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On the real line initially there are infinite number of particles on the positive half line, each having
one of K-negative velocities v

(+)
1 , . . . , v

(+)
K . Similarly, there are infinite number of antiparticles on

the negative half line, each having one of L-positive velocities v(−)
1 , . . . , v

(−)
L . Each particle moves

with constant speed, initially prescribed to it. When particle and antiparticle collide, they both
disappear. It is the only interaction in the system. We find explicitly the large time asymptotics of
β(t)—the coordinate of the last collision before t between particle and antiparticle.

1. Introduction

We consider one-dimensional dynamical model of the boundary between two phases
(particles and antiparticles, bears and bulls) where the boundary moves due to reaction
(annihilation, transaction) of pairs of particles of different phases.

Assume that at time t = 0 infinite number of (+)-particles and (−)-particles are situated
correspondingly on R+ and R− and have one-point correlation functions:

f+(x, v) =
K∑

i=1

ρ
(+)
i (x)δ

(
v − v

(+)
i

)
, f−(x, v) =

L∑

j=1

ρ
(−)
j (x)δ

(
v − v

(−)
j

)
. (1.1)

Moreover, for any i, j,

v
(+)
i < 0, v

(−)
j > 0, (1.2)
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that is, two phases move towards each other. Particles of the same phase do not see each other
and move freely with the velocities prescribed initially. The only interaction in the system is
the following, when two particles of different phases find themselves at the same point they
immediately disappear (annihilate). It follows that the phases stay separated, and one might
call any point in-between them the phase boundary (e.g., it could be the point of the last
collision). Thus, the boundary trajectory β(t) is a random piece-wise constant function of
time.

The main result of the paper is the explicit formula for the asymptotic velocity of the
boundary as the function of 2(K + L) parameters—densities and initial velocities. It appears
to be continuous but at some hypersurface some first derivatives in the parameters do not
exist. This kind of phase transition has very clear interpretation: the particles with smaller
activities (velocities) cease to participate in the boundarymovement—they are always behind
the boundary, that is, do not influence the market price β(t). In this paper, we consider only
the case of constant densities ρ

(+)
i , ρ

(−)
i , that is, the period of very small volatility in the

market. This simplification allows us to get explicit formulae. In [1], the case K = L = 1
was considered, however, with nonconstant densities and random dynamics.

Main technical tool of the proof may seem surprising (and may be of its own interest),
we reduce this infinite particle problem to the study of a special random walk of one particle
in the orthant RN

+ with N = KL. The asymptotic behavior of this random walk is studied
using the correspondence between random walks in RN

+ and dynamical systems introduced
in [2].

The organization of the paper is the following. In Section 2, we give exact formulation
of the model and of the main result. In Section 3, we introduce the correspondence between
infinite particle process, random walks, and dynamical systems. In Sections 4, and 5 we give
the proofs.

2. Model and the Main Result

2.1. Initial Conditions

At time t = 0 on the real axis, there is a random configuration of particles, consisting of
(+)-particles and (−)-particles. (+)-particles and (−)-particles differ also by the type: denote
I+ = {1, 2, . . . , K} the set of types of (+)-particles, and I− = {1, 2, . . . , L} the set of types of
(−)-particles. Let

0 < x1,k = x1,k(0) < · · · < xj,k = xj,k(0) < · · · (2.1)

be the initial configuration of particles of type k ∈ I+, and let

· · · < yj,i = yj,i(0) < · · · < y1,i = y1, i(0) < 0, (2.2)
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be the initial configuration of particles of type i ∈ I−, where the second index is the type of the
particle in the configuration. Thus, all (+)-particles are situated on R+ and all (−)-particles on
R−. Distances between neighbor particles of the same type are denoted by

xj,k − xj−1,k = u
(+)
j,k

, k ∈ I+, j = 1, 2, . . . ,

yj−1,i − yj,i = u
(−)
j,i , i ∈ I−, j = 1, 2, . . . ,

(2.3)

where we put x0,k = y0,i = 0. The random configurations corresponding to the particles of
different types are assumed to be independent. The random distances between neighbor
particles of the same type are also assumed to be independent, and, moreover, identically
distributed, that is, random variables u

(−)
j,i , u

(+)
j,k are independent and their distribution

depends only on the upper and second lower indices. Our technical assumption is that
all these distributions are absolutely continuous and have finite means. Denote μ

(−)
i =

Eu
(−)
j,i , ρ

(−)
i = (μ(−)

i )
−1
, i ∈ I−, μ

(+)
k = Eu

(+)
j,k , ρ

(+)
k = (μ(+)

k )
−1
, k ∈ I+.

2.2. Dynamics

We assume that all (+)-particles of the type k ∈ I+ move in the left direction with the same
constant speed v

(+)
k

, where v
(+)
1 < v

(+)
2 < · · · < v

(+)
K < 0. The (−)-particles of type i ∈ I− move

in the right direction with the same constant speed v
(−)
i , where v

(−)
1 > v

(−)
2 > · · · > v

(−)
L > 0. If

at some time t a (+)-particle and a (−)-particle are at the same point (we call this a collision
or annihilation event), then both disappear. Collisions between particles of different phases
is the only interaction, otherwise, they do not see each other. Thus, for example, at time t, the
jth particle of type k ∈ I+ could be at the point:

xj,k(t) = xj,k(0) + v
(+)
k t, (2.4)

if it will not collide with some (−)-particle before time t. Absolute continuity of the
distributions of random variables u(−)

j,i , u
(+)
j,k

guaranties that the events, when more than two
particles collide, have zero probability.

We denote this infinite particle process D(t).
We define the boundary β(t) between plus and minus phases to be the coordinate

of the last collision which occurred at some time t′ < t. For t = 0, we put β(0) = 0. Thus, the
trajectories of the random process β(t) are piecewise constant functions, we will assume them
continuous from the left.

2.3. Main Result

For any pair (J−, J+) of subsets J− ⊆ I−, J+ ⊆ I+, define the numbers:

V (J−, J+) =

∑
i∈J− v

(−)
i ρ

(−)
i +

∑
k∈J+ v

(+)
k

ρ
(+)
k

∑
i∈J− ρ

(−)
i +

∑
k∈J+ ρ

(+)
k

, V = V (I−, I+). (2.5)
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The following condition is assumed:

{V (J−, J+) : J− /=∅, J+ /=∅ } ∩
{
v
(−)
1 , . . . , v

(−)
L , v

(+)
1 , . . . , v

(+)
K

}
= ∅. (2.6)

If the limit W = limt→∞(β(t)/t) exists a.e., we call it the asymptotic speed of the boundary.
Our main result is the explicit formula forW .

Theorem 2.1. The asymptotic velocity of the boundary exists and is equal to

W = V ({1, . . . , L1}, {1, . . . , K1}), (2.7)

where

L1 = max
{
l ∈ {1, . . . , L} : v

(−)
l

> V ({1, . . . , l}, I+)
}
, (2.8)

K1 = max
{
k ∈ {1, . . . , K} : v

(+)
k

< V (I−, {1, . . . , k})
}
. (2.9)

Note that the definition of L1 and K1 is not ambiguous because v
(−)
1 > V ({1}, I+) and

v
(+)
1 < V (I−, {1}).

Now, we will explain this result in more detail. As v
(+)
K < 0 < v

(−)
L , there can be 3

possible orderings of the numbers v(−)
L , v

(+)
K , V :

(1) v(+)
K < V < v

(−)
L : in this case

K1 = K, L1 = L, W = V ; (2.10)

(2) if v(+)
K > V , then V < 0 and K1 < K, L1 = L, moreover,

W = V ({1, . . . , L}, {1, . . . , K1}) = min
k∈I+

V ({1, . . . , L}, {1, . . . , k}) < V < 0; (2.11)

(3) if v(−)
L < V , then V > 0 and K1 = K, L1 < L, moreover,

W = V ({1, . . . , L1}, I+) = max
l∈I−

V ({1, . . . , l}, I+) > V > 0. (2.12)

Item (1) is evident. Items (2) and (3) will be explained in Appendix B.
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2.4. Another Scaling

Normally, the minimal difference between consecutive prices (a tick) is very small. Moreover,
one customer can have many units of the commodity. That is why it is natural to consider the
scaled densities:

ρ
(+),ε
j = ε−1ρ(+)j , ρ

(−),ε
j = ε−1ρ(−)j , (2.13)

for some fixed constants ρ
(+)
j , ρ

(−)
j . Then, the phase boundary trajectory β(ε)(t) will depend

on ε. The results will look even more natural. Namely, it follows from the main theorem, that
is, for any t > 0, there exists the following limit in probability:

β(t) = lim
ε→ 0

β(ε)(t), (2.14)

that is, the limiting boundary trajectory.
This scaling suggests a curious interpretation of the model—the simplest model of one

instrument (e.g., a stock) market. Particle initially at x(0) ∈ R+ is the seller who wants to sell
his stock for the price x(0), which is higher than the existing price β(0). There are K groups
of sellers characterized by their activity to move towards more realistic price. Similarly, the
(−)-particles are buyers who would like to buy a stock for the price lower than β(t). When
seller and buyer meet each other, the transaction occurs and both leave the market. The main
feature is that the traders do not change their behavior (speeds are constant), that is, in some
sense the case of zero volatility.

