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Modal energy redistribution is utilized to suppress vibrations of a cantilever beam. The energy redistribution between the modes
of the beam is achieved by switching on/off an end force which causes varying stiffness of the beam. The control methodology to
suppress all the modes relies on continuously funneling the energy from the higher to the lower modes with the end force and
dissipating the energy associated with the fundamental mode. We present an analytical framework for control design exploiting
the modal energy redistribution and verify the results through simulations and experiments.

1. Introduction

There have been extensive studies on active vibration of flex-
ible structures in the literatures due to its many applications
such as space and terrestrial structures (e.g., [1–3]). In many
of these studies, the control scheme for these systems is based
on a finite number of modes, and the resulting closed-loop
system is prone to instability due to spillover [4, 5]. There
are different ways to avoid spillover in flexile structures.
One approach is to have a collocated structure guarantee
closed-loop system stability despite model truncation [6–
8]. Another approach to avoid spillover is redistribution of
energy in vibrating structures from mode to mode and, in
space, from one region of the structure to another [9, 10].
In the latter approach, stiffness variations of the structure
and the difference between modes in two stiffness states are
exploited to gain control authority and suppress vibrations.
Some examples of stiffness variations in vibration suppres-
sion are [11–13] where the stiffness variation and informa-
tion of the modes are used to reduce energy of the system.
This research also uses stiffness variation to redistribute the
modal energy and suppress vibration. However, in our study,
all the modal states of the structure except the first (funda-
mental) one are not available or reliable to be used in a feed-
back closed loop. As a result, displacement and velocity of
the structure at different places are used to turn on and off

an end force to redistribute the energy of the beam such
that higher modes’ energy funnel to the lower modes or
get suppressed. The energy associated with the first mode is
dissipated by employing a feedback closed-loop system. We
show that in this scheme that energy of the beam decreases
if the switching of the end force (i.e., turning on/off the end
force) does not add significant energy to the beam or removes
its energy.

This paper is organized as follows. In Section 2, we show
a proof of the concept of why modal energy gets redistributed
using an end force and how the energy of the beam is
reduced. In Section 3, we consider a cantilever beam with an
end force and derive its mathematical model. Additionally,
we look at the modal energy of the beam and introduce a
switching strategy which minimally affects the energy of the
beam. Sections 4 and 5 provide simulation and experimental
results, respectively. Concluding remarks and future research
directions are given in Section 6.

2. Background and Notation

2.1. Proof of Concept. A cantilever beam with an end force
is shown in Figure 1. The goal is to change the mode shapes
of the beam using the end force and exploit these changes in
beam vibration suppression.
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Figure 1: A flexible cantilever beam with an end force.

Consider an idealized static problem wherein the end
force is instantaneously switched between two values P0 and
P1, and the fundamental modal components (first mode) are
repeatedly removed from the system after each switch. We
will show that such a strategy removes all the energy from the
beam including higher modes. In addition, this strategy only
requires that one only be able to suppress the fundamental
mode corresponding to P0 and P1 rather than all the modes
of the beam. For the calculations, we denote the attendant
mode corresponding to each of mode shapes for P0 and P1 as
φj(x) and ψj(x), respectively. To get an idea how the modes
shapes compare with different end forces, in Figure 2 the
first four mode shapes of a cantilever beam for P = 0 N and
P1 = 40 N are shown. In this figure, the beam length, width,
and thickness are 1 m, 0.05 m, and 0.003 m, respectively, with
aluminum properties. These dimensions and property are
used in the simulation and the experimental section of this
paper.

If one starts with a beam deflection y0(x, t) and end-load
of P0, then we can write

y0(x, t) =
N∑

j=1

δj(t)φj(x), (1)

where N denotes the modal truncation level, and δj(t) is
the jth modal amplitude component. Assuming that one can
remove the first mode, the resulting shape is given by

y1(x, t) = y0(x, t)− δ1(t)φ1(x) =
N∑

j=2

δj(t)φj(x). (2)

At this point, the end load is switched to P1, and the shape is
now conveniently expressed as

y1(x, t) =
N∑

j=1

βj(t)ψj(x). (3)

It is assumed that the first mode is again removed while P =
P1, resulting in the shape

y2(x, t) =
N∑

j=2

βj(t)ψj(x). (4)

