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The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed
for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while
minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology
that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an
analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies
while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode
under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point
of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the
phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test

results are discussed, and are corroborated with simulated results, are in good agreement.

1. Introduction

The friction damping concept is widely applied in tur-
bomachinery applications, especially at hot end parts, to
reduce resonance stresses. A typical application of this in
gas turbines. They are popularly called as “friction damper,”
“cottage-roof damper” or “under platform damper.” This
damper is loaded by centrifugal force against the underside
of the platforms of two adjacent blades. The main design
criterion for such devices is to determine the optimum
damper configuration or the damper mass or both in order
to reduce the dynamic stresses to maximum possible extent.
For example, if the damper mass is too small for a given
configuration, the friction force will not be large enough to
dissipate sufficient energy. On the other hand, if the damper
mass is too large, it will get into “stick” condition, thereby
limiting the relative motion across the interface and hence
the amount of energy dissipation. In both cases, the friction
damper will be inefficient, and between these two extremes
there exists an optima.

A good review of the friction damping concept in tur-
bomachinery applications is given by Griffin [1]. Theoretical

analysis and the optimization of this simple device is difficult
because of marked nonlinearity and assumptions about the
contact characteristics and damper behavior. Several friction
damper models and analysis methods have been proposed in
past. The simplest and most commonly used model reported
in the literature is a macroslip contact model [2—4]. There
are also several micro-slip friction models reported which are
more appropriate in case of high normal loads [5-10]. The
macroslip model under this high normal load shows damper
in lockup condition.

Although significant advances are made in theoretical
modeling of friction dampers and analysis methods, turbo-
machinary manufacturers still rely on previous experience
and empirical data rather than computer-based predictions
alone for friction damper optimization. This has been
mainly due to the oversimplification introduced in the mod-
els regarding the basic contact behavior and/or damper
geometry and the inability to analyze representative-size
models due to excessive computational cost [4].

The latest and most advanced contact models make use
of three parameters to characterize the contact behavior,
namely, friction coefficient, tangential contact stiffness and



normal contact stiffness [11-13]. Szwedowicz et al. [13]
investigated numerically and experimentally the perfor-
mance of a thin-walled damper mounted under the platform
of two rotating free-standing high-pressure turbine blades.
Characterization of friction contact of nonspherical contact
geometries obeying the Coulomb friction law with constant
friction coefficient and constant normal load is proposed by
[14]. Firrone et al. [15] undertook forced response studies of
bladed disc under platform damper considering both static
and dynamic displacements.

This paper presents a methodology which combines
three essential phases of friction damping optimization in
turbomachinery. The first phase is to develop an analytical
model of the blade damper system. The second phase is
experimentation and model tuning necessary for response
studies; while the third phase is evaluating damper perfor-
mance and arriving at optimal damper design point. Figure 1
gives the flow chart of complete design methodology. In the
present work, we are limiting our discussions to static bench
test and using this data along with results from analytical
studies, studying the damper performance, and then arriving
at an optimal damper design.

2. Development of a Mathematical Model

The development of a mathematical model for a blade
damper involves following steps:

(1) estimation of eigenvalues and establishment of stress
distribution for a specific mode of interest;

(2) development of a friction model;

(3) conducting response studies using reduced model.

2.1. Eigenvalue Estimation and Response Studies. The objec-
tive of this phase is to obtain modal characteristics of
the blade and stress distribution along the aerofoil for a
particular mode of interest along with estimation of nondi-
mensional parameters. Figure 2 presents a finite element 3D
model of a turbine blade, with boundary condition in the
form of root fixation. The blade material is transversally
anisotropic with minimal rigidity axis directed along the
blade radius.

Analysis is performed for natural frequencies, distribu-
tion of stresses, deformations, and displacements for first six
modes. Table 1 gives the various frequencies estimated for
various conditions; all the frequencies are normalized with
respect to first flexural mode of the blade.

The optimization study is undertaken for the first flexure
mode of the blade alone; therefore, we are limiting our
discussions to this only. Figures 3 and 4 show the Ist
flexural mode of the blade and corresponding stress distribu-
tion, respectively. The values corroborate well with the
experimental results given in Table 2. The maximum stress
is located near the fillet area close to the first lobe of the fir
tree.

