑
t=1

∫π

−π
tr
{
φj

(
t

T
, λ

)
IN
(

t

T
, λ

)}
dλ

−
∫1

0

∫π

−π
tr
{
φj(u, λ)f(u, λ)

}
dλdu

}
, j = 1, . . . , k

(3.9)
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have, asymptotically, a normal distribution with zero mean vector and covariance matrix V whose
(i, j)-the element is

4π
∫1

0

[∫π

−π
tr
{
φi(u, λ)f(u, λ)φj(u, λ)f(u, λ)

}
dλ

+
1

4π2

∑
a1,a2,a3,a4

∑
b1,b2,b3,b4

κb1,b2,b3,b4

×
∫π

−π

∫π

−π
φi(u, λ)a1,a2φj

(
u, μ

)
a4,a3

·A(u, λ)a2,b1A(u,−λ)a1,b2

×A(u,−μ)a4,b3A
(
u, μ

)
a3,b4

dλdμ

]
du.

(3.10)

Assumption 3.4 does not coincide with Assumption A.1(ii) of Dahlhaus [7]. As
mentioned in A.3 Remarks of Dahlhaus [7, page 27], Assumption A.1(ii) of Dahlhaus [7]
is required because of the

√
T -unbiasedness at the boundary 0 and 1. If we assume that

{Z2−N/2,T , . . . ,Z0,T} and {ZT+1,T , . . . ,ZT+N/2,T} are available with Assumption 3.4, then from
Lemma 3.5 (i)

E
(
LT

(
φj

))
=
√
TE

{
1
T

T∑
t=1

∫π

−π
tr
{
φj

(
t

T
, λ

)
IN
(

t

T
, λ

)}
dλ

−
∫1

0

∫π

−π
tr
{
φj(u, λ)f(u, λ)

}
dλdu

}

= O

(√
T

(
N2

T2
+
logN
N

+
1
T

))
= o(1).

(3.11)

4. Testing Problem for Linear Dependence

In this section we discuss the testing problem for linear dependence. The average measure
of linear dependence is given by the following integral functional of time varying spectral
density:

lim
T →∞

T−1
T∑
t=1

M
(X,Y )
t,T =

∫1

0

∫π

−π
− 1
2π

log
∣∣∣Id(Y ) − fyx(u, λ)fxx(u, λ)

−1fxy(u, λ)fyy(u, λ)
−1
∣∣∣dλdu

=
∫1

0

∫π

−π
K(X,Y ){f(u, λ)}dλdu,

(4.1)
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where

K(X,Y ){f(u, λ)} ≡ − 1
2π

log
∣∣∣Id(Y ) − fyx(u, λ)fxx(u, λ)

−1fxy(u, λ)fyy(u, λ)
−1
∣∣∣. (4.2)

We consider the testing problem for existence of linear dependence:

H :
∫1

0

∫π

−π
K(X,Y ){f(u, λ)}dλdu = 0 (4.3)

against

A :
∫1

0

∫π

−π
K(X,Y ){f(u, λ)}dλdu/= 0. (4.4)

For this testing problem, we define the test statistics ST as

ST =
√
T

∫1

0

∫π

−π
K(X,Y )

{
f̂(u, λ)

}
dλdu, (4.5)

then, we have the following result.

Theorem 4.1. Under H,

ST
D−→ N

(
0, V 2

K(X,Y )

)
, (4.6)

where the asymptotic variance of ST is given by

V 2
K(X,Y )

= 4π
∫1

0

[∫π

−π
tr
[
f(u, λ)K(1)

(X,Y ){f(u, λ)}′
]2
dλ

+
1

4π2

∑
a,b,c,d

κa,b,c,dγb,a(u)γc,d(u)

]
du,

(4.7)

with

Γ(u) =
{
γ(u)

}
a,b=1,...,d(Z) =

∫π

−π
A(u, λ)∗K(1)

(X,Y ){f(u, λ)}A(u, λ)dλ, (4.8)

and K
(1)
(X,Y )(·) is the first derivative of K(X,Y )(·).
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To simplify, {Zt,T} is assumed to be Gaussian locally stationary process. Then, the
asymptotic variance of ST becomes the integral functional of the time-varying spectral
density:

V 2
K(X,Y )

= 4π
∫1

0

∫π

−π
tr
[
f(u, λ)K(1)

(X,Y ){f(u, λ)}′
]2
dλ

= V 2
K(X,Y )

{f(u, λ)}.
(4.9)

If we take V̂ 2
K(X,Y )

= V 2
K(X,Y )

{f̂(u, λ)}, then V̂ 2
K(X,Y )

is consistent estimator of asymptotic var-
iance, so, we have

LT =
ST√
V̂ 2
K(X,Y )

D−→ N(0, 1). (4.10)

Next, we introduce a measure of goodness of our test. Consider a sequence of alterna-
tive spectral density matrices:

gT (u, λ) = f(u, λ) +
1√
T
b(u, λ), (4.11)

where b(u, λ) is a d(Z) ×d(Z) matrix whose entries bab(u, λ) are square-integrable functions on
[0, 1] × [−π,π].

Let EgT (·) and Vf(·) denote the expectation under gT (u, λ) and the variance under
f(u, λ), respectively. It is natural to define an efficacy of LT by

eff(LT ) = lim
T →∞

EgT (ST )√
Vf(ST )

(4.12)

in line with the usual definition for a sequence of “parametric alternatives.” Then we see that

eff(LT ) = lim
T →∞

√
T
∫π
−π
[
K(X,Y ){gT (u, λ)} −K(X,Y ){f(u, λ)}

]
dλ

V 2
K(X,Y )

=

∫π
−π tr

[
K

(1)
(X,Y ){f(u, λ)}b(u, λ)′

]
dλ

V 2
K(X,Y )

.

(4.13)

For another test L∗
T we can define an asymptotic relative efficiency (ARE) of LT relative

to L∗
T by

ARE
(
LT , L

∗
T

)
=

{
eff(LT )
eff
(
L∗
T

)
}2

. (4.14)
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Table 1: LT in (4.10) for each two companies.

1:Hi 2:Ma 3:Sh 4:So 5:Ho 6:Ni 7:To

1:Hi — — — — — — —

2:Ma 18.79 — — — — — —

3:Sh 19.86 18.93 — — — — —

4:So 19.22 19.18 18.27 — — — —

5:Ho 15.35 14.46 15.17 15.42 — — —

6:Ni 15.18 15.03 15.84 16.58 19.24 — —

7:To 15.86 16.06 16.00 16.61 20.57 19.12 —

Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1
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H
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2000–2004

Figure 1: The daily linear dependence between HONDA and TOYOTA.

If we take the test statistic based on stationary assumption as another test L∗
T , we can

measure the effect of nonstationarity when the process concerned is locally stationary process.
Finally, we discuss a testing problem of linear dependence for stock prices of Tokyo

Stock Exchange. The data are daily log returns of 7 companies; 1 :HITACHI 2 :MATSUSHITA
3 : SHARP 4 : SONY 5 :HONDA 6 :NISSAN 7 : TOYOTA. The individual time series are 1174
data points since December 28, 1999 until October 1, 2004. We compute LT in (4.10) for each
two companies. The selected parameters are T = 1000, N = 175, and M = 8, where N is the
length of segment which the localized periodogram is taken over andM is the bandwidth of
the weight function.

The results are listed in Table 1. It shows that all values for each two companies are
large. Since under null hypothesis the limit distribution of LT is standard normal, we can
conclude hypothesis is rejected. Namely, the linear dependencies exist at each two companies.
In particular, the values both among electric appliance companies and among automobile
companies are significantly large. Therefore, we can see that the companies in the same
business have strong dependence.

In Figures 1 and 2, the daily linear dependence between HONDA and TOYOTA and
between HITACHI and SHARP is plotted. They show that the daily dependencies are not
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Figure 2: The daily linear dependence between HITACHI and SHARP.

constant and change in time. So, it seems to be reasonable that we use the test statistic based
on nonstationary assumption.
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