The end load is then switched back to P0 where the shape can
then be expressed by

y2(x, t) =
N∑

j=1

γj(t)φj(x). (5)

This completes one cycle of the process, and one is interested
in how the new modal coefficients, the γj(t), are related to
the originals, the δj(t). This is conveniently described by a
linear mapping

Γ =MΔ, (6)

where Γ and Δ are the vectors of modal coefficients

Γ = (γ1, γ2, . . . , γn
)T ,

Δ = (δ1, δ2, . . . , δn)T ,
(7)

and M, the mapping matrix, can be developed by a sequence
of calculations that use modal projections for each level of
the end force as follows:

γi(t) =
〈
y2(x, t),φi(x)

〉 =
〈 N∑

j=2

βj(t)ψj(x),φi(x)

〉

=
N∑

j=2

βj(t)
〈
ψj(x),φi(x)

〉
.

(8)

(〈 f , g〉 is the inner product of functions f and g denoted by∫ L
0 f gdx), and similarly,

βj(t) =
N∑

k=2

δk(t)
〈
ψj(x),φk(x)

〉
. (9)

Now, substituting for βj(t) from (9) in (8) results in

γi(t) =
N∑

j=2

N∑

k=2

〈
φi(x),ψj(x)

〉〈
ψj(x),φk(x)

〉
δk,

i = 1, . . . ,N.

(10)

Comparing this equation with (6) reveals the structure of the
mapping matrixM. It should be noticed that the convergence
of this process depends on the N × N linear operator M,
which can be constructed as follows: the first column con-
tains all zeros since the first modal coefficient was zeroed out
(note that this implies that M will always have at least one
zero eigenvalue). The remaining columns are filled in by the
coefficient 〈φi(x),ψj(x)〉〈ψj(x),φk(x)〉, i = 1, 2, . . . ,N , j, k =
2, 3, . . . ,N . If all eigenvalues of M lie inside the unit circle,
the process will converge, implying that all modes under
consideration die out under repeated cycling and removal
of the first relevant mode. In fact, rate of convergence (or
divergence) is dictated by these eigenvalues. Figure 3 depicts
a schematic of the concept of the modal energy redistribution
using the end force.

The above process for the cantilever beam whose mode
shapes are shown in Figure 2 is carried out for the first four
modes, and the resulting eigenvalues for the mapping matrix
M are

λi = {0, 0.51, 0.87, 0.92}. (11)

We can see that the rate of convergence for the higher
modes is much smaller as compared to the lower modes. In
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Figure 2: Cantilever beam mode shapes for P = 0 N and P = 40 N.

other words, the absolute value of the higher modes is close to
unity. Note that in this calculation it is assumed that the end
force does not add or remove energy to or from the beam
in the time interval that is switched on which; this is very
unlikely to happen. In the next section, we study a switched
system that is comprised of two subsystems (corresponding
to the case where the end force is on or off) to model the
effect of switching on energy of each modes.

3. Dynamic Analysis

3.1. Mathematical Modeling. Consider the cantilever beam
of length L and uniform cross-sectional area A, shown in
Figure 1. Let P be the force acting at the free end of the
beam such that the line of action always passes through the
fixed end of the beam. Under assumption of Euler-Bernoulli

theory and small deflections, the equation of motion of the
beam in Figure 1 can be written as follows:

EI y′′′′ + Py′′ + ρA ÿ = 0, (12)

where E, I , and ρ are the Young’s modulus of elasticity, area
moment of inertia, and density of the beam, respectively,
and y′ and ẏ denote the partial derivatives of y(x, t) with
respect to x and t, respectively. Equation (12) is identical to
the equation of a beam with a follower end force [14] and a
beam with an axial end force whose line of action remains
parallel to the undeformed axis of the beam. However, this
configuration is easier and more practical to implement as
compared to a follower force. The boundary conditions of
the beam in Figure 1 are, however, different from beams with
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Figure 3: Concept of the control strategy to redistribute and remove the beam’s energy.

follower and axial end forces. The geometric boundary con-
ditions, which are related to zero deflection and zero slope
at the fixed end, are

y(0, t) = 0, y′(0, t) = 0. (13)

The natural boundary conditions corresponding to zero
moment and nonzero shear force at the free end are given
by the relations [15]

y′′(L, t) = 0, EI y′′′(L, t) + P
{
y′(L, t)− 1

L
y(L, t)

}
= 0.

