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Let A be a real or complex algebra. Assuming that a vector space A is endowed with a pre-Hilbert
norm ‖·‖ satisfying ‖x2‖ = ‖x‖2 for all x ∈ A. We prove thatA is finite dimensional in the following
cases. (1)A is a real weakly alternative algebra without divisors of zero. (2)A is a complex powers
associative algebra. (3)A is a complex flexible algebraic algebra. (4)A is a complex Jordan algebra.
In the first case A is isomorphic to R,C,H, or O, and A is isomorphic to C in the last three cases.
These last cases permit us to show that if A is a complex pre-Hilbert noncommutative Jordan
algebra satisfying ‖x2‖ = ‖x‖2 for all x ∈ A, then A is finite dimensional and is isomorphic to
C. Moreover, we give an example of an infinite-dimensional real pre-Hilbert Jordan algebra with
divisors of zero and satisfying ‖x2‖ = ‖x‖2 for all x ∈ A.

1. Introduction

LetA be a real or complex algebra not necessarily associative or finite dimensional. Assuming
that a vector space A is endowed with a pre-Hilbert norm ‖ · ‖ satisfying ‖x2‖ ≤ ‖x‖2 for all
x ∈ A. Zalar (1995, [1]) proved that.

(1) If A is a real alternative algebra containing a unit element e such that ‖e‖ = 1, then
A is finite dimensional and is isomorphic to R,C,H, or O.

(2) If A is a real associative algebra satisfying ‖x2‖ = ‖x‖2, then A is finite dimensional
and is isomorphic to R,C, or H.

(3) If A is a complex normed algebra containing a unit element e such that ‖e‖ = 1,
then A is finite dimensional and is isomorphic to C.
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These results were extended, respectively, to the following cases.

(1) If A is a real alternative algebra containing a nonzero central element a such that
‖ax‖ = ‖a‖‖x‖, thenA is finite dimensional and is isomorphic to R,C,H, or O (2008,
[2]).

(2) If A is a real alternative algebra satisfying ‖x2‖ = ‖x‖2, then A is finite dimensional
and is isomorphic to R,C, or H (2008, [2]).

(3) If A is a complex normed algebra without divisors of zero and containing an
invertible element v such that ‖vx‖ = ‖xv‖ = ‖v‖‖x‖, then A is finite dimensional
and is isomorphic to C (2010, [3]).

In the present paper, we extend the above results to more general situation. Indeed, we prove
that, if A is a real or complex pre-Hilbert algebra satisfying ‖x2‖ ≤ ‖x‖2 for all x ∈ A, then A
is finite dimensional in the following cases.

(1) A is a real weakly alternative algebra without divisors of zero and satisfying ‖x2‖ =
‖x‖2 for all x ∈ A (Theorem 3.5).

(2) A is a real weakly alternative algebra without divisors of zero and containing a
nonzero central element a such that ‖ax‖ = ‖a‖‖x‖ for all x ∈ A (Theorem 3.7).

(3) A is a complex powers associative algebra satisfying ‖x2‖ = ‖x‖2 for all x ∈ A
(Theorem 4.8).

In the first two cases A is isomorphic to R,C,H or O and A is isomorphic to C in the last
two cases. This last allows us to show that if A is a complex pre-Hilbert noncommutative
Jordan algebra (resp., flexible algebraic algebra or Jordan algebra) satisfying ‖x2‖ = ‖x‖2 for
all x ∈ A, then A is finite dimensional and is isomorphic to C (Theorems 4.9 and 4.10).
Moreover, we give an example of an infinite-dimensional real pre-Hilbert Jordan algebra
(weakly alternative algebra) with divisors of zero and satisfying ‖x2‖ = ‖x‖2 for all x ∈ A.

2. Notation and Preliminary Results

Throughout the paper, the word algebra refers to a nonnecessarily associative algebra over R

or C.

Definitions 1. Let B be an arbitrary algebra and K is a field of characteristic not 2.

(1)

(i) B is called alternative if it is satisfied the identities (y, x, x) = 0 and (x, x, y) = 0
(where (·, ·, ·)means associator), for all x, y ∈ B (1966, [4]).