There are models of the market having similar type (but very different from ours, see
[3–5]). In physical literature, there are also other one-dimensional models of the boundary
movement, see [6, 7].

2.5. Example of Phase Transition

The caseK = L = 1, that is, when the activities of (+)-particles are the same (and similarly for
(−)-particles), is very simple. There is no phase transition in this case. The boundary velocity

W =
v
(+)
1 ρ

(+)
1 + v

(−)
1 ρ

(−)
1

ρ
(+)
1 + ρ

(−)
1

(2.15)

depends analytically on the activities and densities. This is very easy to prove because the
nth collision time is given by the simple formula:

tn =
x
(+)
n (0) − x

(−)
n (0)

−v(+)
1 + v

(−)
1

(2.16)

and nth collision point is given by

x
(+)
n (0) + tnv

(+)
1 = x

(−)
n (0) + tnv

(−)
1 . (2.17)
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More complicated situation was considered in [1]. There, the movement of (+)-
particles have random jumps in both directions with constant drift v(+)

1 /= 0 (and similarly
for (−)-particles). In [1], the order of particles of the same type can be changedwith time. There
are no such simple formulae as (2.16) and (2.17) in this case. The result is, however, the same
as in (2.15).

The phase transition appears already in case when K = 2, L = 1, and, moreover, the
(−)-particles stand still, that is, v(−)

1 = 0. Denote ρ
(−)
1 = ρ0, v

(+)
i = vi, ρ

(+)
i = ρi, i = 1, 2.

Consider the function:

V1
(
v1, ρ1

)
=

ρ1v1

ρ0 + ρ1
. (2.18)

It is the asymptotic speed of the boundary in the system where there is no (+)-particles of
type 2 at all.

Then, the asymptotic velocity is the function:

W = V
(
v1, v2, ρ1, ρ2

)
=

ρ1v1 + ρ2v2

ρ0 + ρ1 + ρ2
(2.19)

if v2 < V1 and

W = V1
(
v1, ρ1

)
=

ρ1v1

ρ0 + ρ1
(2.20)

if v2 > V1. We see that at the point v2 = V1 the function W is not differentiable in v2.

2.6. Balance Equations—Physical Evidence

Assume that the speed w of the boundary is constant. Then, the (−)-particle will meet the
boundary if and only if v(−)

i > w. Then, the mean number of (−)-particles of type i, meeting
the boundary on the time interval (0, t), is (v(−)

i − w)tρ(−)i . The total number of (−)-particles
meeting the boundary during time t is

∑

i: v(−)
i >w

(
v
(−)
i −w

)
tρ

(−)
i . (2.21)

Similarly, the number of (+)-particles meeting the boundary is

∑

j: v(+)
j <w

(
w − v

(+)
j

)
tρ

(+)
j . (2.22)
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These numbers should be equal (balance equations), and after dividing by t, this gives
the equation with respect to w:

∑

i: v(−)
i >w

(
v
(−)
i −w

)
ρ
(−)
i =

∑

j: v(+)
j < w

(
w − v

(+)
j

)
ρ
(+)
j . (2.23)

Note that both parts are continuous in w. Moreover, the left (right) side is decreasing
(increasing). This defines w uniquely. One can obtain the main result from this equation.

One could think that on this way one can get rigorous proof. However, it is not so easy.
We develop here different techniques, that gives much more information about the process
than simple balance equations.

3. Random Walk and Dynamical System in RN
+

3.1. Associated Random Walk

One can consider the phase boundary as a special kind of server where the customers
(particles) arrive in pairs and are immediately served. However, the situation is more
involved than in standard queuing theory, because the server moves, and correlation between
its movement and arrivals is sufficiently complicated. That is why this analogy does not help
much. However, we describe the crucial correspondence between random walks in RN

+ and
the infinite particle problem defined above, that allows to get the solution.

Denote b
(−)
i (t) (b(+)k (t)) the coordinate of the extreme right (left), and still existing at

time t, that is, not annihilated at some time t′ < t, (−)-particle of type i ∈ I− ((+)-particle of type
k ∈ I+). Define the distances di,k(t) = b

(+)
k

(t) − b
(−)
i (t) ≥ 0, i ∈ I−, k ∈ I+. The trajectories of the

random processes b(−)i (t), b(+)
k

(t), di,k(t) are assumed left continuous. Consider the random
process D(t) = (di,k(t), (i, k) ∈ I) ∈ RN

+ , where N = KL.
Denote D ∈ RN

+ the state space ofD(t). Note that the distances di,k(t), for any t, satisfy
the following conservation laws:

di,k(t) + dn,m(t) = di,m(t) + dn,k(t), (3.1)

where i /=n and k /=m. That is why the state space D can be given as the set of nonnegative
solutions of the system of (L − 1)(K − 1) linear equations:

d1,1 + dn,m = d1,m + dn,1, (3.2)

where n,m/= 1. It follows that the dimension ofD equalsK+L−1. However, it is convenient to
speak about random walk in RN

+ , taking into account that only subset of dimensionK + L − 1
is visited by the random walk.

Now, we describe the trajectories D(t) in more detail. The coordinates di,k(t) decrease
linearly with the speeds v(−)

i −v(+)
k

correspondingly until one of the coordinates di,k(t) becomes
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zero. Let di,k(t0) = 0 at some time t0. This means that (−)-particle of type i collided with (+)-
particle of type k. Let them have numbers j and l correspondingly. Then, the components of
D(t) become

di,k(t0 + 0) = u
(−)
j+1,i + u

(+)
l+1,k,

di,m(t0 + 0) − di,m(t0) = u
(−)
j+1,i, m/= k,

dn,k(t0 + 0) − dn,k(t0) = u
(+)
l+1,k, n /= i,

(3.3)

and other components will not change at all, that is, do not have jumps.
Note that the increments of the coordinates dn,m(t0 + 0) − dn,m(t0) at the jump time do

not depend on the history of the process before time t0, as the random variables. u(−)
j,i (u

(+)
j,k

) are
independent and equally distributed for fixed type. It follows that D(t) is a Markov process.
However, this continuous time Markov process has singular transition probabilities (due
to partly deterministic movement). This fact, however, does not prevent us from using the
techniques from [2] where random walks in ZN

+ were considered.

3.2. Ergodic Case

We call the process D(t) ergodic, if there exists a neighborhood A of zero, such that the
mean value Eτx of the first hitting time τx of A from the point x is finite for any x ∈ D.
In the ergodic case, the correspondence between boundary movement and random walks is
completely described by the following theorem.

Theorem 3.1. Two following two conditions are equivalent:

(1) the process D(t) is ergodic;

(2) v(+)
K < V < v

(−)
L .

All other cases of boundary movement correspond to nonergodic randomwalks. Even
more, we will see that in all other cases the process D(t) is transient. Condition (2.6), which
excludes the set of parameters of zero measure, excludes in fact null recurrent cases.

To understand the corresponding random walk dynamics introduce a new family of
processes.

3.3. Faces

Let Λ ⊆ I = I− × I+. The face of RN
+ associated with Λ is defined as

B(Λ) =
{
x ∈ RN

+ : xi,k > 0, (i, k) ∈ Λ, xi,k = 0, (i, k) ∈ Λ
}
⊆ RN

+ . (3.4)

If Λ = ∅, then B(Λ) = {0}. For shortness, instead of B(Λ), we will sometimes write Λ.
However, one should note that the inclusion like Λ ⊂ Λ1 is always understood for subsets
of I, not for the faces themselves.

Define the following set of “appropriate” faces G = {Λ : Λ = J− × J+, J− ⊆ I−, J+ ⊆ I+}.
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Lemma 3.2. It holds that

D =
⋃

Λ0∈G
(D ∩Λ0). (3.5)

The proof will be given in Appendix A. This lemma explains why in the study of the
process D(t) one can consider only “appropriate” faces.

3.4. Induced Process

One can define a family D(t; J−, J+) of infinite particle processes, where J− ⊆ I−, J+ ⊆ I+.
The process D(t; J−, J+) is the process D(t) with ρ

(+)
j = 0, j /∈ J+, and ρ

(−)
j = 0, j /∈ J−. All

other parameters (i.e., the densities and velocities) are the same as for D(t). Note that these
processes are in general defined on different probability spaces. Obviously,D(t; I , I+) = D(t).

Similarly to D(t), the processes D(t; J−, J+) have associated random walks D(t; J−, J+)
in RN1

+ withN1 = |J−||J+|. Usefulness of these processes is that they describe all possible types
of asymptotic behavior of the main process D(t).

Consider a face Λ ∈ G, that is, such face that its complement Λ = J− × J+ where J− ⊆ I−
and J+ ⊆ I+. The process DΛ(t) = D(t; J−, J+) = (dΛ

i,k(t), (i, k) ∈ Λ) will be called an induced
process, associated with Λ. The coordinates dΛ

i,k
(t) are defined in the same way as di,k(t) =

dΛ
i,k(t), where Λ = {∅}. The state space of this process is DΛ = D(R|Λ|), where |Λ| = |J−||J+|.

Face Λ is called ergodic if the induced process DΛ(t) is ergodic.