(14)

In order to obtain an approximate solution to (12) subject to
the boundary conditions in (13) and (14), we multiply (12)
with a weight function w(x) and integrate it over the length
of the beam

∫ L

0
EIw(x)y′′′′(x, t)dx +

∫ L

0
Pw(x)y′′(x, t)dx

+
∫ L

0
ρAw(x) ÿ(x, t)dx = 0.

(15)

We simply assume that w(x) is continuous, twice differen-
tiable and satisfies the two geometric boundary conditions
in (13), namely,

w(0) = 0, w′(0) = 0. (16)

In order to distribute the derivatives equally between y(x, t)
andw(x), we integrate the first integral in (15) twice by parts,
and the second integral once by parts, to get

(
EIwy′′′ − EIw′y′′ + Pwy′

)∣∣L
0

+
∫ L

0

(
EIw′′y′′ − Pw′y′ + ρAw ÿ

)
dx = 0.

(17)

Equation (17) is called the weak form [16] of (12). Using the
natural boundary conditions of y in (14) and the geometric
boundary conditions of w in (16), we get

P
w(L)y(L, t)

L
+
∫ L

0

(
EIw′′y′′ − Pw′y′ + ρAw ÿ

)
dx = 0.

(18)

We now use Rayleigh-Ritz approximation [16] to express
y(x, t) as a linear combination of N suitable functions that
satisfy the geometric boundary conditions in (13). Specif-
ically, we use the first N normalized mode shapes of the
clamped-free cantilever beam, as follows:

yN (x, t) =
N∑

i=1

δi(t)φi(x). (19)

In the above equation, φi(x), i = 1, 2, . . . ,N , are the assumed
modes, N is the number of desired modes, and δi(t), i = 1, 2,
. . . ,N , are the corresponding modal displacements. Now, by
choosing y(x, t) ≈ yN (x, t) and w(x) = φj(x), j = 1, 2, . . . ,
N , consistent with (16), we get N differential equations from
(18), as follows:

EI
N∑

i=1

(∫ L

0
φ′′i φ

′′
j dx

)
δi

− P
N∑

i=1

(∫ L

0
φ′i φ

′
jdx −

φi(L)φj(L)

L

)
δi

+ ρA
N∑

i=1

(∫ L

0
φiφjdx

)
δ̈i = 0, j = 1, 2, . . . ,N.

(20)

Using the orthogonality property of the assumed mode
shapes, the above N equations can be written as follows:

ρAδ̈ + (K − PC)δ = 0, (21)
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where δ = (δ1, δ2, . . . , δN )T , K ∈ RN×N is a diagonal positive
definite matrix with elements Kii, C ∈ RN×N is a positive
definite symmetric matrix [17, 18] with elements Cij , and P
is assumed to be positive in the direction shown in Figure 1.
The elements Kii and Cij have the following expressions:

Kii = EI
∫ L

0

[
φ′′i (x)

]2
dx,

Cij =
∫ L

0
φ′i (x)φ′j(x)dx − φi(L)φj(L)

L
.

(22)

Equation (21) shows that the end force in Figure 1 is con-
servative in nature. This can now be claimed [19] from the
symmetric nature of the matrix (K−PC). Additionally, when
P = 0, the eigenvalues of (K − PC) are the same as the
eigenvalues of K , which are all positive. As P is increased,
all the eigenvalues start moving towards the origin before
crossing the imaginary axis and becoming negative. This can
be claimed from the physics of the buckling problem and
has also been verified using numerical simulations. In the
derivation of (21), structural damping was assumed to be
absent. If structural damping is present, we can use

ρAδ̈ +Dδ̇ + (K − PC)δ = 0, (23)

where D ∈ RN×N is a diagonal positive definite matrix of
modal damping.