With the input drawn from above data, the following
coefficients are estimated in order to establish the damper
design parameters. These are
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(1) all the natural frequencies normalized with respect to
1st flexural mode of the blade;

(2) ratio of maximum stresses in the attachment to
stresses in aerofoil root, k,, = 1.86;

(3) ratio of maximum total displacement to stresses in
aerofoil, k,; = 2.12¢73 mm?>/N;

(4) ratio of displacement (circumferential direction) at
contact location of damping insert to maximum
displacement of blade aerofoil, k,,, = 0.07;

(5) ratio of tip displacement to load amplitude, k,p =
0.026.

Further results from the 3D model calculations were used for
identifying strain gauge locations for experimental studies.

2.2. Friction Model. The friction interface between the blade
root and the damper insert under investigation has a
rectangular shape. It is thus appropriate to use a friction
interface model that has a rectangular contact surface, such
as the model by [5, 9], further the normal load distribution is
assumed to be constant over the interface. The model that is
used in this paper, shown in Figure 5, is derived from both
Mengq et al’s [5] and the Csaba’s one-bar model [9]. The
normal load on the damper is assumed as uniform. Further
displacement and force is represented in terms of slip length,
this feature is derived from Csaba’s work [8].

The interface is considered as a rectangular cross-section
and modeled as a bar pressed against a rigid surface with a
normal load g(x), and the force of P is applied at the end
of the bar. The bar has a modulus of elasticity E and area of
cross-section A. L, is the length of the bar. The coefficient
of friction y is assumed as constant across the interface and
independent of motion of the bar. The normal load across
the interface is assumed uniform and constant.

The assumed function of normal load is q(x) = g, and
the total normal load is found by integrating the normal load
function over the length of the bar:

L
N = J q(x)dx. (1)
0

In the present work, the derivation of displacement
function is not presented, but relevant equations as and when
required are given.

(1) Governing Equation. It is assumed that the bar deforms
elastically and the friction is governed by Coulomb’s law at
each contact point. By applying the load P at the one end of
the bar, the onset of slip takes place. Further by increase in
amplitude of “P” propagates of slip zone until a gross level
slip is achieved. In order to formulate the equation, this bar
length is divided into two parts, sliding and not sliding, as
shown in Figure 6. The sliding length, that is, the slip zone
length is given by “6” and its maximum value is given by &,
corresponding to max force P,. The friction force is defined
by F, and its direction depends on the direction of resultant

« »

strain. The displacement at the end of bar is defined as “u.
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FiGURre 1: The flow chart indicatin

The procedure for derivation of displacement function and
the force function is followed from [8].

The force is considered as monotonic between its peak
values, with amplitude P,, then the analysis may be divided
into three parts with the bar initially at rest [8]:

P is increased from 0 to P,;

g the damper design methodology.

P is decreased from P, to —P,;

P is increased from —P, to P,,.

(2) Formulation of Initial Loading Relations. The Coulomb’s
friction law says

F = uq(x). (2)
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TABLE 1: Estimated eigenvalues for various conditions normalized with 1st natural frequency at room temperature.

Mode number and frequency (Hz)

Simulated condition/constraints

1 2 3 4

fl 1.74f1 2.26f1 3.06f1 Nonrotating blade at room temperature

1.008f1 1.755f1 2.27f1 3.08f1 Rotating at 50% RPM at room temperature

1.056f1 1.79f1 2.30f1 3.16f1 Rotating at 100% RPM at room temperature

0.95f1 1.61f1 2.06f1 2.85f1 Rotating at 100% RPM at 800°C average blade temperature

F1GURE 2: Finite element model of the blade.
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FIGURE 3: Mode shape for the 1st flexure mode of the blade.

The various forces acting on a small element of length dx
of the sliding zone are given in Figure 7. The direction of
“F” depends on whether force “P” is increasing or decreasing

with respect to “x.”

250636
222788
194940
167093
139245
111397
83550
55702
27854
6.537

FiGure 4: Distribution of equivalent blade stresses at the 1st vibra-
tion mode.

Normal load ¢q(x)

T

xternal

Damper bar  E, A %load P

Rigid surface

F1Gure 5: Microslip model for friction interface.

TaBLE 2: Comparison of estimated eigenvalues with experimentally
measured values.