(ii) B is called a powers associative if, for every x in B, the subalgebra B(x)
generated by x is associative.

(iii) B is called flexible if (x, y, x) = 0 for all x, y ∈ B.
(iv) B is called a Jordan algebra if it is commutative and satisfied the Jordan

identity: (J) (x2, y, x) = 0 for all x, y ∈ B.
(v) B is called a noncommutative Jordan algebra if it is flexible and satisfied the

Jordan identity (J).
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(vi) B is called weakly alternative if it is a noncommutative Jordan algebra and
satisfied the identity (x, x, [x, y]) = 0 (where [·, ·] means commutator). An
alternative algebra or Jordan algebra is evidently weakly alternative.

(vii) B is called quadratic if it has an identity element e and satisfied the identity
x2 = αe + βx for all x ∈ B and α, β ∈ K.

(2)

(viii) We say that B is algebraic if, for every x in B, the subalgebra B(x) of B
generated by x is finite dimensional (1947, [5]).

(ix) A symmetric bilinear form (·, ·) over B is called a trace form if (xy, z) = (x, yz)
for all x, y, z ∈ B.

(x) B is termed normed (resp., absolute valued) if it is endowedwith a space norm
‖ · ‖ such that ‖xy‖ ≤ ‖x‖‖y‖ (resp., ‖xy‖ = ‖x‖‖y‖), for all x, y ∈ B.

(xi) B is called a pre-Hilbert algebra if it is endowedwith a space norm comes from
an inner product (· | ·).

(xii) We mean by a nonzero central element in B, a nonzero element which
commute with all elements of the algebra B.

The most natural examples of absolute valued algebras are R,C,
∗
C,H (the algebra of

Hamilton quaternion) and O (the algebra of Cayley numbers), with norms equal to their

usual absolute values (1991, [6]) and (2004, [7]). The algebra
∗
C (1949, [8]) was obtained by

replacing the product of C with the one defined by x ◦ y = x∗y∗, where ∗means the standard
involution of C.

We have the following very known results.

Lemma 2.1 (see [4]). Let A be a powers associative algebra overK and without divisors of zero. If e
is a nonzero idempotent in A, then A has an identity element e.

Proposition 2.2 (see [9]). If {xi} is a set of commuting elements in a flexible algebraA overK, then
the subalgebra generated by the {xi} is commutative.

Proposition 2.3 (see [10]). Let A be a noncommutative Jordan algebra over K, then A is a powers
associative algebra.

Lemma 2.4 (see [11]). Let A = (V, (·, ·),×) be a quadratic algebra over K. Then A flexible if and
only if (·, ·) is symmetric and the following equivalent statements hold.

(1) (·, ·) is a trace form over A.

(2) (·, ·) is a trace over V .

(3) (u × v, u) = 0 for every u, v ∈ V .

Theorem 2.5 (see [4]). The subalgebra generated by any two elements of an alternative algebraA is
associative.

We need the following results.
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Theorem 2.6 (see [1]). Let A be a real pre-Hilbert associative algebra satisfying ‖x2‖ = ‖x‖2 for all
x ∈ A. Then A is finite dimensional and is isomorphic to R,C, or H.

Theorem 2.7 (see [2]). LetA be a real pre-Hilbert commutative algebra without divisors of zero and
satisfying ‖x2‖ ≤ ‖x‖2 for all x ∈ A. Suppose that A containing a nonzero central element a such

that ‖ax‖ = ‖a‖‖x‖ for all x ∈ A. Then A is isomorphic to R,C, or
∗
C.

Theorem 2.8 (see [1]). Let A be a real pre-Hilbert alternative algebra with identity e. Suppose that
‖x2‖ ≤ ‖x‖2 for all x ∈ A and ‖e‖ = 1. Then A is isomorphic to R,C,H, or O.

3. Real Pre-Hilbert Weakly Alternative Algebras

In this subparagraph, we prove that, if A is a real pre-Hilbert algebra satisfying ‖x2‖ = ‖x‖2
for all x ∈ A. Then A is finite dimensional in the following cases.