3.2. Switching Strategy and Stability Proof. The goal of this
section is to introduce a switching strategy for the end force
P to funnel energy from the higher modes of vibrations to
the first mode with minimal contribution to the total energy
of the system. The following shows (23) modified for a beam
subjected to the end load P with a control law to remove the
first mode of vibration:

ρAδ̈ +Dδ̇ + (K − P(t)C)δ +H1

(
δ1, δ̇1

)
= 0. (24)

Here, P(t) is zero (P0 = 0) when the end force is switched off
and is equal to (P1 < Pbuckling) when the force is switched on,
and H1 is the diagonal control law to remove the oscillations
of the fundamental frequency. By expanding this equation
and multiplying the first row by δ̇1, the second row by δ̇2,
and so on, we have

dE1

dt
= −δ̇1D11δ̇1 − δ̇1h1

(
δ̇1, δ1

)
+ Pẇ1

(
δ̇1, δ

)
,

dE2

dt
= −δ̇2D22δ̇2 + Pẇ2

(
δ̇2, δ

)
,

...

dEn
dt

= −δ̇nDnnδ̇n + Pẇn

(
δ̇n, δ

)
,

(25)

where Ei = (1/2)(ρAδ̇2
i + Kiiδ

2
i ) is the modal energy

corresponds to the ith mode, ẇi(δ̇i, δ) = δ̇i[Ci]δ,Dii is the ith
element of the [D] matrix, and [Ci] refers to the ith row of
the [C] matrix.

Summing up all the rows of (25) results in

d

dt
(E1 + E2 + · · · + En)

= −
n∑

i=1

δ̇iDiiδ̇i + P
n∑

i=1

ẇi

(
δ̇i, δ

)
− δ̇1h1

(
δ̇1, δ1

)
.

(26)

In (26), the term −∑n
i=1 δ̇iDiiδ̇i is negative. In addition, the

control law for the fundamental mode is assumed to be
designed properly and also removes energy of the first mode,
that is, −δ̇1h1(δ̇1, δ1) < 0. As a result, as long as the end force
is turned on, whenever the value of ẆP =

∑n
i=1 ẇi(δ̇i, δ) = 0,

the total energy of the system will be reducing, and the end-
load does not affect the total energy of the beam. In fact, one
could also reduce the energy of the beam further by turning
the end force on when it does negative mechanical work [17],
that is, ẆP < 0. The work of the end force (per unit time),
Ẇp, consists of two terms [20]:

ẆP = P
∫ L

0

∂ ẏ(x, t)
∂x

∂y(x, t)
∂x

dx − Pẏ(L, t)y(L, t)
L

. (27)

The first integral term represents the work done (per unit
time) by the axial component of the end force P against the
change in the length of the beam due to elastic deformation
[20], and the second component is the work done by the
lateral component of the force P at the tip of the beam due
to lateral motion of the beam. It should be noted that due to
small deformation of the beam, the work done by the lateral
component of the force P is a magnitude of order smaller
than the axial component. As a result,

ẆP
∼= P

∫ L

0

∂ ẏ(x, t)
∂x

∂y(x, t)
∂x

dx. (28)

From (28), one can calculate the work done by the end force
P at every instant using information of the displacement and
velocity of every location along the beam. In practice, (28)
can be discretized to consider a finite number of location dis-
placements and velocities to calculate the work done by P as
seen in the following:

ẆP ≈ P
i=r−1∑

i=0

[
ẏ(xi+1, t)− ẏ(xi, t)

][
y(xi+1, t)− y(xi, t)

]

xi+1 − xi
.

(29)

Here, r is the number of locations used to calculate the
integral, xi is the position at location i = 0 · · · r − 1, and
y(xi, t) and ẏ(xi, t) are the displacement and velocity of the
beam at location xi, respectively. Equation (29) shows that
the displacement and velocity information of the beam at
different locations can be used to estimate the work done
by the end force P without information of the modal state
estimations. In other words, one can use the end force to
redistribute or remove the modal energy without knowledge
of the modes or number of modes involved in the beam’s
oscillations.
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Table 1

Material Aluminum

Young’s modulus 70 GPa

Mass density 2730 kg/m3

Dimensions 1.00× 0.05× 0.003 m

4. Simulation Results

In this section, the efficacy of the idea of redistributing
the modal energy with an end force is investigated using
simulation results. We assumed the material and geometric
properties of the beam to be as shown in Table 1.