Mode number Estimated values Experimental values
1 f1 1.01f1
2 1.74f1 1.76f1
3 2.26f1 2.27f1
4 3.06f1 3.12f1

Equilibrium of forces yields

dp

Fdx+P+
x dx

dx =P (3)
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FiGure 6: Slip and Stick zones, when the bar is subjected to initial
loading.
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FiGUrEe 7: Forces acting on a small element.

The strain in bar is
du

&= —E. (4)
The tensile force in the bar is defined as
p—_pa% . (5)
dx x=0
Substituting (5) in (3) we get
d?u
Fdx—EA% =0, (6)

«,  »

where du/dx is the strain in the bar. The displacement “u” is
found by double integrating over the slip zone length using
the following boundary conditions [8]:

x =0,
P:—EA@, x=96, u=0. (7)
dx
Therefore, the displacement as a function of force is
 (x—9) (62 — x?)
u(x,P) = P A THDT (8)

The force at the bar end can be expressed as a function of
the slip length. This is done by integrating the friction force
over the slip length [8]:

é
P(s) = L Fudx = ugod. )

The displacement in terms of slip length is given by
substituting (9) in (8):

B (x=9) (6% — x?)
u(8,x) = ugod A THI TS
(8—x)2 (10)
u(6,x) = uqo EA

After having the force and displacement as functions of
slip length. Applying “Pymp” will give amplitude slip length
“8,2”. The force amplitude function is defined by

P(6,) = Hq06a- (11)

And the displacement function is given as

44900,
u(ds) = St (12)

(3) Load Decreasing Relations. The section of the bar that
was slipping is stretched after an initial loading of P = Pymp.
This is given as broken line in Figure 8. The bar is divided
into three zones shown in Figure 8, as given in [8]. Zone “Z,”
where tension is changing in to compression will extend, as
the force is decreasing from Pamp t0 —Pamp. The length of
the compression zone length is denoted as §4. Zone Z will
increase, and zone Y will decrease as P is decreasing, this will
continue till P = —P,mp. Zone Y is then eliminated, and &4
equals &,.

The friction force direction depends on the sign of dP
on that part. The various forces acting on a small element of
length dx of zone “Z” is given in Figure 9. The differential
equation for this is

2
Fdx+EAQ =0. (13)
d2x
The boundary conditions are found by equilibrium of
forces at the bar end, and with a condition that u,, and uy
must be of the same value, where zone Y and Z are connected.
These boundary conditions are, as given in [8]:

x =0,
P —EA%, x =04, ua(8a,04) = u(8s,0a).  (14)
dx
Solving (13) by substituting (14) yields u4. The displace-
ment of the bar end will be a function of §, and J,.
The displacement function is given as

WO(&% - 53)

ud(0a58a) = SEA

(15)

The slip length 8, is found by equilibrium of forces for
the compressed region Z. By equilibrium of forces as shown
in Figure 10 and solving one gets the force in terms of slip
length. This is given by

Py(8a,84) = pqo(8a — 284), (16)

where §; is the slip length, when load is decreasing from Py,
to —Pamp.

(4) Reloading Relations. This is exactly opposite situation to
the one in previous section. Zone Z, where tension will be
seen in place of compression, will increase and extend as the
force is increasing from —Pamp t0 Pamp. The strain in the bar
when force P is increasing is shown as the unbroken line in
Figure 11, as given in [8].



The length of the stretched zone is denoted by the slip
length 8;. Zone Z will increase, and zone Y will decrease as P
is increases. This will continue till P = P,pp. Zone Y is then
eliminated, and §; equals §,. The differential equation in this
case is the same as when the bar is initially loaded. The only
difference is the boundary conditions. Here, the boundary
conditions are, as given by [8]:

du

Fdx — EA Ty

=0, (17)

x=0,
p_ —EAdui, x = 0j, ui(84,0i) = u(da, 6;).  (18)
dx
Solving (17) with (18) yields u; at the bar end as a function
of §, and 6;:

2 2
#g0 (8" — 8;
0 00) = (ZEA) (19)

Pa(8i,8a) = pqo(26; — ba),

where §; is slip length, when the load is increasing from
—Pamp t0 Pamp. The slip length 6; is calculated by equilibrium
of forces for the stretched region Y.