3.5. Induced Vectors

Introduce the plane:

R(Λ) =
{
x ∈ RN : xi,k = 0, (i, k) ∈ Λ

}
⊆ RN. (3.6)

Lemma 3.3. Let Λ be ergodic with Λ = J− × J+, and let Dy(t) be the process D(t) with the initial
point y ∈ B(Λ). Then, there exists vector vΛ ∈ R(Λ) such that for any y ∈ B(Λ) t ≥ 0, such that
y + vΛt ∈ B(Λ), one has, as M → ∞,

DyM(tM)
M

−→ y + vΛt. (3.7)

This vector vΛ will be called the induced vector for the ergodic face Λ. We will see other
properties of the induced vector below.

3.6. Nonergodic Faces

Let Λ be the face which is not ergodic (nonergodic face). Ergodic face Λ1 : Λ1 ⊃ Λ will be
called outgoing for Λ, if vΛ1

i,k > 0 for (i, k) ∈ Λ1 \ Λ. Let E(Λ) be the set of outgoing faces for
the nonergodic face Λ.
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Lemma 3.4. The set E(Λ) contains the minimal element Λ1 in the sense that, for any Λ2 ∈ E(Λ), one
has Λ2 ⊇ Λ1.

This lemma will be proved in Section 5.2.

3.7. Dynamical System

We define now the piece-wise constant vector field v(x) in D, consisting of induced vectors, as
follows: v(x) = vΛ if x belongs to ergodic face Λ, and v(x) = vΛ1 if x belongs to nonergodic
faceΛ, whereΛ1 is theminimal element of E(Λ). LetUt be the dynamical system corresponding
to this vector field.

It follows that the trajectories Γx = Γx(t) of the dynamical system are piecewise
linear. Moreover, if the trajectory hits a nonergodic face, it leaves it immediately. It goes with
constant speed along an ergodic face until it reaches its boundary.

We call the ergodic face Λ = L final, if either L = ∅ or all coordinates of the induced
vector vL are positive. The central statement is that the dynamical system hits the final face,
stays on it forever, and goes along it to infinity, if L/= ∅.

The following theorem, together with Theorem 3.1, is parallel to Theorem 2.1. That
is, in all 3 cases of Theorems 2.1, 3.1, and 3.5 describe the properties of the corresponding
random walks in the orthant.

Theorem 3.5. (1) If D(t) is ergodic then the origin is the fixed point of the dynamical system Ut.
Moreover, all trajectories of the dynamical systemUt hit 0.

(2) Assume v(+)
K > V . Then, the process D(t) is transient and there exists a unique ergodic

final face L, such that vL
i,k

> 0 for (i, k) ∈ L. This face is

L(L,K1) = {(i, k) : i = 1, . . . , L, k = K1 + 1, . . . , K}, (3.8)

where K1 is defined by (2.9). Moreover, all trajectories of the dynamical system Ut hit L(L,K1) and
stay there forever.

(3)Assume v(−)
L < V . Then, the process D(t) is transient and there exists a unique ergodic

final face L, such that vL
i,k

> 0 for (i, k) ∈ L. This face is

L(L1, K) = {(i, k) : i = L1 + 1, . . . , L, k = 1, . . . , K}, (3.9)

where L1 is defined by (2.8). Moreover, all trajectories of the dynamical system Ut hit L(L1, K) and
stay there forever.

(4) For any initial point x, the trajectory Γx(t) has finite number of transitions from one face
to another, until it reaches {0} or one of the final faces.

This theorem will be proved in Section 5.3.
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3.8. Simple Examples of Random Walks and Dynamical Systems

If K = L = 1, the process D(t) is a random process on R+. It is deterministic on R+ \ {0}—it
moves with constant velocity v(+) − v(−) towards the origin. When it reaches 0 at time t, it
jumps backwards:

D(t + 0) = η, (3.10)

where η has the same distribution as u(+)
1 + u

(−)
1 . The dynamical system coincides with D(t)

inside R+ and has the origin as its fixed point.
If L = 1, K = 2 and, moreover, v(−)

1 = 0, then the state space of the process is
R2

+ = {(d11, d12)}. Inside the quarter plane, the process is deterministic and moves with
velocity (v(+)

1 , v
(+)
2 ). From any point x of the boundary d12 = 0, it jumps to the random point

x + η1, and from any point of the boundary d11 = 0, it jumps to the point x + η2, where η1, η2
have the same distributions as (u(−)

j,1 , u
(−)
j,1 + u

(+)
j,2 ) and (u(−)

j,1 + u
(+)
j,1 , u

(−)
j,1 ) correspondingly.

The classification results for random walks in Z2
+ can be easily transferred to this case; the

dynamical system is deterministic and has negative components of the velocity inside R2
+.

When it hits one of the axes, it moves along it. The velocity is always negative along the
first axis, however, along second axis, it can be either negative or positive. This is the phase
transition we described above. Correspondingly, the origin is the fixed point in the first case
and has positive value of the vector field along the second axis, in the second case.

4. Collisions

4.1. Basic Process

Now, we come back to our infinite particle processD(t). The collision of particles of the types
i ∈ I−, k ∈ I+ we will call the collision of type (i, k). Denote

νi,k(T) = #{t : di,k(t) = 0, t ∈ [0, T]} (4.1)

the number of collisions of type (i, k) on the time interval [0, T].

Lemma 4.1. If the process D(t) is ergodic, then the following positive limits exist a.s.

πi,k = lim
T →∞

νi,k(T)
T

> 0, (i, k) ∈ I (4.2)

and satisfy the following system of linear equations:

v
(−)
i − v

(+)
k

=
∑

(n,m)∈I−×I+

(
δ(n, i)μ(−)

i + δ(m, k)μ(+)
k

)
πn,m, (i, k) ∈ I. (4.3)

Proof. Remind that the collisions can be presented as follows. If di,k(t0) = 0, then for any n,m

dn,m(t0 + 0) − dn,m(t0) = δ(n, i)u(−)
j+1,i + δ(m, k)u(+)

l+1,k, (4.4)
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where δ(n, i) = 1 for n = i and δ(n, i) = 0 for n/= i. Note that the proof of (4.2) is similar to the
proof of the corresponding assertion in [8]. For large t, we have

di,k(t) = −
(
v
(−)
i − v

(+)
k

)
t +

∑

(n,m)∈I−×I+

(
δ(n, i)μ(−)

i + δ(m, k)μ(+)
k

)
νn,m(t) + o(t). (4.5)

Note that this is exact equality, if instead of μ(−)
i and μ

(+)
k , we take random distances between

particles. By the law of large numbers and by (4.2), the system (4.3) follows.

We will need below the following new notation, (4.3) can be rewritten in the new
variables π(−)

i , π
(+)
k as follows

v
(−)
i − v

(+)
k = π

(−)
i μ

(−)
i + π

(+)
k μ

(+)
k , (4.6)

where

π
(−)
i =

K∑

m=1

πi,m, π
(+)
k =

L∑

n=1

πn,k. (4.7)

Obviously, the following balance equation holds:

L∑

i=1

π
(−)
i =

K∑

k=1

π
(+)
k

=
L∑

i=1

K∑

k=1

πi,k. (4.8)

Rewrite the system (4.3) in a more convenient form, using the variables r(−)i = π
(−)
i μ

(−)
i , r

(+)
k

=
π

(+)
k μ

(+)
k . Then,

v
(−)
i − v

(+)
k = r

(−)
i + r

(+)
k , (i, k) ∈ I,

L∑

i=1

r
(−)
i ρ

(−)
i =

K∑

k=1

r
(+)
k ρ

(+)
k .

(4.9)

It follows that, for all (i, k) ∈ I,

v
(−)
i − r

(−)
i = r

(+)
k + v

(+)
k . (4.10)
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Introduce the variable w = v
(−)
i − r

(−)
i = r

(+)
k + v

(+)
k . We get the following system of equations

with respect to the variables r(−)i , r
(+)
k

, w:

v
(−)
i − r

(−)
i = w, i ∈ I−,

r
(+)
k + v

(+)
k = w, k ∈ I+,

L∑

i=1

r
(−)
i ρ

(−)
i =

K∑

k=1

r
(+)
k ρ

(+)
k .

(4.11)

It is easy to see that this system has the unique solution:

r
(−)
i = v

(−)
i −w, r

(+)
k = −v(+)

k +w, w = V, (4.12)

where V is defined by (2.5). If D(t) is ergodic, then by Lemma 4.1 we have r
(−)
i , r

(+)
k > 0 for

any i ∈ I−, k ∈ I+.

Lemma 4.2. Let the process D(t) be ergodic. Then,

(1) v(+)
K < V < v

(−)
L ,

(2) the speed of the boundary W = V .

Proof. (1) If D(t) is ergodic, then by Lemma 4.1, π(−)
i > 0 and π

(+)
k > 0 for all i ∈ I−, k ∈ I+. So,

by (4.12), we have

r
(−)
i = v

(−)
i − V > 0, r

(+)
k = −v(+)

k + V > 0. (4.13)

(2) Let ν(−)i (T) be the number of particles of type i ∈ I−, which had collisions during
time T . Then,

ν
(−)
i (T)∑

j=1

u
(−)
j,i

(4.14)

is the initial coordinate of the particle of type i ∈ I, which was the last annihilated among the
particle of this type. Let Ti be the annihilation time of this particle. Then,

β(Ti + 0) +
∑ν

(−)
i (T)

j=1 u
(−)
j,i

Ti
= v

(−)
i . (4.15)

Rewrite this expression as follows:

β(Ti + 0) − β(T) + β(T) +
∑ν

(−)
i (T)

j=1 u
(−)
j,i

T
=

Ti
T
v
(−)
i .