For a four-mode approximation of beam dynamics, the
K and C matrices of our mathematical model in (22) were
computed as

K =

⎛
⎜⎜⎜⎝

97.3 0 0 0
0 3824.4 0 0
0 0 29976.5 0
0 0 0 115111.1

⎞
⎟⎟⎟⎠,

C =

⎛
⎜⎜⎜⎝

0.65 −3.38 −0.06 −2.59
−3.38 28.42 −18.35 9.58
−0.06 −18.35 73.30 −31.65
−2.59 9.58 −31.65 138.90

⎞
⎟⎟⎟⎠.

(30)

The square roots of the diagonal entries of the K/ρA matrix
are the natural frequencies of the beam and are equal to
15.42, 96.63, 270.6, and 530.2 rad/s, respectively.

In the first simulation, to better illustrate energy redis-
tribution between the modal states with an end force, we
assume the modal damping to be absent, that is, the diagonal
entries of the D matrix in (23) are zero. Additionally, the
control law to remove the first mode oscillations is also
considered to be h1(δ̇1, δ1) = 0. We used the exact expression
for the ẆP to turn on/off the end force to avoid changing the
total energy of the beam (i.e., ẆP = 0) after the switchings.
We also assume that P1 in (24) is selected to be 40 N which is
less than the critical buckling load (77 N) of the beam. The
simulation results are shown in Figure 4 for the following
initial conditions in metric units:

δ(0) = [0,−0.5, 0, 0.1]T ,

δ̇(0) = [0,−1.2, 0, 3.5]T .
(31)

This simulation shows clearly that the end force causes
modal energy redistribution. The oscillations of the beam
consist of the first and third modes, although the initial
conditions for these two modes are chosen as zero. Clearly,
the end force causes energy associated with the second and
fourth modes to be redistributed among all the modes of the
beam with nonzero end force. It should be noted that the
energy transferred by the fourth mode to the other modes is
considerably smaller compared to the second mode. This was
expected from the values of the mapping matrix from (11).

In the second simulation, the end force P is used for
two purposes: to redistribute the modal energy between the
modes and to remove the modal energy by doing negative
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Figure 4: Modal redistribution of the beam with the switching end
force.

work, that is, ẆP ≤ 0. This is to address the issue of a small
percentage of the higher modes energy that gets funneled to
the lower modes. We assume that modal states of the beam
are not observable except for the first mode and information
of the displacement and velocity is used to determine the
work of the end force using (29). The control law to remove
the first mode oscillation is chosen as h1(δ̇1, δ1) = 2δ̇1, and
the modal damping is assumed to be absent as well. To cal-
culate ẆP from (29), velocities and displacement at the base,
the midpoint, and the end point locations of the beam are
used

ẆP ≈ P

([
ẏ(L, t)− ẏ(L/2, t)

][
y(L, t)− y(L/2, t)

]

L/2

+

[
ẏ(L/2, t)− ẏ(0, t)

][
y(L/2, t)− y(0, t)

]

L/2

)
,

(32)

where ẏ(0, t) = y(0, t) = 0. In Figure 5, the simulation results
are plotted for arbitrary initial conditions in SI units

δ(0) = [0.3,−0.5,−0.1, 0.1]T ,

δ̇(0) = [−0.3,−1.2, 0.2, 3.5]T .
(33)

This figure shows the modal amplitudes and energy of the
beam rapidly decaying to zero, as expected, but the control
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Figure 5: Modal redistribution and vibration suppression of the
beam with the switching end force and the control law.

input continues switching. This can be attributed to small
numerical errors causing frequent change in sign of ẆP . This
problem can be easily rectified during implementation. It
should be noted that the approximation of ẆP in (33) causes
at some tiny time intervals that the end force adds energy
to the beam instead of redistributing or removing it. This
can be resolved by adding more terms (i.e., displacement and
velocities measurements) to approximate ẆP in (29). In this
result, the beam’s energy is dissipated by the control law
h1(δ̇1, δ1) = 2δ̇1 and the negative work of the end force P.

To see better the relative influence of the end force
negative work and the control law in the modal attenuation,
another simulation is performed in which the control law is
set to zero, h1(δ̇1, δ1) = 0, and the end force P is used for both
modal distributions and modal attenuation. The simulation
results are shown in Figure 6 for the same initial conditions
used in (33).