Once the relations of both force and displacement at
the end of the bar for both unloading and reloading is
established in terms of slip length based on initial loading
relationships, the hysteretic curve can be generated. Figure 12
is the time domain representation of input force and
Figure 13 is simulated displacement at the end of the bar.
Using above parametric functions, the hysteretic curve is
established and shown in Figure 14. The curve is built up
with a starting part (portion OA) for initial loading, the
lower curve (portion AB), for unloading P;(84) and u4(64),
and an upper curve (portion BA) for reloading P;(§;) and
1i(9;). Once the hysteretic curve is established, the damping
energy is calculated. The work done per cycle is

W = }udP. (20)

(5) Linearization. The objective here is to transform the
nonlinear properties of the friction damper into equivalent
linear damping and stiffness. The hysteresis loop made by
the force versus displacement function is thereby replaced
with an equivalent elliptic loop. The linearized properties of
the damper will then be used for forced response analysis.
Linearization of the friction model is done by using Lazan’s
method [9].

The work done by equivalent viscous damping is given by

D = 10Ceqiiny, (21)
by equating (20) and (21), we get
w

TOUZ

Ceq = (22)

Similarly the equivalent stiffness given by Lazan’s method is

2
Keq = J (Pamp) _ (wceq)z. (23)

Uamp
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2.3. Reduced Model. The dynamically equivalent reduced
blade model is represented using a two-degree freedom sys-
tem simulating 1st flexure mode of blade under investigation,
similar to that of given by [8], but additionally the material
damping and the aerial damping are represented as a viscous
damper. The reason for choosing a two-DOF system for
simulations is that it is simple but still illustrates the effect
of the damper. At first the response for blade model without
damper insert is determined, and correlation is ensured
for the first mode between design model and actual blade
model. The calculations are performed for various excitation
frequency and amplitude of excitation.

The 2-DOF system, shown in Figure 15, is built con-
sidering a mass less beam with two concentrated masses
simulating aerofoil and the root portions of the blade and
damper. The aerial and material damping is considered as
a viscous damping and attached to the aerofoil portion of
the blade. The friction damper is described by an equiv-
alent viscous damper and spring, Ceq(0,) and Keq(8a),
respectively. Assuming harmonic force of excitation applied
at the aerofoil portion of the blade. The displacements where
the friction damper is attached and force applied are x; and
X, respectively.

As the model is approximate, for obtaining the quanti-
tative estimations, the model is identified using correction
factors based on the statistical results obtained from testing
the turbine blade and the modal analysis of a 3D model of the
blade. Some of the parameters which are used for correcting
the model are as follows.

The value of 1st natural frequency of the blade without
a damper insert (f1) has provided the values of mass and
stiffness of equivalent model.

The damping in the turbine blade without damper insert
is in the range of { ~ 1% as per the statistics provided by
experiments and used as a viscous drag in the model.

The value of the excitation force is chosen such that the
amplitude of varying stresses in the blade is in the range of
50—100 MPa, this value is estimated from the statistical data
available for a typical class of turbine blades.

The friction coefficient is taken in the range of 0.2—
0.4 considering the operating environment of the damper
inserts.

The equation of motion for the system is

My (£) + Ceq(82)%1 (£) + (Ki + Ko + Keg(80) ) 1 (£)
—Kyx,(t) = 0, (24)
My (1) + Cxa (1) + Koxa (1) — Koxi (£) = Pael®.
Assuming harmonic motion:
x1(t) = X6/, x2(t)XpeM", (25)
And defining the complex stiffness
K(8a) = Keq(8a) + jwCeq(8a). (26)

By substituting (26) and (25) in (24) yields algebraic
equations:

—M X, + (K(8,) + K1 + )X, — KX, =0, (27)

~Myw*X; + CwXs + Kb X, — Ko X, = P, (28)
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FIGUre 8: Force, displacement, and plot of strain function, when
force is decreasing; zone X is totally struck and has zero strain, zone
Y is struck and stretched; zone Z is slipping and compressed.

dx

dp
ar
P+ dxdx —

é
Fdx

FIGURE 9: Forces acting on a small element in zone Z, when force is
decreasing.