(1) A is a real weakly alternative algebra without divisors of zero.

(2) A is a real Jordan algebra without divisors of zero.

In the first caseA is isomorphic to R,C,H, or O, andA is isomorphic to R or C in the last case.
Moreover, we give an example of an infinite-dimensional real pre-Hilbert Jordan algebra with
divisors of zero and satisfying ‖x2‖ = ‖x‖2 for all x ∈ A.

Lemma 3.1 (see [12]). Let A be a real pre-Hilbert algebra with identity e such that ‖a2‖ = ‖a‖2 for
all a ∈ A and let V = {x ∈ A/(x | e) = 0} then.

(1) V = {x ∈ A/x2 = −‖x‖2e}.

(2) xy + yx = −2(x | y)e for all x, y ∈ V .

Remark 3.2. (i) The product x ∧ y = xy − (xy | e)e, for all x, y ∈ V , provides V the structure
of an anticommutative algebra.

(ii) If A is flexible, then (xy | e) = −(x | y) for all x, y ∈ V .

Proof. (i) Let x, y ∈ V , we have

x ∧ y + y ∧ x = xy − (
xy | e)e + yx − (

yx | e)e
= xy + yx − (

xy + yx | e)e
= −2(x | y)e + 2

(
x | y)e (Lemma 3.1)

= 0.

(3.1)
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(ii) As A is a flexible algebra, then

0 =
(
xy

)
x − x

(
yx

)

=
(
x ∧ y +

(
xy | e)e)x − x

(
y ∧ x +

(
xy | e)e)

=
(
x ∧ y

)
x + x

(
x ∧ y

)
+
((
xy | e) − (

yx | e))x
= −2(x | x ∧ y

)
e +

((
xy | e) − (

yx | e))x (Lemma 3.1)

=
((
xy | e) − (

yx | e))x.

(3.2)

This implies that (xy | e) = (yx | e) for all x, y ∈ V , and by Lemma 3.1, we have (xy + yx |
e) = −2(x | y). Thus, (xy | e) = −(x | y).

Theorem 3.3. Let A be a real pre-Hilbert weakly alternative algebra with identity e and without
divisors of zero. Suppose that ‖x2‖ ≤ ‖x‖2 for all x ∈ A and ‖e‖ = 1. Then A is finite dimensional
and is isomorphic to R,C,H, or O.

Proof. It is sufficient to prove that A is an alternative algebra.
Let x, y ∈ {e}⊥ such that (x | y) = 0, according to Lemma 3.1 we have

xy + yx = 0. (3.3)

This implies that

0 =
(
x, x,

[
x, y

])
=
(
x, x, xy

)
. (3.4)

So

x
[
x
(
xy

)]
= x2(xy

)
= −‖x‖2xy. (3.5)

As A has nonzero divisors, then

x
(
xy

)
= −‖x‖2y = x2y. (3.6)

Therefore, (x, x, y) = 0. Now we take two arbitrary elements x, y ∈ {e}⊥, and let z = y −
‖x‖−2(x | y)x ∈ {e}⊥. Or (x | z) = 0, then

(
x, x, y

)
=
(
x, x, z + ‖x‖−2(x | y)x

)
= (x, x, z) = 0. (3.7)

Let a = αe + x and b = βe + y two elements in A, with x, y ∈ {e}⊥ and α, β ∈ R, we have
(a − αe), (b − βe) ∈ {e}⊥. Therefore (a − αe, a − αe, b − βe) = 0, thus (a, a, b) = 0. So A is a left
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alternative algebra. Now we show that A is a right alternative algebra, if x, y ∈ {e}⊥ are two
orthogonal elements. Then

(
xy | x) = −(yx | x) = −

(
y | x2

)
=
(
y | e) = 0 (Lemma 2.4). (3.8)

And (xy | e) = −(x | y) = 0 (Remark 3.2), thus,

(
y, x, x

)
=
(
yx

)
x − yx2

= −x(yx) + ‖x‖2y (Lemma 3.1)

= x
(
xy

) − x2y

= −(x, x, y)

= 0.

