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We obtained the relation between the Riemannian connection and the quarter-symmetric metric
connection on a para-Sasakianmanifold. Further, we study φ-recurrent and concircular φ-recurrent
para-Sasakian manifolds with respect to quarter-symmetric metric connection.

1. Introduction

The idea of metric connection with torsion in a Riemannian manifold was introduced
by Hayden [1]. Further, some properties of semisymmetric metric connection have been
studied by Yano [2]. In [3], Golab defined and studied quarter-symmetric connection on a
differentiable manifold with affine connection, which generalizes the idea of semisymmetric
connection. Various properties of quarter-symmetric metric connection have been studied by
many geometers like Rastogi [4, 5], Mishra and Pandey [6], Yano and Imai [7], De et al. [8, 9],
Pradeep Kumar et al. [10], and many others.

The notion of local symmetry of a Riemannian manifold has been weakened
by many authors in several ways to a different extent. As a weaker version of local
symmetry, Takahashi [11] introduced the notion of local φ-symmetry on a Sasakian manifold.
Generalizing the notion of φ-symmetry, the authors De et al. [12] introduced the notion of φ-
recurrent Sasakian manifolds.

A linear connection ˜∇ on an n-dimensional differentiable manifold is said to be a
quarter-symmetric connection [3] if its torsion tensor T is of the form

T(X,Y ) = ˜∇XY − ˜∇YX − [X,Y ] = η(Y )φX − η(X)φY, (1.1)
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where η is a 1-form and φ is a tensor of type (1, 1). In particular, if we replace φX byX and φY
by Y , then the quarter-symmetric connection reduces to the semisymmetric connection [13].
Thus, the notion of quarter-symmetric connection generalizes the idea of the semisymmetric
connection. And if quarter-symmetric linear connection ˜∇ satisfies the condition

(

˜∇Xg
)

(Y,Z) = 0, (1.2)

for all X,Y,Z ∈ X(M), where X(M) is the Lie algebra of vector fields on the manifold M,
then ˜∇ is said to be a quarter-symmetric metric connection.

2. Preliminaries

An n-dimensional differentiable manifold M is called an almost paracontact manifold if it
admits an almost paracontact structure (φ, ξ, η) consisting of a (1, 1) tensor field φ, a vector
field ξ, and a 1-form η satisfying

φ2X = X − η(X)ξ, (2.1)

η(ξ) = 1, φ ◦ ξ = 0, η ◦ φ = 0. (2.2)

If g is a compatible Riemannian metric with (φ, ξ, η), that is,

g
(

φX, φY
)

= g(X,Y ) − η(X)η(Y ), g(X, ξ) = η(X) (2.3)

g
(

X,φY
)

= g
(

φX, Y
)

, (2.4)

for all vector fields X and Y on M, then M becomes a almost paracontact Riemannian
manifold equipped with an almost paracontact Riemannian structure (φ, ξ, η, g).

An almost paracontact Riemannian manifold is called a para-Sasakian manifold if it
satisfies

(∇Xφ
)

Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (2.5)

where∇ denotes the operator of covariant differentiation. From the above equation it follows
that

∇Xξ = φX,
(∇Xη

)

Y = g
(

X,φY
)

=
(∇Yη

)

X. (2.6)
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In an n-dimensional para-Sasakian manifold M, the following relations hold [14, 15]:

η(R(X,Y )Z) = g(X,Z)η(Y ) − g(Y,Z)η(X), (2.7)

R(X,Y )ξ = η(X)Y − η(Y )X, (2.8)

S(X, ξ) = −(n − 1)η(X), (2.9)

S
(

φX, φY
)

= S(X,Y ) + (n − 1)η(X)η(Y ), (2.10)

for any vector fieldsX,Y , and Z, where R and S are the Riemannian curvature tensor and the
Ricci tensor of M, respectively.

A para-Sasakian manifold M is said to be η-Einstein if its Ricci tensor S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (2.11)

for any vector fields X and Y , where a and b are some functions on M.