From (28), X; = (P, + K2 X1)/(Kzy + jCw — Myw?).
Substituting X, in (27) we get

(29)

_ PaKZ
~ (Ky + jCw — Myw?) (K, + Ky + K(8,) — Myw?) — K2)’
X _ Pﬂ + PaKZZ
'K+ jCw - Myw?) T (Ks + jCw — Myw?) (Ky + Ks + K(8,) — Miw?) — K3)'

The response of the system is studied keeping the excita-
tion force amplitude constant, and varying the normal load
on the damper.

The solution procedure adopted in the frequency-
domain is based on finding the response amplitudes itera-
tively. The excitation level is selected in such a way that the
maximum stress in the blade is in the range of 100 MPa. The
starting point being the response levels of the underlying
linear system. The behaviour of the friction dampers is
analyzed at a given relative response amplitude between the
damper connection points and the individual dampers. The
individual dampers are represented as equivalent complex
stiffness, representing both restoring and energy dissipation
characteristics as described above. The equivalent complex
stiffness is then added to the otherwise linear system, and the
response level of the modified system is calculated again. The
procedure is repeated till convergence is achieved. The error
between successive iterations should be below certain value.
In the present case, it is defined as 1E107>.

The response levels obtained at current frequency are
used as initial guesses for the next frequency increment.
Figure 16 shows the normalized responses verses the fre-
quency ratio, under a given excitation for various normalized
friction forces. When the friction force is increased the
response levels will decrease and attain minimum at particu-
lar condition. Further increase in friction force will increase
the response amplitude. Figure 17 is the normalized stress
versus normalized friction force, and Figure 18 represents
plot for damping coefficient verses normalized friction

force. The damper design curve/performance curve given
in Figure 19, is drawn between normalized response verses
normalized excitation, the entire curve can be divided in to
three zones, Zone 1 is a completely struck condition. This
happens at very low excitation levels or at very high normal
loads. In this zone, the system behaves as a linear system.
Zone 2 is a slip condition at either low normal loads or at
higher excitation level. Here again the system behaves as a
linear system. Zone 3 is a slip-stick zone, where the system
experiences both conditions in a given cycle, and the system
is highly nonlinear in nature.

Figure 20 is the damper performance curve generated for
various viscous damping levels. From this figure, it is clear
that the damper performance curves depends on the damper
properties rather than the normal load and excitation level,
which means, for a given damper, one damper performance
curve can be generated and that can be used for optimal
selection of the damper. These observations are in line
with observations made by [2, 3]. The advantage with this
representation is that it provides a design point, which is
independent of both excitation and viscous damping levels
in the engine. The design point is selected corresponding to
maximum allowable blade response and consequently, the
maximum excitation that can be sustained by the present
blade. If actual excitation exceeds this maximum value,
then the entire blade must be redesigned since friction
damping cannot keep the blade response below allowable
limits. Using this approach provides a friction damper that
is optimal. The stresses in the blade will be acceptable for as



large an excitation as possible. Thus, the optimal design is
independent of the excitation and is insensitive to variations
in viscous damping.

3. Experimental Studies

The laboratory experiments were carried out in two phases
[16]. The first phase establishes the dynamic characteristics
of the blade. This includes estimation of natural frequencies,
mode shapes, the logarithmic decrement/damping factors,
and the relative stress distribution along the aerofoil for
various conditions. The tests are performed for the free-free
condition and the clamped condition. In the second phase,
the friction damper is characterized. In the present paper,
only the relevant and important results are discussed

3.1. Free-Free Condition. In this case, the blade is suspended
using a thread and excited using an instrumented impact
hammer. The damping estimation by this technique gives
only the material damping of the blade (aerial damping due
to oscillating blade can be neglected as it is proportionately
very small). Knowing this material damping is a must in
order to understand the amount of damping blades will
experience due to blade fixity in clamped condition.

3.2. Clamped Condition. For this a customized fixture is
made in order to accommodate the blade under investigation
alongwith the dummy blades on either side with under
platform damper inserts. An electrodynamic shaker is used
to excite the blade assembly that is driven by the signal
generator through the amplifier in the frequency range of
interest. The amplitude of excitation is kept constant by using
a feedback control loop. The response is measured by blade-
mounted strain gages. While placing the strain gauges on the
blades, the following aspects are considered:

(1) sensor operability is ensured throughout the operat-
ing conditions of the blade;

(2) instrumentation convenience;

(3) informative capability of the strain gauges for the
mode of interest.