(3.9)

Similarly, we prove that (b, a, a) = 0 for all a, b ∈ A, then A is a right alternative algebra.
Thus, A is an alternative algebra, the result ensues then of Theorem 2.8.

Corollary 3.4. LetA be a real pre-Hilbert Jordan algebra with identity e and without divisors of zero.
Suppose that ‖x2‖ ≤ ‖x‖2 for all x ∈ A and ‖e‖ = 1, then A is finite dimensional and is isomorphic
to R or C.

Theorem 3.5. LetA be a real pre-Hilbert weakly alternative algebra without divisors of zero. Suppose
that ‖x2‖ = ‖x‖2 for all x ∈ A, then A is finite dimensional and is isomorphic to R,C,H, or O.

Proof. A is a powers associative algebra (Proposition 2.3) then the subalgebra A(x) of A,
generated by x ∈ A, is associative and verifying the conditions of Theorem 2.6. Therefore,
A(x) is isomorphic to R or C, thus there is a nonzero idempotent e ∈ A such that xe =
ex = x; that is, A is a unital algebra of unit e (Lemma 2.1). So the result is a consequence of
Theorem 3.3.

Corollary 3.6. Let A be a real pre-Hilbert Jordan algebra without divisors of zero. Suppose that
‖x2‖ = ‖x‖2 for all x ∈ A, then A is finite dimensional and is isomorphic to R or C.

We give an extension of Theorem 3.3.

Theorem 3.7. Let A be a real pre-Hilbert weakly alternative algebra without divisors of zero and
satisfying ‖x2‖ ≤ ‖x‖2 for all x ∈ A. Suppose that A containing a nonzero central element a such
that ‖ax‖ = ‖a‖‖x‖ for all x ∈ A. Then A is finite dimensional and is isomorphic to R,C,H, or O.

Proof . Let x ∈ A, the subalgebra A(a, x) of A generated by {x, a} is commutative.
Theorem 2.7 implies that ‖x2‖ = ‖x‖2, thus the result is a consequence of Theorem 3.5.

Corollary 3.8. Let A be a real pre-Hilbert Jordan algebra without divisors of zero and satisfying
‖x2‖ ≤ ‖x‖2 for all x ∈ A. Suppose that A contains a nonzero central element a such that ‖ax‖ =
‖a‖‖x‖ for all x ∈ A. Then A is finite dimensional and is isomorphic to R or C.
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Remark 3.9. In the previous results the hypothesis without divisors of zero is necessary. The
following example proves it.

Let H be an infinite-dimensional real Hilbert space, we define the multiplication on
the vector space A = R ⊕H by:

(α + x)
(
β + y

)
=
(
αβ − (

x | y)) + (
αy + βx

)
. (3.10)

And the scalar product by

(
(α + x) | (β + y

))
= αβ +

(
x | y). (3.11)

SoA is a commutative algebra satisfying ‖a2‖ = ‖a‖2 and (a2, b, a) = 0 for all a, b ∈ A. Indeed,
we put a = α + x and b = β + y. We have

∥∥∥(α + x)2
∥∥∥
2
=
∥∥∥
(
α2 − ‖x‖2

)
+ 2αx

∥∥∥
2

=
(
α2 − ‖x‖2

)2
+ 4α2‖x‖2

=
(
α2 + ‖x‖2

)2

= ‖α + x‖4.

(3.12)

Then ‖a2‖ = ‖a‖2, moreover,

(
a2b

)
a =

[
(α + x)2

(
β + y

)]
(α + x)

=
[((

α2 − ‖x‖2
)
+ 2αx

)(
β + y

)]
(α + x)

=
[((

α2 − ‖x‖2
)
β − 2α

(
xy

))
+
(
2αβx +

(
α2 − ‖x‖2

)
y
)]

(α + x).

