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The extended Stokes problems, which study the flow suddenly driven by relatively moving half-
planes, are reexamined for the Oldroyd-B fluid. This topic has been studied (Liu, 2011) by applying
the series expansion to calculate the inverse Laplace transform. The derived solution was correct
but tough to perform the calculation due to the series expansion of infinite terms. Herein another
approach, the contour integration, is applied to calculate the inversion. Moreover, the Heaviside
unit step function is included into the boundary condition to ensure the consistence between
boundary and initial conditions. Mathematical methods used herein can be applied to other fluids
for the extended Stokes’ problems.

1. Introduction

In 1995, Zeng and Weinbaum’s paper studying the viscous flow driven by relatively moving
half-planes is a new as well as pioneering work for theoretical fluid mechanics [1]. This
problem is later named as the extended Stokes’ problem. Different from the well-known
traditional Stokes’ problems in which the flow depends on only one spatial parameter
[2, 3], the extended Stokes’ problems possess two spatial dependences. The additional spatial
dependence makes the problem more complex than the traditional one. To solve the velocity,
one needs to perform two different integral transforms to the momentum equation with the
help of boundary and initial conditions given. For the Newtonian fluid, the analytic solutions
for a finite-depth and an infinite-depth cases have been provided [4, 5].

As for non-Newtonian fluids, the extended problem for the Oldroyd-B fluid was
analyzed [6] by expanding the rheological parameters as well as the spatial and temporal
variables in a series form. This expansion provides a way to carry out the inverse transform
to pursue the exact velocity profile. As the final solution is also expressed in an infinite series
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form, it is sometimes time-consuming to perform the calculation. To this end, the contour
integration was adopted to perform the inverse calculation for the flow of a second-grade
fluid [7]. Although the contour integration is a correct and universal tool for calculating
the inverse Laplace transform, it is sometimes laborious, and even impossible, due to the
complex mathematical structure of the transformed variable. Different fluid models usually
have different transformed types. The variety of transformed types makes a fixed contour
path impossible and thus leads to the difficulty of calculating the integration.

From the mathematical viewpoint, it seems easy to reduce the Oldroyd-B model to
either theMaxwell fluid or the second-grade fluid by simply setting one parameter to be zero.
However, it is not always true for the inversion calculation using the contour integration. For
the second-grade fluid, the contour path shown in [7] succeeds in calculating the inversion
while the same path cannot be applied to the Oldroyd-B fluid. More singularity points which
should be excluded from the contour make the latter case much more complicated. This is
why we study the topic again.

The organization of this paper is as follows. In Section 2, the fluid system including the
momentum equation, boundary and initial conditions is elucidated. The transform integrals
adopted are also introduced. Next, the detailed derivation is presented in Section 3, and
concluding remarks are made in Section 4.

2. Problem Description

First, the constitutive equation, boundary and initial conditions considered are shown below
(see [6] for details)

(
1 + λ

∂

∂t

)
∂u

∂t
= ν

(
1 + λr

∂

∂t

)(
∂2u

∂y2
+
∂2u
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)
, (2.1)

u
(
y = 0, z > 0

)
= g(t)H(t), (2.2)

u
(
y = 0, z < 0

)
= −g(t)H(t), (2.3)

u
(
y −→ ∞) = 0, (2.4)

u(z −→ ±∞) is finite, (2.5)

u(t = 0) = 0, (2.6)

where u represents the velocity along the x direction, the fluid constants ν, λ, and λr are the
kinematic viscosity, the relaxation time, and the retardation times, and

g(t) =

{
u0,

u0 cos(tσ + θ)
(2.7)
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are the plate boundary conditions for the first and second problems, respectively. The
Heaviside unit step function H(t) is defined as

H(t) =

{
0, t ≤ 0,
1, t > 0.

(2.8)

The inclusion of the Heaviside unit step function is to avoid the inconsistence between (2.2)
and (2.6) at the point (y, t) = (0, 0) (also see [8] for reference). Due to the system being the odd
function of z, one only needs to calculate the positive-z domain, and the boundary condition
(2.3) is thus replaced by

u(z = 0) = 0. (2.9)

Now applying the Laplace transform

f̂(s) ≡
∫∞

0
f(t) · e−stdt, (2.10)

and then the Fourier sine transform

f̃(ω) ≡
∫∞

0
f
(
y
)
sin
(
yω
)
dy, (2.11)

to the present PDE system, the transformed velocity is solved to be (see [6] for details)