The first two conditions are usually satisfied by a strain
gauge located on blade suction side near aerofoil root. The
informative capability of strain gauge is ensured through the
3D FEM analysis and experimental strain survey. One will
look for maximum variable stresses for a given oscillation
mode. Figure 21 demonstrates the strain gauges pasted
on the blade under test. Apart from these strain gages,
various other transducers like eddy current probes and
accelerometers are used for the rig operation.

The signals measured from strain gages mounted on
blade are used for characterizing the blade. When studying
frequency characteristics and the damping of fixed blades, it
is necessary to identify frequencies using spectral analysis and
then finds its attributes, namely, the one caused by blade’s
resonating frequencies and other caused by excitation of
fixture subcomponents. When fixing blades in spring clamps,
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F1GuURrE 10: Forces acting on a small element in zone Z, when force
is decreasing.
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FiGure 11: Force, displacement, and plot of strain function, when
force is decreasing; zone X is totally struck and has zero strain, zone
Y is struck and compressed; zone Z is slipping and stretched.

blade spectrums are investigated for various attachment
designs, for different rigidity, mass, and squeezing efforts.
Figure 22 shows the single blade setup under clamped
condition, while Figure 23 shows the setup for dynamic
characterization of blade damper assembly under clamped
condition.

Table 3 gives measured natural frequency and corre-
sponding damping value for both the fixity conditions.
In both of these tests, it is clear that the first flexure
mode is in the range of 1.01f1 and1.03fl. The logarithmic
decrement is in the range of 0.5 to 1%, which is within
the limits of scatter identified from the free-free test on the
individual blade. From the test, it is apparent that the energy
dissipation due to friction induced due to the clamping
arrangement is very small. Certain divergence in frequency
values can be attributed to difference in ways of fixation,
scatter of blade geometric features within technological
tolerance, and difference of real anisotropy of blade material
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F1GURE 13: The simulated displacement at the end of the bar.

from orthotropic parameters set forth in calculations. Tables
4(a) and 4(b) indicate measured values of relative strain
corresponding to first flexure mode of the blade under zero
normal load on the damper. From the table, it is very clear
that the most loaded area on the blade is near root, and
the maximum displacement is measured at leading edge,
pressure side of the blade. The relative deformation is
§-——, (30)

£ max

where i is the strain gauge number, & is the relative defor-
mation in blade aerofoil, ¢; is the deformation measured in
aerofoil by the ith strain gauge, and ¢,,,, is the maximum
deformation measured by the any strain gauge on blade
aerofoil.

3.3. Characterizing Friction Damper. The test setup for this
case remains the same as above except for an additional cus-
tomized feature to load the damper. The test is executed for
various conditions of normal loads at controlled excitation
level.

The force level is selected such that the maximum stress
experienced by the blade is around 100 MPa. The frequency
of excitation is selected around the natural frequency of
the blade, and the responses were measured till the steady
state achieved. The test is repeated for several damper load

Reloading 2
P uj

2E—06

Displacement (m)

FIGURE 14: Hysteretic curve drawn between applied force and the
simulated displacement at the end of the bar.

[3

C
1Paejwt
M

K1 KZ

M, 2
B

Ceq(8a) [

—

Keq (0a)

FiGure 15: The equivalent blade model, representing two-dof sys-
tem with friction damper.

TABLE 3: Measured modal parameters for 1st flexural mode at room
temperature.

. Frequency Log
Blade fixity (Hz) decrement %
Spring clamping of root 1.01f1 0.47%
Three blades fixed in a fixture 1.03f1 0.58%

conditions. The values of resonance frequencies and its
logarithmic decrement at different loads of the damper are
given in Table 5. It is observed that the highest logarithmic
decrement value is 5.08% at 500 N damper load. The natural
frequency of the blade increases with increase in damper
load, and to a greater extent in case of first bending mode.
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Increase in friction force

N
(=)

Response ratio
[ T S BN
S & & & 5

—_
S

0.8 085 09 095 1 1.05 1.1 1.15 1.2

Frequency ratio

— 0 — 83
— 16 — 100
30 — 116
50 — 133
— 66 — 150

FIGURE 16: Response ratio versus frequency ratio for various values
of normalized friction force.