(3.13)

Then

(
a2b

)
a = α

[(
α2 − ‖x‖2

)
β − 2α

(
x | y)

]
−
[
2αβ‖x‖2 +

(
α2 − ‖x‖2

)
y
]

+
[(

α2 − ‖x‖2
)
β − 2α

(
xy

)]
x + α

[
2αβx +

(
α2 − ‖x‖2

)
y
]
.

(3.14)

Thus,

(
a2b

)
a =

[(
α2 − ‖x‖2

)(
αβ − (

x | y)) − 2α2(x | y) − 2αβ‖x‖2
]

+
[(

α2 − ‖x‖2
)(

αy + βx
) − 2α

(
αβ − (

x | y))x
]
.

(3.15)
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Similarly,

a2(ba) = (α + x)2
[(
β + y

)
(α + x)

]

=
[(

α2 − ‖x‖2
)
+ 2αx

][(
αβ − (

x | y)) + (
αy + βx

)]
.

(3.16)

Thus,

(
a2b

)
a =

[(
α2 − ‖x‖2

)(
αβ − (

x | y)) − 2α2(x | y) − 2αβ‖x‖2
]

+
[(

α2 − ‖x‖2
)(

αy + βx
) − 2α

(
αβ − (

x | y))x
]
.

(3.17)

From the two equalities (3.15) and (3.17), we conclude that (a2b)a = a2(ba); that
is, (a2, b, a) = 0 for all a, b ∈ A. This implies that A is an infinite-dimensional real pre-
Hilbert Jordan (weakly alternative) algebra with identity satisfying ‖a2‖ = ‖a‖2 and has
a zero divisors. Indeed, let x and y be two orthogonal nonzero elements in H, as defined
multiplication of A, we have xy = −(x | y) = 0. Hence, A is an algebra with zero divisors.

4. Complex Pre-Hilbert Noncommutative Jordan Algebras Satisfying
‖x2‖ = ‖x‖2

We show that ifA is a noncommutative Jordan complex pre-Hilbert algebra satisfying ‖x2‖ =
‖x‖2 for all x ∈ A, then A is finite dimensional and is isomorphic to C.

4.1. Complex Pre-Hilbert Alternative Algebras Satisfying ‖x2‖ = ‖x‖2

We need the following results.

Proposition 4.1 (see [3]). LetA be a complex pre-Hilbert commutative associative algebra satisfying
‖x2‖ = ‖x‖2 for all x ∈ A. Then A is finite dimensional and is isomorphic to C.

Theorem 4.2 (see [3]). Let A be a complex pre-Hilbert algebra with identity e. Suppose that ‖x2‖ =
‖x‖2 for all x ∈ A. Then A is finite dimensional and is isomorphic to C.

Lemma 4.3 (see [3]). Let A be a complex pre-Hilbert commutative algebra satisfying ‖x2‖ = ‖x‖2
for all x ∈ A. Then A has nonzero divisors.

Theorem 4.4 (see [3]). Let A be a complex pre-Hilbert commutative algebraic algebra satisfying
‖x2‖ = ‖x‖2 for all x ∈ A. Then A is finite dimensional and is isomorphic to C.

Lemma 4.5. LetA be a complex pre-Hilbert alternative algebra satisfying ‖x2‖ = ‖x‖2 for all x ∈ A.
Then A has nonzero divisors.

Proof. Let a be a nonzero element in A and let b an element in A such that ab = 0. The
subalgebra A(a, b) of A generated by {a, b} is associative (Theorem 2.5). We have ‖ba‖2 =
‖(ba)2‖ = ‖baba‖ = 0 then ba = ab = 0. Thus, A(a, b) is a commutative and associative,
therefore, the Proposition 4.1 complete the demonstration.
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Theorem 4.6. Let A be a complex pre-Hilbert alternative algebra satisfying ‖x2‖ = ‖x‖2 for all
x ∈ A, then A is finite dimensional and is isomorphic to C.

Proof. Let a ∈ A, the subalgebra A(a) of A generated by a is commutative and associative
(Theorem 2.5). Proposition 4.1 proves thatA(a) is isomorphic toC, then there exists a nonzero
idempotent f ∈ A. According to Theorem 4.2 it is sufficient to prove that f is a unit element
of A. Let b ∈ A, we have f(b − fb) = 0 and (b − bf)f = 0. As A is without divisors of zero
(Lemma 4.5), then fb = bf = b. Thus, A is finite dimensional and is isomorphic to C.