These results show that the end force P is capable of
removing all the modal energy since ẆP ≤ 0 at the times
the end force is on. In this specific problem, the switching
end force can be used solely to remove all the modes without
needing the control law h1(δ̇1, δ1). However, in practice,
adding the control law makes the attenuation faster as seen in
Figures 5 and 6 and (26). More importantly, it could remove
any addition in the modal energy due to end force switching
time not being exact, which may happen due to the approxi-
mation in (32) or a slow response time of the actuator used
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Figure 6: Modal redistribution and vibration suppression of the
beam with just the switching end force.

for turning on/off the end force. It should be noted that
the bandwidth of the actuator used to switch the end force
should be larger than the highest frequency in which ẆP sign
changes. If the actuator does not have the requisite band-
width, there is no guarantee that the end force removes
energy of the beam.

5. Experimental Verification

We conducted an experiment with a cantilever beam to prove
the principal of redistributing and removing modal energies
with an end force. In our experimental setup, the end force
is applied with a Kevlar cable, wrapped around a pulley at
the front face of the beam and then tied to a high-bandwidth
servo DC motor [21] shaft as shown in Figure 7.

The motor was driven by a National Instruments NI
9505, brushed DC drive module [22] to pull or release the
cable which causes the end force to turn on/off. Two minia-
ture single-axis accelerometers from PCB Electronics [23]
are mounted on the midpoint and end point of the beam
to derive the displacement and velocity of the beam at these
two locations. In the experiment, we did not implement the
control law (i.e., h1(δ̇1, δ1) = 0) and only used the end force
to redistribute/attenuate the modal energy. (One can easily
implement the control’s law using a piezoelectric sensor
and actuator attached to the beam; see, for instance, [24]).
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Kevlar cable

Cantilever beam:

Beam tip with a pulley

for cable wrap around

DC motor on

pedestal with

power supply

AccelerometerBase

1 m × 0.05 m × 0.003 m

Figure 7: Experimental setup.
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Figure 8: Experimental results: free vibration.

We programmed the switching law and the integration
processers to achieve displacements and velocities in the
LabVIEW FPGA [22] environment and downloaded it to our
CompactRIO 9022 processing unit (not shown). The flexible
beam and material used in the experiment are the same as
the ones used in the simulations presented in Section 4.

The first experiment pertains to free vibration of the
beam in the first mode. The time history for the displacement
of the beam’s tip is shown in Figure 8 in metric units. In
the absence of the switching end force, the beam vibration is
attenuated slowly by the structural damping. The time
required for the amplitude of vibration to decay by a factor
of 40 approximately is 25 seconds.

The second experiment pertains to vibration suppression
of the beam with the switching end force. The time history
for the displacement and velocity of the beam’s tip and the
end force in the experiment are shown in Figure 9 in metric
units. In these results, the initial condition is achieved by
deflecting the beam arbitrarily. These results indicate that
the control strategy attenuates all the modes of vibration
which corroborates our earlier simulation results. It should
be noted that the structural damping also contributes to
the removal of energy from the beam especially at higher
frequencies. In fact, the modal damping of the structure
increases whenever the end force is switched on due to an
increase in axial stress of the beam [15] which further helps
vibration suppression of the beam.
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Figure 9: Experimental results: vibration suppression using the end
force.

6. Conclusions

Modal redistribution and vibration suppression of a can-
tilever beam with an end force is mathematically studied
and experimentally verified. We showed that it is possible
to redistribute modal energy of the beam by changing its
stiffness using an end force. In addition, the end force was
used to suppress the vibrations of the beam since mathemat-
ical and simulation results showed that the rate of energy
distribution from higher modes to the lower modes of the
beam is small. As a result, the end force was also used to
remove the energy of the beam. The end force was turned
on whenever it either removed or did not change the modal
energy of the beam; otherwise, it was turned off. For this
purpose, we used lateral displacements and velocities of the
beam at different locations to construct and estimate the rate
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of the mechanical work done by the end force without infor-
mation of the modal amplitudes. Our goal for future work
is to employ modal energy redistribution for two- and three-
dimensional flexible structures in which the stiffness changes
with cables at multiple locations along the structure.
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