0.9 1
0.8 1
0.7 A
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1

0 T T T T T T T T
0 20 40 60 80 100 120 140 160

Normalized friction force

Normalized stress

FicuUre 17: Normalised stress versus normalised friction force.

TABLE 4: Relative strain at various locations in 1st flexure mode for
zero damper load.

(a)

Sl number 1 2 3 4 5 6 7 8
Gauge number 1 2 3 4 U 2’ 3’ 4’
0.64 036 — 05 042 034 0.38

()
Sl number 9 10 11 12 13 14 15 16

Gauge number 5 17 2" 3747 I I 1I
0.65 0.61 036 — 0.15 026 0.2

Relative strain 1

Relative strain —

4. Estimation of Damper Efficiency

With the available experimental and theoretical data, the
efficiency of the damper insert is evaluated [17].
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0.1 q
0.09
0.08
0.07 4
0.06 1
0.05 A
0.04
0.03
0.02 A
0.01 +

0 T T T T T T T 1
0 20 40 60 80 100 120 140 160

Normalized friction force

Damping coefficient

FiGurg 18: Damping coefficient versus normalized friction force.

1E—-08
9E—09
8E—09
7E—-09+
6E—09+
5E—09+
4E—091
3E—-09+
2E-09+
1E—-09+
0E+00

Stick condition|
< Stick-slip condition

Slip

condition

Amplitude/normal load

0 0.01 0.02 0.03 0.04 0.05 0.06

Excitation/normal load

FIGURE 19: Damper design curve plotted between normalized
response and the normalised force.

TaBLE 5: Values of natural frequency and damping of Ist flexure
mode of the blade under various damper loads.

Sl number Dam(pI\eIr) load Freqt;elrlzlcy in Perce;tage
1 0 1.03f1 0.96
2 300 1.095f1 3.25
3 500 1.154f1 5.08
4 1000 1.170f1 254
5 2000 1.191f1 25

The normal load generated by the damper at a given op-
erating speed is

N = maw?r,

(31)
mXr =1415g — mm,

where m is the mass of the damper in “g”, and r is the radius
at which damper located in “mm.” Angular velocity w in
rads™!.

Figure 24 is a Campbell plot for a blade. It shows two
potential resonance conditions corresponding to first flexure
mode, due to 6th- and 9th-order cross-overs, at 12000 rpm
and 16000 rpm, respectively.

The normal load corresponding to 9th-order cross-over
is N = 1834 N.
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Stick-slip
condition

Stick condition

Slip

condition

Amplitude/normal load

0 0.01 0.02 0.03 0.04 0.05 0.06
Excitation/normal load

— {=0011
—— {=10.009

—— {=10.006
—— {=0.004

FiGure 20: Damper design curve generated under various viscous
damping levels.

FiGure 21: Indicating the strain gauges mounted on both pressure
and section side of the blade.

A typical value of friction coefficient for metal-metal
contact under slow slide is ¢ = 0.2. This value under
vibrating contact surfaces is known to reduce the contact and
the friction ratios. Contrast to this, under high-frequency
relative motion of the bodies, frictional seizure phenomena,
due to heating of local zones can occur, leading to increase of
friction coefficient. Therefore for calculations, a broad range
of possible values for y ranging from 0.2 to 0.4 is considered.
The corresponding friction force F for this will be in the
range of 180-734 N.

Using various factors generated from the finite element
analysis the range of normalized friction force is identified.
The ratio of tip displacement to resonant stresses is k,;, =
2.12¢73 mm?/N. Considering the resonance stresses in the
range of 50—100 Mpa, the displacement of the blade tip
is in the range of 0.11 mm-0.2mm. Once the blade tip
displacement is identified using k,p = 0.026, the range of
excitation P can be identified. Therefore, excitation P is in
the range of 4-8 N.

11

1 2

FiGURE 22: Blade fixation at the root in a spring clamp. (1) spring
clamp and (2) blade under investigation.

1

F1Gure 23: Tooling used for estimation of damper efficiency screw.
(2) load screw, (3) lever, (4) support, (5) blade, and (6) strain
gauges.