(4.16)
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It follows that

β(T)
T

=
Ti
T
v
(−)
i −

∑ν
(−)
i (T)

j=1 u
(−)
j,i

T
+
β(T) − β(Ti + 0)

T
.

(4.17)

By Lemma 4.1 and the strong law of large numbers,

∑ν
(−)
i (T)

j=1 u
(−)
j,i

T
=

ν
(−)
i (T)
T

∑ν
(−)
i (T)

j=1 u
(−)
j,i

ν
(−)
i (T)

−→ π
(−)
i μ

(−)
i = r

(−)
i , a.e. (4.18)

as T → ∞. At the same time, ergodicity of the process D(t) gives that as T → ∞

T − Ti
T

−→ 0,
β(T) − β(Ti + 0)

T
−→ 0, a.e. (4.19)

Thus, for any i ∈ I−, a.e.

lim
T →∞

β(T)
T

= v
(−)
i − r

(−)
i = V. (4.20)

Similarly, one can prove that for all k ∈ I+,

lim
T →∞

β(T)
T

= v
(+)
k

+ r
(+)
k

. (4.21)

It follows from (4.11) and (4.12) that the boundary velocity is defined by (2.5). Lemma is
proved.

4.2. Induced Process

Consider the faces Λ such that Λ = J− × J+, where J− ⊆ I− and J+ ⊆ I+. Let

νΛi,k(T) = #
{
t : dΛ

i,k(t) = 0, t ∈ [0, T]
}

(4.22)

be the number of collisions of type (i, k) on the time interval [0, T] in the process D(t; J−, J+).
The following lemma is quite similar to Lemma 4.1.

Lemma 4.3. If the processDΛ(t) is ergodic, then the following a.e. limits exist and are positive for all
pairs (i, k) ∈ Λ,

πΛ
i,k = lim

T →∞

νΛ
i,k(T)

T
> 0. (4.23)
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They satisfy the following system of linear equations:

v
(−)
i − v

(+)
k

=
∑

(n,m)∈Λ

(
δ(n, i)μ(−)

i + δ(m, k)μ(+)
k

)
πΛ
n,m, (i, k) ∈ Λ. (4.24)

Introduce the following notation:

π
(Λ,−)
i =

∑

k∈J+
πΛ
i,k, i ∈ J−,

π
(Λ,+)
k =

∑

i∈J−
πΛ
i,k, k ∈ J+,

r
(Λ,−)
i = μ

(−)
i π

(Λ,−)
i , i ∈ J−,

r
(Λ,+)
k

= μ
(+)
k

π
(Λ,+)
k

, k ∈ J+.

(4.25)

For Λ = ∅, Λ = I− × I+, we have π(Λ,−)
i = π

(−)
i , π(Λ,+)

k = π
(+)
k and r

(Λ,−)
i = r

(−)
i , r(Λ,+)

k = r
(+)
k .

Due to (4.24), for (i, k) ∈ Λ, we have

v
(−)
i − v

(+)
k =

∑

(n,m)∈Λ

(
δ(n, i)μ(−)

i + δ(m, k)μ(+)
k

)
πΛ
n,m

= μ
(−)
i π

(Λ,−)
i + μ

(+)
k π

(Λ,+)
k = r

(Λ,−)
i + r

(Λ,+)
k .

(4.26)

It follows that v(−)
i − r

(Λ,−)
i = r

(Λ,+)
k

+ v
(+)
k

for all (i, k) ∈ Λ. Put wΛ = v
(−)
i − r

(Λ,−)
i = r

(Λ,+)
k

+ v
(+)
k

.
In this way, we have obtained the following system of linear equations (similar the system
(4.11)) with respect to variables r(Λ,−)

i , r
(Λ,+)
k , wΛ:

v
(−)
i − r

(Λ,−)
i = wΛ, i ∈ I−,

r
(Λ,+)
k + v

(+)
k = wΛ, k ∈ I+,

∑

i∈J−
ρ
(−)
i r

(Λ,−)
i =

∑

k∈J+
ρ
(+)
k

r
(Λ,+)
k

.

(4.27)

As previously, this system has the unique solution:

r
(Λ,−)
i = v

(−)
i −wΛ, r

(Λ,+)
k

= −v(+)
k

+wΛ, wΛ = V Λ = V (J−, J+). (4.28)

For any process D(t; J−, J+) or for the corresponding induced process DΛ(t) (see
Section 3), we also define the boundary βΛ(t) as the coordinate of the last collision (i, k) ∈ Λ
before t. Let us assume that βΛ(0) = 0. The trajectories of the random process βΛ(t) are also
piece-wise constant, wewill assume them left continuous. The following lemma is completely
analogous to Lemma 4.2.



16 ISRN Mathematical Physics

Lemma 4.4. Let Λ = J− × J+ = {il, . . . , i1} × {k1, . . . , km}, where il > · · · > i1 and k1 < · · · < km, and
let Λ be an ergodic face. Then,

(1) v(−)
il

> V Λ = V (J−, J+) and v
(+)
km

< V Λ = V (J−, J+),

(2) the boundary velocity for the process D(t; J−, J+) (or for the corresponding DΛ(t)) equals
(with the a.e. limit)

lim
t→∞

βΛ(t)
t

= V Λ = V (J−, J+). (4.29)

Note that V Λ = V for Λ = ∅.

Lemma 4.5. For any ergodic face Λ (Λ = J− × J+), the vector vΛ ∈ R(Λ) with the coordinates equal
to

vΛ
i,k = −v(−)

i + v
(+)
k + 1(i ∈ J−)μ

(−)
i π

(Λ,−)
i + 1(k ∈ J+)μ

(+)
k π

(Λ,+)
k , (i, k) ∈ Λ, (4.30)

is the induced vector in the sense of Lemma 3.3.

This is quite similar to Lemma 2.2, page 143 of [8] and Lemma 4.3.2, page 87 of [9].
It follows from (4.30) and (4.28), that the coordinates of the induced vector are given

by

vΛ
i,k = −v(−)

i + V Λ, (i, k) ∈ Λ, i /∈ J−, k ∈ J+, (4.31)

vΛ
i,k = v

(+)
k − V Λ, (i, k) ∈ Λ, i ∈ J−, k /∈ J+, (4.32)

vΛ
i,k = −v(−)

i + v
(+)
k

, (i, k) ∈ Λ, i /∈ J−, k /∈ J+, (4.33)

vΛ
i,k = 0, (i, k) ∈ Λ. (4.34)

Note that by condition (2.6) for all induced vectors vΛ
i,k /= 0 if (i, k) ∈ Λ.

Intuitive interpretation of this formula is the following. For example, the inequality
vΛ
i,k = −v(−)

i + V Λ < 0, (i, k) ∈ Λ, i /∈ J−, k ∈ J+ means that (−)-particles of type i ∈ I− overtake

the boundary which moves with velocity V Λ. In the contrary case, vΛ
i,k = −v(−)

i + V Λ > 0, that
is, (−)-particles of type i ∈ I− fall behind the boundary.

5. Proofs

5.1. Proof of Theorem 3.1

The implication 1 ⇒ 2 has been proved in Lemma 4.2. Now, we prove that (2) implies (1).
We will use the method of Lyapounov functions to prove ergodicity. Define the Lyapounov
function:

f
(
y
)
=

∑

(i,k)∈I
pi,kyi,k =

(
p, y

)
, (5.1)



ISRN Mathematical Physics 17

where vector pwith coordinates pi,k > 0 will be defined below. One has to verify the following
condition: there exists δ > 0 such that for any ergodic face Λ, Λ/= {0},

f
(
y + vΛ

)
− f

(
y
)
=
(
p, vΛ

)
< −δ, (5.2)

where vΛ is the induced vector corresponding to the face Λ, see [9].
The system (4.3) can be written in the matrix form:

v = Aπ, (5.3)

where A is the N ×N matrix

A =
{
a(i,k),(n,m) = δ(n, i)μ(−)

i + δ(m, k)μ(+)
k

}
, (5.4)

with the elements indexed by (i, k) ∈ I, and the vector

v =
{
v(i,k) = v

(−)
i − v

(+)
k

, (i, k) ∈ I
}
. (5.5)

It is easy to see that the coordinates of the vector Aπ are equal to

(Aπ)i,k = μ
(−)
i π

(−)
i + μ

(+)
k

π
(+)
k

. (5.6)

If the assumption (2) of the theorem holds, then the system of (4.11) has a positive
solution, that is, r(−)i , r

(+)
k > 0. One can choose positive pi,k so that the following condition

holds:

π
(−)
i =

K∑

m=1

pi,m, π
(+)
k

=
L∑

n=1

pn,k, (5.7)

where π(−)
i = ρ

(−)
i r

(−)
i and π

(+)
k = ρ

(+)
k r

(+)
k . For example, one can put

pi,m = C−1π(−)
i π

(+)
k , (5.8)

where

C =
L∑

i=1

π
(−)
i =

K∑

k=1

π
(+)
k

. (5.9)