Definition 2.1. A para-Sasakian manifold is said to be locally φ-symmetric if

φ2((∇WR)(X,Y )Z) = 0, (2.12)

for all vector fields X,Y,Z,W orthogonal to ξ. This notion was introduced for Sasakian
manifold by Takahashi [11].

Definition 2.2. A para-Sasakian manifold is said to be locally concircular φ-symmetric if

φ2
((

∇WC
)

(X,Y )Z
)

= 0, (2.13)

for all vector fields X,Y,Z,W orthogonal to ξ. Where the concircular curvature tensor C is
given by [16]

C(X,Y )Z = R(X,Y )Z − r

n(n − 1)
[

g(Y,Z)X − g(X,Z)Y
]

, (2.14)

where R is the Riemannian curvature tensor and r is the scalar curvature.

Definition 2.3. A para-Sasakian manifold is said to be φ-recurrent if there exists a nonzero
1-form A such that

φ2((∇WR)(X,Y )Z) = A(W)R(X,Y )Z, (2.15)

where A is a 1-form and it is defined by

A(W) = g
(

W,ρ
)

, (2.16)

and ρ is a vector field associated with the 1-form A.
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3. Quarter-Symmetric Metric Connection

Let ˜∇ be a linear connection and ∇ a Riemannian connection of an almost contact metric
manifold M such that

˜∇XY = ∇XY +U(X,Y ), (3.1)

where U is a tensor of type (1, 1). For ˜∇ to be a quarter-symmetric metric connection in M,
then we have [3]

U(X,Y ) =
1
2
[

T(X,Y ) + T ′(X,Y ) + T ′(Y,X)
]

, (3.2)

g
(

T ′(X,Y ), Z
)

= g(T(Z,X), Y ). (3.3)

From (1.1) and (3.3), we get

T ′(X,Y ) = η(X)φY − g
(

φX, Y
)

ξ. (3.4)

Using (1.1) and (3.4) in (3.2), we obtain

U(X,Y ) = η(Y )φX − g
(

φX, Y
)

ξ. (3.5)

Thus a quarter-symmetric metric connection ˜∇ in a para-Sasakian manifold is given by

˜∇XY = ∇XY + η(Y )φX − g
(

φX, Y
)

ξ. (3.6)

Hence (3.6) is the relation between Riemannian connection and the quarter-symmetric metric
connection on a para-Sasakian manifold.

A relation between the curvature tensor of M with respect to the quarter-symmetric
metric connection ˜∇ and the Riemannian connection ∇ is given by

˜R(X,Y )Z = R(X,Y )Z + 3g
(

φX,Z
)

φY − 3g
(

φY,Z
)

φX + η(Z)
[

η(X)Y − η(Y )X
]

− [

η(X)g(Y,Z) − η(Y )g(X,Z)
]

ξ,
(3.7)

where ˜R and R denote the Riemannian curvatures of the connections ˜∇ and ∇, respectively.
From (3.7), it follows that

˜S(Y,Z) = S(Y,Z) + 2g(Y,Z) − (n + 1)η(Y )η(Z), (3.8)

where ˜S and S are the Ricci tensors of the connections ˜∇ and ∇, respectively.
Contracting (3.8), we get

r̃ = r + (n − 1), (3.9)

where r̃ and r are the scalar curvatures of the connections ˜∇ and ∇, respectively.
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4. φ-Recurrent Para-Sasakian Manifold with respect to
Quarter-Symmetric Metric Connection

A para-Sasakian manifold is called φ-recurrent with respect to the quarter-symmetric metric
connection if its curvature tensor ˜R satisfies the condition

φ2
((

˜∇W
˜R
)

(X,Y )Z
)

= A(W) ˜R(X,Y )Z. (4.1)

By virtue of (2.1) and (4.1), we have

(

˜∇W
˜R
)

(X,Y )Z − η
((

˜∇W
˜R
)

(X,Y )Z
)

ξ = A(W) ˜R(X,Y )Z. (4.2)