And the range of normalized friction force is calculated
as

- F
(F) = —is 22 to 174. (32)
cal p

Keeping all other parameters constant the (F) is normal-
ized friction force, proportional to the normal load applied
on the damper.

Therefore, (1:")/N = cont’.
The optimum range of normalized friction force corre-
sponding to maximum rotational frequency can be found

from
_ Nopt [ -
F) == (F) , 33
( opt N cal ( )

where Nop; is the optimum damper load at which the
response of the blade is minimum, that is, 500N, and N is
the normal load on the damper at a given rotational speed.

Therefore, the (F)op is in the range of 6 to 47. In this
range of friction forces significant reduction in stresses is
expected. Further increase in normal load may increase the
aerofoil stresses.
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1.2f

Normalized frequency (Hz)

Normalized speed (%)

9th order
—— 1st flexure

—— 1st order
—— 6th order

FiGure 24: Campbell diagram, indicating 1st flexure mode with
various excitation lines.

5. Comparison of Analytical and
Experimental Findings

The correlation studies is carried out in two phases, in
phase one, the dynamic characteristics of the blade under
investigation is carried out, which includes the natural
frequency, mode shape, and the damping. Further it is
ensured that the blade fixity will have negligible effect on the
damping. The relative strain estimated along the aerofoil for
the first flexure mode is in good correlation with experiments
conducted without damper inserts. The damper effectiveness
is measured on bench test is in good agreement with the
analytical findings. The maximum logarithmic decrement
value measured with damper insert is around 5.08%, in
case of analytical estimation it is around 5.8%. From the
experiments it is found that the optimal normalized friction
force is in the range of 6-47, for the blade damper system
under investigation, corresponding to the rotational speed
of 16000 rpm, where the possibility of 1st flexure mode
resonance exists. Similarly in the analytical solution, it is
found to be in the range of 7-50, refer to Figure 16. It
is clear that the range of normalized friction force for
which the response amplitude is below 50% of resonance
amplitude without a damper insert. Figure 25 indicates
the comparison of both theoretically estimated and the
experimentally measured damping coefficient.

6. Conclusions

Minimization of resonant stresses in turbine blades is a major
concern in turbine engine. A detailed procedure is outlined
for optimization of damper for turbine blade so that the
maximum stress experienced by any blade should be below
some designated maximum value. The procedure details the
integration of analytical and experimental studies to ensure
the correctness of the model developed and the friction
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Damping coefficient

—o— Simulation
—#— Experiment

FiGure 25: Comparison of damping coefficient value with normal-
ized friction force.

damper design. A damper performance curve is established,
which provides a design point that is independent of both
damping and the excitation levels, these two quantities are
very difficult to be determined for the new design of blades.
At the same time, the design point optimizes the friction
damper for as large an excitation as possible. A unique test
fixture is developed for conducting the experiments, having
a feature to setup various damper loads.

The predicted natural frequencies, stress distribution,
and the displacements determined for the 1st flexure mode of
the blade is in good correlation with the experimental results.
The damper performance curves are generated for various
levels of force and the damping values, which are used to
arrive at optimal damper design. This can now be extended
to the engine condition, namely, gas loads, and temperatures.

Nomenclature

F,: Friction force

u: Friction coefficient

O Maximum slip corresponding
t0 Pamp in “m”

u: Displacement at the end of
the bar in “m”

P: Excitation at the end of the
bar in “N”

N: Total normal load acting on
the interface in “N”

q(x): Normal load function

L: Length of the bar = 0.02 “m”

EA: Modulus of elasticity
multiplied with area = 600000
N

@: Angular velocity rads™!

Pamp: Maximum value of the force
N

Uamp' Maximum displacement “m”

P,(6,): Force at the end of the bar

corresponding to the initial
loading
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ua(8,): Displacement at the end of
the bar corresponding to the
initial loading

P;(64,604) and Force and displacement at the

ug(8a,04): end of the bar for unloading

P;(6,, ;) and Force and displacement at the

u;i (04, 0;): end of the bar for reloading

D: Equivalent damping energy

Cequ: Equivalent viscous damping
in “Nsm~!”

W: Work done per cycle

Kequ Equivalent stiffness “Nsm~!”

C: Viscous damping coefficient
Nsm™!

dx: Elemental length of the bar

du/dx Strain in the bar

0: Slip in the bar in “m”.
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