Let the vector p have coordinates pi,k. Then, p satisfies the system (5.3), that is, v = Ap.
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For ergodic face Λ, define the vector πΛ with coordinates πΛ
i,k, where πΛ

i,k for (i, k) ∈ Λ
are defined in (4.23) and we put πΛ

i,k
= 0 for (i, k) ∈ Λ. It follows from (4.26) and (4.30) that

the induced vector can be written as

vΛ = −v +AπΛ, (5.10)

with the matrix A and the vector v defined in (5.4) and (5.5). By (5.10), we have

vΛ = −v +AπΛ = −A
(
p − πΛ

)
. (5.11)

As the vector A(p − πΛ) belongs to the face Λ and PrΛπ
Λ = 0, then

f
(
y + vΛ

)
− f

(
y
)
=
(
p, vΛ

)
= −

(
p,A

(
p − πΛ

))
= −

(
p − πΛ, A

(
p − πΛ

))
. (5.12)

Note that the matrix A in (5.3) is a nonnegative operator. In fact, for any vector y =
(yi,j) ∈ RN ,

(
Ay, y

)
=
∑

i,k

(
μ
(−)
i y

(−)
i + μ

(+)
k y

(+)
k

)
yi,k =

L∑

i=1

μ
(−)
i

(
y
(−)
i

)2
+

K∑

k=1

μ
(+)
k

(
y
(+)
k

)2 ≥ 0, (5.13)

where

y
(−)
i =

K∑

m=1

yi,m, y
(+)
k =

L∑

n=1

yn,k. (5.14)

Let for definiteness Λ = J− × J+. By formula (5.13),

−
(
p − πΛ, A

(
p − πΛ

))
= −

L∑

i=1

μ
(−)
i

(
π

(−)
i − π

(Λ,−)
i

)2 −
K∑

k=1

μ
(+)
k

(
π

(+)
k

− π
(Λ,+)
k

)2

< −
∑

i/∈J−
μ
(−)
i

(
π

(−)
i

)2 −
∑

k/∈J+
μ
(+)
k

(
π

(+)
k

)2
< 0,

(5.15)

as π(−)
i , π

(+)
k > 0, π(Λ,−)

i = 0 for i /∈ J−, π
(Λ,+)
k = 0 if k /∈ J+. As the number of faces is finite, one

can always choose δ > 0, so that

f
(
y + vΛ

)
− f

(
y
)
= −

(
p − πΛ, A

(
p − πΛ

))
< −δ. (5.16)

The theorem is proved.
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5.2. Proof of Lemma 3.4

For any nonergodic face Λwith Λ = J− × J+ = {i1, . . . , il}×{m1, . . . , mk}, where i1 < · · · < il and
m1 < · · · < mk, define

q = max
{
n ∈ {1, . . . , l} : v(−)

in
> V ({i1, . . . , in}, {m1, . . . , mk})

}
, (5.17)

r = max
{
j ∈ {1, . . . , k} : v(+)

mj
< V

({i1, . . . , il},
{
m1, . . . , mj

})}
. (5.18)

This definition is correct because always

v
(−)
i1

> V ({i1}, {m1, . . . , mk}), v
(+)
m1 < V ({i1, . . . , il}, {m1}). (5.19)

Introduce the face Λ1 such that Λ1 = {i1, . . . , iq} × {m1, . . . , mr}. If r = k, q = l, then
v
(+)
mk

< V (J−, J+) < v
(−)
il

and Λ1 = Λ. By Theorem 3.1, the induced process DΛ(t) is ergodic and
the face Λ is ergodic.

So, there can be two possible cases.

(i) If r < k, q = l, thenΛ1 = {i1, . . . , il}×{m1, . . . , mr}, v(+)
mk

> V (J−, J+) and V (J−, J+) < 0.

(ii) If r = k, q < l, then Λ1 = {i1, . . . , iq} × {m1, . . . , mk}, v(−)
il

< V (J−, J+) and V (J−, J+) >
0.

By construction, we have Λ1 ⊃ Λ.
We show that Λ1 is the minimal ergodic outgoing face for Λ. Consider the first

case, namely, r < k, q = l. The second one is quite similar. Because of v
(+)
mr

<

V ({i1, . . . , il}, {m1, . . . , mr}) < v
(−)
il

, we can apply Theorem 3.1 and so the induced process
DΛ1(t) is ergodic. This gives ergodicity of the face Λ1.

By formula (4.32) for all (in,mj) ∈ Λ1 \Λ = {i1, . . . , il} × {mr+1, . . . , mk}

vΛ1
in,mj

= v
(+)
mj

− V ({i1, . . . , il}, {m1, . . . , mr}) (5.20)

and by formula (5.18),

v
(+)
mj

> V
({i1, . . . , il},

{
m1, . . . , mr,mr+1, . . . , mj

})
. (5.21)

It follows from Lemma B.1 that

V ({i1, . . . , il}, {m1, . . . , mr}) < V
({i1, . . . , il},

{
m1, . . . , mr,mr+1, . . . , mj

})
. (5.22)

Thus, we get vΛ1
in,mj

> 0 for all (in,mj) ∈ Λ1 \Λ. It means that the face Λ1 is outgoing for Λ.
To finish the proof of Lemma 3.4, it is sufficient to show that the constructed face Λ1 is

theminimal outgoing face forΛ. We give the proof by contradiction. Let there exist an ergodic
outgoing ( for Λ) face Λ0 ⊃ Λ such that Λ0 /=Λ1 and Λ1 ∩Λ0 /=Λ1. Put

Λ0 = J0− × J0+ ⊂ Λ = {i1, . . . , il} × {m1, . . . , mk}. (5.23)
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By (4.31)–(4.33), the coordinates vΛ0
i,k of the induced vector vΛ0 are given for (i, k) ∈ Λ0 \Λ as

follows:

vΛ0
i,k

= −v(−)
i + V

(
J0−, J

0
+

)
, (i, k) ∈

(
J− \ J0−

)
× J0+,

vΛ0
i,k

= v
(+)
k

− V
(
J0−, J

0
+

)
, (i, k) ∈ J0− ×

(
J+ \ J0+

)
,

vΛ0
i,k

= −v(−)
i + v

(+)
k

, (i, k) ∈ J− \ J0− × J+ \ J0+.

(5.24)

As the face Λ0 is outgoing, we must have vΛ0
i,k

> 0 for all (i, k) ∈ Λ0 \ Λ. Thus, the only two

situations are possible:Λ0 = J0− ×{m1, . . . , mk} orΛ0 = {i1, . . . , il}×J0+. In the first case, we have

vΛ0
i,j = −v(−)

i + V
(
J0−, {m1, . . . , mk}

)
> 0,

(
i, j

) ∈
(
J− \ J0−

)
× {m1, . . . , mk}, (5.25)

and so V (J0−, {m1, . . . , mk}) > 0. But then V (J−, J+) > 0 and this contradicts the assumption
V (J−, J+) < 0.

So Λ0 = {i1, . . . , il} × J0+. Show that J0+ = {m1, . . . , mr}.
Let J0+ /= {m1, . . . , mr} and there is j ∈ {m1, . . . , mr} such that j /∈ J0+. Then, by

Lemma B.1,

vΛ0
i,j = v

(+)
j − V

(
J0−, J

0
+

)
< 0, (5.26)

and, hence, the face Λ0 cannot be outgoing for Λ. If {m1, . . . , mr} ⊂ J0+, there exists some point
(in,mj) ∈ Λ0 \Λ, where j ∈ {r + 1, . . . , k}, and by (5.18),

v
(+)
mj

> V
({i1, . . . , il},

{
m1, . . . , mr,mr+1, . . . , mj

})
. (5.27)

It follows from Theorem 3.1 that the induced process DΛ0(t) is nonergodic and, hence, the
face Λ0 is also nonergodic. This contradicts the assumption on ergodicity of the face Λ0. So
J0+ = {m1, . . . , mr}. The Lemma is proved.

5.3. Proof of Theorem 3.5

The first goal of this subsection is to study trajectories Γ(t) of the dynamical systemUt. After
that, using the obtained knowledge about behavior of Γ(t), we will prove Theorem 3.5. Let
Γx(t) be the trajectory of the dynamical system, starting in the point Γx(0) = x ∈ RN

+ .
According to the definition of Ut, any trajectory Γx(t), t ≥ 0, visits some sequence

of faces. In general, this sequence depends on the initial point x and contains ergodic and
nonergodic faces. It is very complicated to give a precise list of all faces visited by the concrete
trajectory started from a given point x. Our idea is to find a common finite subsequence
Λ1,Λ2, . . . ,Λn of ergodic faces in the order they are visited by any trajectory. We find this
subsequence together with the time moments t1, t2, . . . , tn, where tk is the first time the
trajectory enters the closure of Λk. Moreover, it will follow from our proof that the intervals
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tk − tk−1 are finite, the dimensions of the ergodic faces in this sequence decrease and any
trajectory, after hitting the closure of some face in this sequence, will never leave this closure.

Proposition 5.1. There exists a monotone sequence of faces:

Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λr ⊃ · · · ⊃ Λn, dimFi > dimFi+1, (5.28)

and a sequence of time moments:

t1 ≤ t2 ≤ · · · ≤ tr ≤ · · · ≤ tn < +∞, (5.29)

depending on x, and having the following property:

Γx(t) ∈ Fr, ∀t ≥ tr , (5.30)

where Fr = cl(Λr) denotes the closure of Λr in RN
+ . Moreover, the sequence Λ1,Λ2, . . . ,Λn depends

only on the parameters of the model (i.e., on the velocities and densities), but the sequence of time
moments t1, t2, . . . , tn depends also on the initial point x of the trajectory Γx(t). Thus, any trajectory
will hit the final set Ffin = Fn in finite time.