From which, it follows that

g
((

˜∇W
˜R
)

(X,Y )Z,U
)

− η
((

˜∇W
˜R
)

(X,Y )Z
)

g(ξ,U) = A(W)g
(

˜R(X,Y )Z,U
)

. (4.3)

Let {ei}, i = 1, 2, . . . , n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ei in (4.3) and taking summation over i, 1 ≤ i ≤ n, we
get

(

˜∇W
˜S
)

(Y,Z) −
n
∑

i=1

η
((

˜∇W
˜R
)

(ei, Y )Z
)

η(ei) = A(W) ˜S(Y,Z). (4.4)

The second term of (4.4) by putting Z = ξ takes the form

g
((

˜∇W
˜R
)

(ei, Y )ξ, ξ
)

= g
(

˜∇W
˜R(ei, Y )ξ, ξ

)

− g
(

˜R
(

˜∇Wei, Y
)

ξ, ξ
)

− g
(

˜R
(

ei, ˜∇WY
)

ξ, ξ
)

− g
(

˜R(ei, Y ) ˜∇Wξ, ξ
)

.
(4.5)

On simplification we obtain

g
((

˜∇W
˜R
)

(ei, Y )Z, ξ
)

= 0. (4.6)

Therefore (4.4) can be written in the form

(

˜∇W
˜S
)

(Y,Z) = A(W) ˜S(Y,Z). (4.7)

Replacing Z by ξ in the above relation, then using (3.8) and (2.9), we have

(

˜∇W
˜S
)

(Y, ξ) = −2(n − 1)A(W)η(Y ). (4.8)
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We know that

(

˜∇W
˜S
)

(Y, ξ) = ˜∇W
˜S(Y, ξ) − ˜S

(

˜∇WY, ξ
)

− ˜S
(

Y, ˜∇Wξ
)

. (4.9)

Using (3.8), (2.6) and (2.9) in the above relation, we get

(

˜∇W
˜S
)

(Y, ξ) = −4(n − 1)g
(

Y, φW
) − 2S

(

Y, φW
)

+ 4g
(

Y, φW
)

. (4.10)

In view of (4.8) and (4.10), we obtain

−4(n − 1)g
(

Y, φW
) − 2S

(

Y, φW
)

+ 4g
(

Y, φW
)

= −2(n − 1)A(W)η(Y ). (4.11)

Replacing Y by φY in (4.11) and then using (2.3) and (2.10), we have

S(Y,W) = −2(n − 2)g(Y,W) + (n − 3)η(Y )η(W). (4.12)

Hence, we can state the following.

Theorem 4.1. If para-Sasakian manifold is φ-recurrent with respect to quarter-symmetric metric
connection then it is an η-Einstein manifold with respect to Riemannian connection.

5. Concircular φ-Recurrent Para-Sasakian Manifold with respect to
Quarter-Symmetric Metric Connection

A concircular φ-recurrent para-Sasakian manifold with respect to the quarter-symmetric
metric connection is defined by

φ2
((

˜∇W
˜

C

)

(X,Y )Z
)

= A(W)˜C(X,Y )Z, (5.1)

where ˜

C is a concircular curvature tensor with respect to the quarter-symmetric metric
connection given by

˜

C(X,Y )Z = ˜R(X,Y )Z − r̃

n(n − 1)
[

g(Y,Z)X − g(X,Z)Y
]

. (5.2)

By virtue of (2.1) and (5.1), we have

(

˜∇W
˜

C

)

(X,Y )Z − η

((

˜∇W
˜

C

)

(X,Y )Z
)

ξ = A(W)˜C(X,Y )Z, (5.3)

from which it follows that

g

((

˜∇W
˜

C

)

(X,Y )Z,U
)

− η

((

˜∇W
˜

C

)

(X,Y )Z
)

g(ξ,U) = A(W)g
(

˜

C(X,Y )Z,U
)

, (5.4)
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where

(

˜∇W
˜

C

)