4.2. Complexes Pre-Hilbert Powers Associative Algebras Satisfying
‖x2‖ = ‖x‖2

In this subparagraph we show that if (A, ‖ · ‖) is a complex pre-Hilbert powers associative
algebra (resp., flexible algebraic algebra, noncommutative Jordan algebra, or weakly
alternative algebra) satisfying ‖x2‖ = ‖x‖2 for all x ∈ A. Then A is finite dimensional and
is isomorphic to C.

We have the following importing result.

Lemma 4.7. LetA be a complex pre-Hilbert powers associative algebra satisfying ‖x2‖ = ‖x‖2 for all
x ∈ A. Then A has nonzero divisors.

Proof. Let a be a nonzero element in A, the subalgebra A(a) of A is associative. According
to Theorem 4.6, A(a) is isomorphic to C. Therefore, there exist a nonzero idempotent e ∈ A
and α ∈ R − {0} such that a = αe. Suppose there is a nonzero element b ∈ {a}⊥, as A(b) is
isomorphic to C (Theorem 4.6), then there exist a nonzero idempotent f ∈ A and β ∈ R − {0}
such that b = βf . We have (e + f)2 = e + f + ef + fe, and

(
e − f

)2 = e + f − ef − fe = 2
(
e + f

) − (
e + f

)2
. (4.1)

This implies that (e − f)2 ∈ A(e + f) ∩ A(e − f) = {0}, because (e + f | e − f) = (e | f) = 0.
Thus, (e − f)2 = 0 or

0 =
∥∥∥
(
e − f

)2∥∥∥ =
∥∥e − f

∥∥2 = 2. (4.2)

This is absurd and hence, A has nonzero divisors.

Theorem 4.8. Let A be a complex pre-Hilbert powers associative algebra satisfying ‖x2‖ = ‖x‖2 for
all x ∈ A, then A is finite dimensional and is isomorphic to C.

Proof. According to Lemma 4.7, A has a nonzero divisors. Let a be a nonzero element in A,
then the subalgebra A(a) of A is associative. Theorem 4.6 implies that A(a) is isomorphic
to C. Hence, A containing a nonzero idempotent, this gives that A has a unit element
(Lemma 2.1). The result is a consequence of Theorem 4.2.

Theorem 4.9. LetA be a complex pre-Hilbert flexible algebraic algebra satisfying ‖x2‖ = ‖x‖2 for all
x ∈ A, then A is finite dimensional and is isomorphic to C.
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Proof. Let a ∈ A be a nonzero element, according to Proposition 2.2 and Lemma 4.3, the
subalgebra A(a) of A is commutative, algebraic, and without divisors of zero. Thus A(a) is
isomorphic to C (Theorem 4.4). This implies that A is a powers associative algebra, then the
result is a consequence of Theorem 4.8.

We state the main theorem.

Theorem 4.10. Let A be a complex pre-Hilbert noncommutative Jordan algebra satisfying ‖x2‖ =
‖x‖2 for all x ∈ A, then A is finite dimensional and is isomorphic to C.

Proof. Proposition 2.3 implies that A is a powers associative algebra, and hence, A is
isomorphic to C (Theorem 4.8).

Corollary 4.11. LetA be a complex pre-Hilbert weakly alternative algebra satisfying ‖x2‖ = ‖x‖2 for
all x ∈ A, then A is finite dimensional and is isomorphic to C.

Proof. A is a noncommutative Jordan algebra. By Theorem 4.10, A is finite dimensional and
is isomorphic to C.

Corollary 4.12. Let A be a complex pre-Hilbert Jordan algebra satisfying ‖x2‖ = ‖x‖2 for all x ∈ A,
then A is finite dimensional and is isomorphic to C.

Proof. A is a weakly alternative algebra. By Corollary 4.11, A is finite dimensional and is
isomorphic to C.
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