The proof of Proposition 5.1 will be given at the end of this subsection.
First, wewill present here some algorithm for constructing the sequenceΛ1,Λ2, . . . ,Λn.

By Lemma 3.2, we can consider only faces Λ, such that Λ = J(−) × J(+). Algorithm consists of
several number of steps and constructs a sequence Λ1, Λ2, . . .,

Λp = J
(−)
p × J

(+)
p =

{
(l, k) | l ∈ J

(−)
p , k ∈ J

(+)
p

}
. (5.31)

In fact, it constructs a sequence {(J(−)p , J
(+)
p )}n

p=1. We prefer here to use notation:

(
J
(−)
p , J

(+)
p

)
= Tp =

(
J
(−)
p | J

(+)
p

)
, (5.32)

and to call Tp a group consisting of particle types listed in J
(−)
p , J

(+)
p .

Notation V Ti has the same meaning as earlier:

V Ti =

∑
l∈J(−)i

v
(−)
l ρ

(−)
l +

∑
k∈J(+)i

v
(+)
k ρ

(+)
k

∑
l∈J(−)i

ρ
(−)
l +

∑
k∈J(+)i

ρ
(+)
k

. (5.33)

Algorithm 5.2. (1) Put T1 = (1 | 1) and find V T1 .
(2a) If V T1 < 0, compare −v(+)

2 and |V T1 |.

(i) If −v(+)
2 > |V T1 |, then T2 = (1 | 1, 2).

(ii) If −v(+)
2 < |V T1 |, then T2 = (2, 1 | 1).
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(2b) If V T1 > 0, compare v(−)
2 and V T1 .

(i) If v(−)
2 > V T1 , then T2 = (2, 1 | 1).

(ii) If v(−)
2 < V T1 , then T2 = (1 | 1, 2).

We have already constructed group:

Tr−1 = (b, b − 1, . . . , 1 | 1, . . . , a − 1, a). (5.34)

Find V Tr−1 . If a < K and b < L hold, then apply the following steps (r-a) and (r-b).

(r- a) If V Tr−1 < 0 and a < K, compare −v(+)
a+1 and |V Tr−1 |.

(i) If −v(+)
a+1 > |V Tr−1 |, then Tr = (b, . . . , 1 | 1, . . . , a, a + 1).

(ii) If −v(+)
a+1 < |V Tr−1 |, then Tr = (b + 1, b, . . . , 1 | 1, . . . , a).

(r-b) If V Tr−1 > 0 and b < L, we compare v(−)
b+1 and V Tr−1 .

(i) If v(−)
b+1 > V Tr−1 , then Tr = (b + 1, b, . . . , 1 | 1, . . . , K).

(ii) If v
(−)
b+1 < V Tr−1 , then the algorithm is finished and the group Tr−1 =

(b, . . . , 1 | 1, . . . , K) is declared to be the final group Tfin of the algorithm.

(r-c) If a = K, and b < L, we compare v(−)
b+1 and V Tr−1 .

(i) If v(−)
b+1 > V Tr−1 , then Tr = (b + 1, b, . . . , 1 | 1, . . . , K).

(ii) If v(−)
b+1 < V Tr−1 , then the algorithm is finished and the group Tr−1 = (b, . . . , 1 |

1, . . . , K) is declared to be the final group Tfin of the algorithm.

(r-d) If a < K, and b = L, we compare v(+)
a+1 and V Tr−1 .

(i) If v(+)
a+1 < V Tr−1 , then Tr = (L, . . . , 1 | 1, . . . , a, a + 1).

(ii) If v(+)
a+1 > V Tr−1 , then the algorithm is finished and the group Tr−1 = (L, . . . , 1 |

1, . . . , a) is declared to be the final group Tfin of the algorithm.

If the algorithm did not stop at the steps (r-c), (r-d), or (r-e), then the step r + 1 should be
fulfilled, and so forth. It is clear that the algorithm stops after finite number of steps, and as
the result, we get a final group Tfin, which will have one of the following types:

(L, . . . , 1 | 1, . . . , K), (L, . . . , 1 | 1, . . . , K1), (L1, . . . , 1 | 1, . . . , K), (5.35)

where K1 < K, L1 < L.
We need not only the final group, corresponding to the face along which the trajectory

escapes to infinity, but also the whole chain:

T1 = (1 | 1) −→ T2 −→ T3 −→ · · · −→ Tfin. (5.36)
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As it follows from the algorithm, this chain is uniquely defined by the parameters of the
model.

Let us remark that in the algorithm we excluded cases where some of V Tr−1 are zero.
We will show below (see Remark 5.5) how to modify the algorithm to take into account these
cases as well.

The next lemma is needed for the proof of the Theorem 3.5. It is convenient, however,
to give this proof here, as it is essentially based on the details of the algorithm defined above.

Lemma 5.3. (1) If Tfin = (L, . . . , 1 | 1, . . . , K), then simultaneously v
(−)
L > V Tfin and v

(+)
K < V Tfin

hold.
(2) If Tfin = (L, . . . , 1 | 1, . . . , K1), where K1 < K, then V Tfin < 0 and v

(+)
K > V Tfin .

(3) If Tfin = (L1, . . . , 1 | 1, . . . , K), where L1 < L, then V Tfin > 0 and v
(−)
L < V Tfin .

Proof of Lemma 5.3. In fact, if Tfin = (L, . . . , 1 | 1, . . . , K1), where K1 < K, then the algorithm
stops on some step (r0-d), and thus, the condition v

(+)
K1+1

> V Tfin will hold. As 0 > v
(+)
K ≥ v

(+)
K1+1

,
then we get the proof of the part (2) of the lemma. Part (3) is quite similar.

To prove assertion (1) of the lemma consider the face, previous to the final one:

Tfin = (L, . . . , 1 | 1, . . . , K). (5.37)

Two cases are possible:

Tf−1 = (L, . . . , 1 | 1, . . . , K − 1) or Tf−1 = (L − 1, . . . , 1 | 1, . . . , K). (5.38)

Consider the case Tf−1 = (L, . . . , 1 | 1, . . . , K − 1) and the final fragment of the trajectory
in the algorithm:

(
L − 1, . . . , 1 | 1, . . . , q) −→ (

L, . . . , 1 | 1, . . . , q)

−→ · · · −→ Tf−1 = (L, . . . , 1 | 1, . . . , K − 1)

−→ Tfin.

(5.39)

Two cases of the first transition in this chain are possible:

(1) V (L−1,...,1|1,...,q) < 0 and v
(+)
q+1 > V (L−1,...,1|1,...,q);

(2) V (L−1,...,1|1,...,q) > 0 and v
(−)
L > V (L−1,...,1|1,...,q).

In both cases, one can claim that

v
(−)
L > V (L,...,1|1,...,q). (5.40)

To prove this consider both cases separately.

Case 1. As v(−)
L > 0, then we have v(−)

L > V (L−1,...,1 | 1,...,q). Thus, v(−)
L > V (L,...,1|1,...,q), as V (L,...,1|1,...,q)

is the convex linear combination (CLC(CLC of the numbers x1, . . . xn is
∑

i αixi for some
numbers αi > 0, i = 1, n such that

∑
i αi = 1.)) v(−)

L and V (L−1,...,1|1,...,q).
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Case 2. Here, we assume v
(−)
L > V (L−1,...,1 | 1,...,q). From this, as above, we get that v

(−)
L >

V (L,...,1|1,...,q).
Thus, the inequality (5.40) is proved. As V (L,...,1|1,...,K) is CLC of V (L,...,1|1,...,q) and negative

numbers v(+)
q+1, . . ., v

(+)
K , then

V (L,...,1|1,...,K) < V (L,...,1|1,...,q). (5.41)

Then, we have V (L,...,1|1,...,K) < v
(−)
L .

The latter transition in the chain occurs because v
(+)
K < V (L,...,1 | 1,...,k−1). Then, v(+)

K <

V (L,...,1 | 1,...,K), as V (L,...,1 | 1,...,K) is CLC of V (L,...,1 | 1,...,K−1) and v
(+)
K .

This gives the proof.

Let ar and br are such that

Tr = (br, . . . , 1 | 1, . . . , ar); (5.42)

The numbers ar and br are non-decreasing functions of r. Moreover ar + br increases by 1 if r
increases by 1. What can be the difference between Tr−1 and Tr? There can be two cases:
Case Πr . Consider ar = ar−1 + 1, br = br−1.

Case Ur . Consider ar = ar−1, br = br−1 + 1.

Remind that the face B(Λ) ∈ RN
+ is defined by the set of pairs of indices Λ ⊆ I− × I+.

Namely, to each pair (j, k) ∈ Λ corresponds positive coordinates dj,k > 0 in the definition
(3.4) of the face B(Λ) and vice versa. For shortness, we say that the face B(Λ) consists of pairs
(j, k) ∈ Λ.