ũ = ω

[
ω2 +

s(1 + λs)
ν(1 + λrs)

]−1⎡⎣1 − exp

⎛
⎝−z

√
ω2 +

s(1 + λs)
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⎞
⎠
⎤
⎦ · ĝ(s), (2.12)

where

ĝ(s) =

⎧⎪⎨
⎪⎩

u0

s
,

u0

(
s cos θ
s2 + σ2

− σ sin θ
s2 + σ2

)
,

(2.13)

for two kinds of problems, respectively. Above methods and results have been elucidated
in [6]. The existing paper employed a series expansion to (2.12) to calculate the inverse
transformation and then derived the solution in a series form. However, this expansion
may result in a possible divergence. In the next section, another approach using the contour
integration will be introduced for the sake of overcoming this weakness.
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3. Contour Integration

As mentioned above, a different approach for calculating the inverse Laplace transform is
adopted to derive the solution. Firstly, the term in the square root of the exponential function
of (2.12) is written

ω2 +
s(1 + λs)
ν(1 + λrs)

=
λ

νλr
· (s − s1)(s − s2)

(s − s0)
, (3.1)

where

s0 = − 1
λr

, (3.2)

s1 =
1
2λ

[
−
(
1 +ω2νλr

)
+
√
(1 +ω2νλr)

2 − 4ω2νλ

]
, (3.3)

s2 =
1
2λ

[
−
(
1 +ω2νλr

)
−
√
(1 +ω2νλr)

2 − 4ω2νλ

]
. (3.4)

It is clear that the sign of (1 +ω2νλr)
2−4ω2νλ strongly dominate the pole positions inside the

contour path which will be demonstrated later. With the help of (3.1), the inversion of (2.12)
is shown

u =
2
π

∫ω=∞

ω=0
dωω sin

(
yω
) 1
2πi

∫s=κ+i∞

s=κ−i∞
I · ds, (3.5)

where

I =
νλr
λ

· (s − s0)ĝ(s)
(s − s1)(s − s2)

⎡
⎣1 − exp

⎛
⎝−z

√
λ

νλr

√
(s − s1)(s − s2)

s − s0

⎞
⎠
⎤
⎦ · est. (3.6)

Two cases for calculating (3.5) are discussed below.

3.1. The Case λr ≥ λ > 0

For the case λr ≥ λ > 0, the term in the square root of (3.3) and (3.4) can be rewritten as

(
1 −ω2νλr

)2
+ 4ω2ν(λr − λ), (3.7)

which possess a nonnegative value implying that both of s1 and s2 are negative real numbers
for all values of ω. Thus the relation between s0, s1, and s2 is

s1 ≥ s0 ≥ s2. (3.8)
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Figure 1: The contour path for the case λr ≥ λ > 0. Single pole s = 0 is for the first problem and two poles
s = iΩ and s = −iΩ are for the second problem.

Now the contour integration shown in Figure 1 is adopted to calculate the inner integral in
(3.5). The result is

∫κ+i∞

κ−i∞
I · ds = 2i
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⎛
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√
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√
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+ 2πi · R,

(3.9)

where R denotes the contribution from the poles. It is clear that only one pole s = 0 (note
ĝ(s) = u0/s) exists for the first problem and the residue is

R = Res(0) =
u0νλrs0
λs1s2

⎡
⎣exp

⎛
⎝−z

√
λ

νλr

√
−s1s2
s0

⎞
⎠ − 1

⎤
⎦. (3.10)
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As for the second problem, there are two poles, s = iσ and s = −iσ, and the result is

R = Res(+iσ) + Res(−iσ)

=
u0νλr
λ

· r0
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·
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)
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λ
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√
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2

)⎞⎠
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⎡
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− z

√
λ

νλr

√
r1r2
r0

sin
(
φ1 + φ2 − φ0

2

)⎤
⎦
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⎭,

(3.11)

where

r0 =
√
σ2 + λ−2r ,

r1 =

√
σ2 +

1
4λ2

[
(1 +ω2νλr) −

√
(1 +ω2νλr)

2 − 4ω2νλ

]2
,

r2 =

√
σ2 +

1
4λ2

[
(1 +ω2νλr) +

√
(1 +ω2νλr)

2 − 4ω2νλ

]2
,

φ0 = tan−1(σλr),

φ1 = tan−1

⎡
⎢⎣ 2λσ

(1 +ω2νλr) −
√
(1 +ω2νλr)

2 − 4ω2νλ

⎤
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φ2 = tan−1
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√
(1 +ω2νλr)

2 − 4ω2νλ

⎤
⎥⎦.