(X,Y )Z = ((∇WR)(X,Y )Z) + 6
[

g
(

φY,Z
)

g(W,X) − g
(

φX,Z
)

g(W,Y )
]

ξ

+ 6
[

η(Y )g(W,Z) + η(Z)g(W,Y )
]

φX

− 6
[

η(X)g(W,Z) + η(Z)g(W,X)
]

φY

+ 2
[

η(Y )g(X,Z) − η(X)g(Y,Z)
]

φW

+ 6
[

η(X)g
(

φY,Z
) − η(Y )g

(

φX,Z
)]

W

+ 12η(W)η(Z)
[

η(X)φY − η(Y )φX
]

+ η(Z)
[

g(W,Y )X − g(W,X)Y
]

+ 2η(W)η(Z)
[

η(X)Y − η(Y )X
]

+ 12η(W)
[

η(Y )g
(

φX,Z
) − η(X)g

(

φY,Z
)]

ξ

+ η(W)
[

η(Y )g(X,Z) − η(X)g(Y,Z)
]

ξ + η(Z)
[

g
(

φW,X
)

Y − g
(

φW,Y
)

X
]

+ g(W,Z)
[

η(Y )X − η(X)Y
]

+
[

g(W,X)g(Y,Z) − g(W,Y )g(X,Z)
]

ξ

− [

g
(

φW,X
)

g(Y,Z) − g
(

φW,Y
)

g(X,Z)
]

ξ + g
(

φW,Z
)[

η(X)Y − η(Y )X
]

− ∇Wr

n(n − 1)
[

g(Y,Z)X − g(X,Z)Y
]

.

(5.5)

Let {ei}, i = 1, 2, . . . , n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ei in (5.4) and taking summation over i, 1 ≤ i ≤ n, we
get

(∇WS)(Y,Z) =
∇Wr

n
g(Y,Z) + (n + 4)η(Z)g

(

φW,Y
)

+ (n + 3)η(Y )g
(

φW,Z
)

+ (2n − 3)η(W)η(Y )η(Z) − (n − 1)η(Y )g(W,Z)

− ∇Wr

n(n − 1)
[

g(Y,Z) − η(Y )η(Z)
]

+A(W)S(Y,Z)

−A(W)
{

(n + 1)η(Y )η(Z) +
r − (n + 1)

n
g(Y,Z)

}

.

(5.6)

Replacing Z by ξ in (5.6) and using (2.9), we have

(∇WS)(Y, ξ) =
∇Wr

n
η(Y ) + (n + 4)g

(

φW,Y
)

+ (n − 2)η(W)η(Y )

−A(W)η(Y )
[

2n +
r − (n + 1)

n

]

.
(5.7)

We know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ) − S(∇WY, ξ) − S(Y,∇Wξ). (5.8)

Using (2.6) and (2.9) in the above relation, it follows that

(∇WS)(Y, ξ) = −(n − 1)
[

g
(

φW,Y
)] − S

(

Y, φW
)

. (5.9)
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In view of (5.7) and (5.9), we obtain

S
(

Y, φW
)

= −(n − 1)g
(

φW,Y
) − ∇Wr

n
η(Y ) − (n + 4)g

(

φW,Y
)

− (n − 2)η(W)η(Y ) +A(W)η(Y )
[

2n +
r − (n + 1)

n

]

.
(5.10)

Replacing Y by φY in (5.10) and then using (2.3) and (2.10), we obtain

S(Y,W) = −(2n + 3)g(W,Y ) + (n + 4)η(W)η(Y ). (5.11)

This leads to the following theorem.

Theorem 5.1. If para-Sasakian manifold is concircular φ-recurrent with respect to quarter-symmetric
metric connection then it is an η-Einstein manifold with respect to Riemannian connection.