Proposition 5.4. Let the chain (5.36) be given and Case Πr occur. For any ergodic face Λ, not
containing the pairs:

(l, k), l ∈ 1, br−1, k ∈ 1, ar−1, (5.43)

the following holds true: for any pairs as

(b, ar), b ∈ 1, br−1, (5.44)

belonging to Λ, the corresponding component of the vector field is negative:

vΛ
b,ar

< 0. (5.45)

If the Case Ur occurs, then for any ergodic face Λ, not containing the pairs (5.43), the following
components of the vector field are negative:
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vΛ
br ,a

< 0, a ∈ 1, ar−1, (5.46)

under the condition, of course, that (br, a) ∈ Λ.

Proof of Proposition 5.4. Remind the notation Tr = (br, . . . , 1 | 1, . . . , ar). As it was mentioned
above, the connection between Tr−1 and Tr can be of two kinds—Πr or Ur , which we write
schematically as

Πr : Tr = Tr−1 ∪ (∅ | ar),

Ur : Tr = Tr−1 ∪ (br | ∅).
(5.47)

Consider only the Case Πr , as the Case Ur is symmetric. It is necessary to prove that for any
ergodic face Λ, which does not contain

(l, k), l ∈ 1, br−1, k ∈ 1, ar−1, (5.48)

for any pairs (b, ar) ∈ Λ, where b ∈ 1, br−1, the inequality,

vΛ
b,ar

< 0, (5.49)

holds. Thus, we mean the faces with

Λ = (lm, . . . , lr , br−1, . . . , 1 | 1, . . . , ar−1, âr , kr+1, . . . , kn). (5.50)

For such faces vΛ
b,ar

= v
(+)
ar − V Λ.

Consider now the case when the set kr+1, . . . , kn is not empty. As Λ corresponds to
ergodic group of particles, then by Lemma 5.7 v

(+)
kr+1

< V Λ. As ar < kr+1, then

v
(+)
ar < v

(+)
kr+1

< V Λ =⇒ v
(+)
ar − V Λ < 0. (5.51)

The case when the set kr+1, . . . , kn is empty corresponds to

Λ = (lm, . . . , lr , br−1, . . . , 1 | 1, . . . , ar−1). (5.52)

Case Πr includes two possible subcases:

V Tr−1 < 0, v
(+)
ar < V Tr−1 , (5.53)

V Tr−1 > 0, v
(−)
br−1+1

< V Tr−1 . (5.54)

Consider firstly (5.54). If the set lm, . . . , lr is not empty, then the subcase (5.54) contradicts
the ergodicity assumption for (5.52), thus it is impossible. If the set lm, . . . , lr is empty, then
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Λ = Tr−1 and the assumption (5.54)means that V Λ = V Tr−1 > 0. As v(+)
ar < 0, we easily conclude

that in this case:

vΛ
b,ar

= v
(+)
ar − V Λ < 0. (5.55)

Consider now (5.53). If the set lm, . . . , lr is not empty, then due to the ergodicity of the group
(5.52), we have strict inequality V Λ > V Tr−1 . If the set lm, . . . , lr is empty, then Λ = Tr−1 and
consequently V Λ = V Tr−1 . Finally, we conclude that in the subsituation (5.53) always

V Λ ≥ V Tr−1 . (5.56)

From (5.53), we have

v
(+)
ar < V Tr−1 =⇒ v

(+)
ar < V Tr−1 ≤ V Λ, (5.57)

and it follows that vΛ
b,ar

= v
(+)
ar − V Λ < 0.

This ends the proof.

Proof of Proposition 5.1. Assume the above algorithm produces the chain of groups (5.36). Let
B(Λ1), B(Λ2), . . ., B(Λfin) be the faces in RN

+ , corresponding to the chain T1, T2, . . ., Tfin via the
rule (5.31). Denote F1, F2, . . ., Ffin the closures of these faces in RN

+ . That is, in notation (5.42),

Fi = cl(B(Λi)) =
{
x ∈ RN

+ : xj,k ≥ 0,
(
j, k

)
/∈ {1, . . . , br} × {1, . . . , ar},

xj,k = 0,
(
j, k

) ∈ {1, . . . , br} × {1, . . . , ar}
}
.

(5.58)

It is clear that F1 ⊃ F2 ⊃ · · · ⊃ Ffin, and, moreover, dimFi > dimFi+1. More exactly, dimFr −
dimFr+1 = br or ar in the Case Πr or Ur correspondingly.

Let Γx(t) = (γj,k(t), (j, k) ∈ I− × I+) be the coordinate description of the trajectory Γx. To
prove that Γx(t′) ∈ Fr one should check that γj,k(t′) = 0 for all (j, k) ∈ {1, . . . , br} × {1, . . . , ar}.
The trajectory goes along ergodic faces.

(1) Maximal ergodic face is Λ0 = RN
+ . The vector field vΛ0 on this face is such that

vΛ0
1,1 = v

(+)
1 −v

(−)
1 < 0. Note that also for any other ergodic face Λ, containing the pair (1, 1), the

component vΛ
1,1 will also be negative, as by (4.31)–(4.33) it can take only one of three following

negative values:

v
(+)
1 − v

(−)
1 , v

(+)
1 − V Λ or V Λ − v

(−)
1 . (5.59)

Thus, for any initial point x, there is t1 ≥ 0 such that γ1,1(t1) = 0, and, moreover, γ1,1(t) = 0 for
all t ≥ t1.

(2) Thus, Γx(t1) ∈ F1. If the Case Π2 occurs, then we have to show the existence of
t2 ≥ t1 such that γ1,2(t) = 0 for all t ≥ t2. If it appeared that Γx(t1) ∈ F2, then just put t2 = t1. If,
however, Γx(t1) /∈ F2, that is, γ1,2(t1) > 0, then Γx(t1) belongs to some ergodic face Λ � (1, 2).
By Proposition 5.4 vΛ

1,2 < 0, and thus there is t2 > t1 such that γ1,2(t2) = 0 (i.e., Γx(t2) ∈ F2). In
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future, the dynamical system will never quit F2. In fact, assume the contrary. Note that Γx(t2)
can belong either to Λ2, or to its boundary (remind that Λ2 = {(1, 1), (1, 2)} and cl(Λ2) = F2).
For the trajectory to quit F2, it is necessary that it used some outgoing ergodic face Λ′. There
are two possibilities to do this. The first possibility is (1, 1) ∈ Λ′. But in this case (see (5.59))
vΛ′
1,1 < 0, and we get contradiction with the hypothesis that Λ′ is an ergodic outgoing face.

The second possibility is (1, 1) /∈ Λ′ and (1, 2) ∈ Λ′. But according to the Proposition 5.4 for
any such face vΛ′

1,2 < 0, and thus the dynamical system cannot quit F2 along such face Λ′, This
gives the contradiction.

If the Case U2 occurred then, quite similarly, one show existence of t2 ≥ t1 such that
γ2,1(t) = 0 for all t ≥ t2.

(r) We can use further the induction, using subsequently Proposition 5.4, to show on
the step (r), that there exists tr ≥ tr−1 such that for any t ≥ tr :

(i) γb,ar (tr) = 0 for all b ∈ 1, br−1, if the Case Πr holds,

(ii) γbr ,a(tr) = 0 for all a ∈ 1, ar−1, if the Case Ur holds.

Let us show now that in any Case Γx(t) ∈ Fr for all t ≥ tr . For concreteness, consider only the
Case Πr , that is, when

Fr−1 =
{
x ∈ RN

+ : xi,j = 0, ∀(i, j) ∈ {br−1, . . . , 1} × {1, . . . , ar−1}
}
,

Fr =
{
x ∈ RN

+ : xi,j = 0, ∀(i, j) ∈ {br−1, . . . , 1} × {1, . . . , ar}
}
, ar = ar−1 + 1.

(5.60)

Assume that the trajectory of the dynamical system Γx(t), being at time t = tr in Fr , will leave
it at some future moment. The set Fr is a finite union of faces having various dimensions. One
should understand then which outgoing ergodic faces Λ′ can be used. Again, there are two
possibilities.

Case 1. Consider Λ′ ⋂{br−1, . . . , 1} × {1, . . . , ar−1} = ∅, that is, Λ′ ⊂ Fr−1. Then, there exists
b ∈ {br−1, . . . , 1} such that (b, ar) ∈ Λ′ (otherwise, Λ′ ⊂ Fr , which gives the contradiction). By
Proposition 5.4, we have vΛ′

b,ar
< 0. This contradicts to the fact that the face Λ′ is outgoing.

Case 2. Consider Λ′ ⋂{br−1, . . . , 1} × {1, . . . , ar−1}/=∅. Consider

q = min
{
n : Λ′ ⋂{bn, . . . , 1} × {1, . . . , an}/=∅

}
. (5.61)

Assume for definiteness, that on step q of the algorithm, we have

Tq = Tq−1 ∪
(
bq | ∅

)
. (5.62)

Then there exists such a ∈ {1, . . . , aq−1}, that is, (bq, a) ∈ Λ′. Applying Proposition 5.4, to Λ′,
we get vΛ′

bq,a
< 0 and come to the contradiction because Λ′ is outgoing.

Thus, there exists a time moment tfin > 0 such that for t ≥ tfin the trajectory hits the
final ergodic face Ffin, which is the complement to the final group (5.35).
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Important remark is that the sequence of times

t1 ≤ t2 ≤ · · · ≤ · · · ≤ tr ≤ · · · ≤ tfin (5.63)

depends on the initial point. In particular, for some initial points, some consequent moments
tr−1 and tr can coincide.