(3.12)

The definition sketch for (3.12) is displayed in Figure 2. It is remarked that r1, r2, φ1,
and φ2 depend on ω. Substituting (3.9) into (3.6)with the help of (3.10) to (3.12), (3.5) can be
calculated to obtain the exact solution of flow velocity u.
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Figure 2: The relation between poles and si for the second problem for the case λr ≥ λ > 0.

3.2. The Case λ > λr > 0

For this case, it is more complex than the previous case. Firstly the sign of ω has to be
determined by setting the term in the square root of (3.3) and (3.4) to be zero. It reads

(
1 +ω2νλr

)2 − 4ω2νλ > 0, for 0 < ω < ω1 or ω > ω2, (3.13)

(
1 +ω2νλr

)2 − 4ω2νλ < 0, for ω1 < ω < ω2, (3.14)

where

ω1 =

(
2λ − λr − 2

√
λ(λ − λr)

νλ2r

)0.5

,

ω2 =

(
2λ − λr + 2

√
λ(λ − λr)

νλ2r

)0.5

.

(3.15)
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Figure 3: The contour path for the case λ > λr > 0 with the conditions 0 < ω < ω1 or ω > ω2. Single pole
s = 0 is for the first problem and two poles s = iΩ and s = −iΩ are for the second problem.

According to the sign of (3.13) and (3.14), the integration with respect to ω in (3.5) has to be
divided into three parts, as shown below

u =
2
π

∫ω=ω1

ω=0
dωω sin

(
yω
) 1
2πi

∫s=κ+i∞

s=κ−i∞
I · ds

+
2
π

∫ω=ω2

ω=ω1

dωω sin
(
yω
) 1
2πi

∫ s=κ+i∞

s=κ−i∞
I · ds

+
2
π

∫ω=∞

ω=ω2

dωω sin
(
yω
) 1
2πi

∫s=κ+i∞

s=κ−i∞
I · ds.

(3.16)

For the first and last integrals, the poles s1 and s2 are negative real numbers due to the positive
sign of (3.13). Therefore, the inner integral can be calculated using the contour path shown in
Figure 3:
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Figure 4: The contour path for the case λ > λr > 0 with the condition ω1 < ω < ω2. The poles s = iΩ and
s = −iΩ are for the second problem only.
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√
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⎞
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(s − s1)(s − s2)

sin

⎛
⎝z

√
λ

νλr

√
(s − s1)(s − s2)

s0 − s

⎞
⎠ · estds

+ 2πi · R,

(3.17)

where

s1 > s2 > s0. (3.18)

The residue R is evaluated to be equivalent to (3.10) and (3.11) for the first and second
problems, respectively.

As for the second term in (3.16), where s1 and s2 are complex conjugates, the contour
path shown in Figure 4 is used to calculate the inner integral. It is noted that the contour path
goes around the origin instead of s0. For the first problem, the inner integral is
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(3.19)

where the second term in (3.19) is contributed by the integration around the origin. The
residue

R = Res(s1) + Res(s2), (3.20)

is calculated to be zero.
For the second problem, we have
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=2i
∫−∞

s0

u0(s cos θ−σ sin θ)
s2+σ2

· νλr
λ

· (s−s0)
(s−s1)(s−s2) · sin

⎛
⎝z

√
λ

νλr

√
(s−s1)(s−s2)

s0−s

⎞
⎠ · estds

+ 2πi · R,
(3.21)

where the residue is contributed from four poles. It reads
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Figure 5: The relation between poles and si for the second problem for the case λ > λr > 0 with the
condition ω1 < ω < ω2.

where

r3 =
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σ2 − σ
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λ
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√
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2 +
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λ
,
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⎛
⎜⎝2λσ −

√
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2
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⎞
⎟⎠,
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⎛
⎜⎝2λσ +

√
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2

1 +ω2νλr

⎞
⎟⎠,

(3.23)

where the relation is shown in Figure 5. Now the exact solution of u can be acquired by
substituting (3.17), and (3.19)–(3.23) into (3.16) to calculate the inverse Fourier transform.

4. Concluding Remarks

The extended Stokes’ problems for the Oldroyd-B fluid are revisited in this paper by
applying the contour integration to calculate the inversion of velocity rather than using the
series expansion in the earlier paper. Two cases classified according to the relation between
rheological parameters are analyzed. Mathematical techniques used in this paper can be
generalized and applied to investigate other fluids for the extended Stokes’ problems.
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