Now from (5.3), we have

(

˜∇W
˜

C

)

(X,Y )Z = η

((

˜∇W
˜

C

)

(X,Y )Z
)

ξ +A(W)˜C(X,Y )Z. (5.12)

This gives

((∇WR)(X,Y )Z) = η((∇WR)(X,Y )Z)ξ + 6
[

η(Y )g(W,Z) − η(Z)g(W,Y )
]

φX

+ 6
[

η(X)g(W,Z)+η(Z)g(W,X)
]

φY+2
[

η(X)g(Y,Z)−η(Y )g(X,Z)
]

φW

− 6
[

η(X)g
(

φY,Z
) − η(Y )g

(

φX,Z
)]

W − 2η(W)η(Z)
[

η(X)Y − η(Y )X
]

+ 12η(W)η(Z)
[

η(Y )φX − η(X)φY
] − η(Z)

[

g(W,Y )X − g(W,X)Y
]

+ η(Z)
[

g
(

φW,Y
)

X−g(φW,X
)

Y
]

+η(Z)
[

η(X)g(W,Y )−η(Y )g(W,X)
]

ξ

+ η(Z)
[

η(Y )g
(

φW,X
) − η(X)g

(

φW,Y
)]

ξ − g(W,Z)
[

η(Y )X − η(X)Y
]

+ g
(

φW,Z
)[

η(Y )X−η(X)Y
]

+6η(W)
[

η(X)g
(

φY,Z
)−η(Y )g(φX,Z

)]

ξ

+
∇Wr

n(n − 1)
[

g(Y,Z)X − g(X,Z)Y − η(X)g(Y,Z)ξ + η(Y )g(X,Z)ξ
]

+A(W)R(X,Y )Z + 3A(W)
[

g
(

φX,Z
)

φY − g
(

φY,Z
)

φX
]

+A(W)η(Z)
[

η(X)Y − η(Y )X
] −A(W)

[

η(X)g(Y,Z) − η(Y )g(X,Z)
]

ξ

− r + (n − 1)
n(n − 1)

A(W)
[

g(Y,Z)X − g(X,Z)Y
]

.

(5.13)
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Now from (5.13) and Bianchi’s second identity, we have

A(W)η(R(X,Y )Z) +A(X)η(R(Y,W)Z) +A(Y )η(R(W,X)Z)

=
(n + 1)(n − 1) + r

n(n − 1)
A(W)

[

η(X)g(Y,Z) − η(Y )g(X,Z)
]

+
(n + 1)(n − 1) + r

n(n − 1)
A(X)

[

η(Y )g(W,Z) − η(W)g(Y,Z)
]

+
(n + 1)(n − 1) + r

n(n − 1)
A(Y )

[

η(W)g(X,Z) − η(X)g(W,Z)
]

.

(5.14)

By virtue of (2.7), we obtain from (5.14) that

A(W)
[

g(X,Z)η(Y ) − g(Y,Z)η(X)
]

+A(X)
[

g(Y,Z)η(W) − g(W,Z)η(Y )
]

+A(Y )
[

g(W,Z)η(X) − g(X,Z)η(W)
]

=
(n + 1)(n − 1) + r

n(n − 1)
A(W)

[

η(X)g(Y,Z) − η(Y )g(X,Z)
]

+
(n + 1)(n − 1) + r

n(n − 1)
A(X)

[

η(Y )g(W,Z) − η(W)g(Y,Z)
]

+
(n + 1)(n − 1) + r

n(n − 1)
A(Y )

[

η(W)g(X,Z) − η(X)g(W,Z)
]

.

(5.15)

Putting Y = Z = ei in (5.15) and taking summation over i, 1 ≤ i ≤ n, we get

A(W)η(X) = A(X)η(W), (5.16)

for all vector fields X,W . Replacing X by ξ in (5.16), we get

A(W) = η(W)η
(

ρ
)

, (5.17)

for any vector field W .
Hence from (5.16) and (5.17), we can state the following.

Theorem 5.2. In a concircular φ-recurrent para-Sasakian manifold with respect to quarter-symmetric
metric connection, the characteristic vector field ξ and the vector field ρ associated to the 1-form A are
in codirectional and the 1-form A is given by (5.17).
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