Remark 5.5. Consider the following modification of the algorithm: in Cases (2a) and (r-a)
change the conditions V T1 < 0 and V Tr−1 < 0 on V T1 ≤ 0 and V Tr−1 ≤ 0 correspondingly. All
the rest we leave untouched. It is easy to see that all results of this section hold after such
modification as well. In particular, our study covers the situation when (V Tfin coincides with
the asymptotic boundary velocity of our system (see Section 5.4) . ) V Tfin = 0.

From the above, it follows that any trajectory Γx(t) reaches the final face in finite time.
To proceed with the proof of Theorem 3.5, we will prove the following lemma.

Lemma 5.6. For any initial point x, the path Γx(t) has finite number of transitions from one face to
another, until it reaches one of the final faces. In other words, the sequence of faces, passed by the path
Γx(t), is finite and the last element of this sequence is the final face.

Proof of Lemma 5.6. Consider an arbitrary trajectory Γx(t). Let {Λx
i } be a sequence of all faces

visited by this trajectory. Denote {Tx
i } the sequence of the corresponding groups, where Tx

i =
Λx

i . We want to show that the sequence {Λx
i } is finite.

Two cases are possible for the transition Λx
i → Λx

i+1, or equivalently, for the transition
Tx
i → Tx

i+1. If the face Λx
i is ergodic, then the group Tx

i+1 is obtained by adding some new
particle type to the group Tx

i . During this transition, the dimension ofΛx
i decreases. If the face

Λx
i is nonergodic, then Λx

i+1 is the minimal outgoing face, containing Λx
i (see Lemma 3.4). In

the transitionΛx
i → Λx

i+1 from Tx
i , some types are deleted, and the dimension ofΛx

i increases.
Thus, the transition Tx

i → Tx
i+1 can occur with two operations: adding some new type and

deleting some types. The same type can be added and deleted several times. If we could show
that addition and deletion are possible only finite number of times, that will give finiteness
of the sequence {Λx

i }.
Note the following fact. Take, for example, some (+)-type k. Then, it can be deleted

from the group on some step if and only if on the previous step we added to the group some
(+)-type with smaller number (i.e., with greater velocity). That is why the type 1, plus or
minus, can be added only once and cannot be deleted. (+)-type 2 can be deleted only after
adding (+)-type 1. Similarly for (−)-type 2. That is why type 2, plus or minus, can be added
to the group not more than twice and can be deleted not more than once. One can prove by
induction that any type can be deleted and added not more that finite number of times.

Proof of Theorem 3.5. Let the chain (5.36) be the result of the algorithm. Three cases are
possible, defined by simple inequalities between v

(−)
L , v(+)

K , and V Tfin .
v
(+)
K < V Tfin < v

(−)
L : this corresponds to part (2.1) of Lemma 5.3, that is, Λfin = Tfin = {0}.

Thus, (Proposition 5.1), all trajectories of the dynamical systemUt reach 0 for finite time and
finite number of changes. Note that from this, using well-known methods (see [2, 9]), one
can get alternative proof of ergodicity ofD(t), in addition to the one of Theorem 3.1. The first
assertion of Theorem 3.5 is proved.
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V Tfin < v
(+)
K < 0: this case corresponds to part 2 of Lemma 5.3, and thus,

Tfin = (L, . . . , 1 | 1, . . . , K1), (5.64)

where K1 < K. From the rules of the algorithm, it follows immediately that v(+)
K1+1

> V Tfin , but

v
(+)
K1

< V Tfin . Thus, (see Theorem 3.1), the process DTfin
(t) is ergodic, and the face Λfin = Tfin is

also ergodic. Find now the vector vΛfin . Note that

Λfin = L(L,K1) = {(i, k) : i = 1, . . . , L, k = K1 + 1, . . . , K}. (5.65)

To find components of vΛfin
i,k , we use the formulas (4.31)–(4.33):

vΛfin
i,k = v

(+)
k − V Λfin > v

(+)
K1+1

− V Tfin > 0 ∀(i, j) ∈ {1, . . . , L} × {K1 + 1, . . . , K},

vΛfin
i,k

= 0 ∀(i, j) ∈ {1, . . . , L} × {1, . . . , K1}.
(5.66)

By Proposition 5.1 any trajectory, in finite time and after finite number of changes, will
reach L(L,K1), and will move along it with constant speed vΛfin , having strictly positive
components (5.66). By standard methods of [2, 9], we conclude that D(t) is transient. The
second assertion of Theorem 3.5 is proved.

0 < v
(−)
L < V Tfin : this case corresponds to part (3) of Lemma 5.3, and the proof is

completely similar to the previous case. That proves assertion (3) of Theorem 3.5.
The fourth assertion of theorem 3 is a corollary of Proposition 5.1 and Lemma 5.6.
Theorem 3.5 is proved.

5.4. Proof of Theorem 2.1

If associated random walk D(t) is ergodic, then by Lemma 4.2, the speed of the boundary
equals V which is defined by (2.5).

Let the process D(t) be nonergodic. Then, there are two possible cases: v(+)
K > V or

v
(−)
L < V . From the previous Section 5.3, it follows that any trajectory Γx(t) reaches the final

face in finite time and during this time only finite number of changing the face occurs.
The following assertion is an obvious analog of the proposition 1.4.3 of [2].

Lemma 5.7. For any t ≥ 0 and any initial point x,

DxM(tM)
M

−→ Γx(t), (5.67)

a.e. as M → ∞.

Let v
(+)
K > V . We have proved that any trajectory of the dynamical system Ut

reaches the final face L(L,K1), where the coordinates of the induced vector are positive. By
Lemma 5.7 the coordinates dq,r(t) of the process D(t), where q = 1, . . . , L, r = K1 + 1, . . . , K,
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grow linearly (a.e.) as t ∈ ∞. In other words (+)-types with numbers r = K1 + 1, . . . , K fall
behind the boundary and do not contribute to its velocity. It means that the boundary velocity
is defined only by the particles of types q = 1, . . . , L, r = 1, . . . , K1 and are given by formula
(2.5). The case of v(−)

L < V is quite similar.

Appendices

A. Proof of Lemma 3.2

Let the face Λ be such that Λ is not the direct product. Put

IΛ− =
{
i ∈ I− : ∃k ∈ I+, (i, k) ∈ Λ

}
,

IΛ+ =
{
k ∈ I+ : ∃i ∈ I−, (i, k) ∈ Λ

}
.

(A.1)

Choose an “appropriate” face Λ0 so that Λ0 = IΛ− × IΛ+ . To prove the lemma, it is sufficient to
show that

D ∩Λ = D ∩Λ0. (A.2)

As Λ ⊃ Λ0, we always have D ∩Λ ⊃ D ∩Λ0. Let us prove that D ∩Λ ⊆ D ∩Λ0. Let (i, k) ∈ Λ0

and (i, k) /∈ Λ. Then, there exist m ∈ I+ and n ∈ I− such that (i,m) ∈ Λ, (n,k) ∈ Λ and the
following equation holds:

di,k(t) + dn,m(t) = di,m(t) + dn,k(t). (A.3)

Take arbitrary element d = (dj,l) of the set D ∩ Λ. As its coordinates di,m(t) = dn,k(t) = 0, then
di,k = 0 for all (i, k) ∈ Λ0. Thus, d ∈ D ∩Λ0, and the lemma is proved.

B. Technical Lemma

For shortness, denote

f(k) = V (I−, {1, . . . , k}), g(l) = V ({1, . . . , l}, I+). (B.1)

Lemma B.1. one has

(i) v(+)
k+1 < f(k + 1) ⇔ f(k + 1) < f(k), k = 1, . . . , K − 1,

(ii) v(+)
k+1 > f(k + 1) ⇔ f(k + 1) > f(k), k = 1, . . . , K − 1

(iii) v(+)
k

> f(k) ⇒ v
(+)
k+1 > f(k + 1), k = 2, . . . , K − 1.
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Similarly,

(i) v(−)
l+1 < g(l + 1) ⇔ g(l + 1) < g(l), l = 1, . . . , L − 1

(ii) v(−)
l+1 > g(l + 1) ⇔ g(l + 1) > g(l), l = 1, . . . , L − 1

(iii) v(−)
l < g(l) ⇒ v

(−)
l+1 < g(l + 1), l = 2, . . . , L − 1.

Proof. We prove the first three items. The others are quite similar. Using (2.5), one can check

f(k + 1) = αf(k + 1) + βf(k + 1) = αf(k) + βv
(+)
k+1

(B.2)

for some α, β > 0 such that α + β = 1. It follows that

α
(
f(k + 1) − f(k)

)
= β

(
v
(+)
k+1 − f(k + 1)

)
. (B.3)

Thus, v(+)
k+1 < f(k + 1) ⇔ f(k + 1) < f(k). If v(+)

k > f(k), using v
(+)
k < v

(+)
k+1, we get

f(k + 1) < αv
(+)
k + βv

(+)
k+1 < αv

(+)
k+1 + βv

(+)
k+1 = v

(+)
k+1. (B.4)

The Lemma is proved.

Let K1 and L1 be defined by (2.9) and (2.8). It follows from the lemma that

f(1) > · · · > f(K1) < f(K1 + 1) < · · · < f(K),

g(1) < · · · < g(L1) > g(L1 + 1) > · · · > g(L).
(B.5)

So the minimum of f(k) is reached at point K1 and maximum of g(l) is reached at point L1.
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