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The anaerobic threshold (AT) measured by the cardiopulmonary exercise (CPX) test is becoming an established means of
identifying patients at high risk of developing cardiac complications perioperatively. The aim of the present study was to investigate
the relationship between AT and the plasma metabolic profile of patients undergoing aortic aneurysm repair surgery to see if an
alternative or adjunct to the CPX test could be devised. Plasma was obtained from 15 male patients classified (through preoperative
CPX tests) as having high (≥11.0 mL kg−1 min−1) or low (<11.0 mL kg−1 min−1) AT before and 1, 2, 24, 48, and 72 hours after
elective open aortic aneurysm surgery. Samples were analysed using 1H-NMR spectroscopy coupled with multivariate statistical
analysis. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) distinguished between
low- and high-AT patients postoperatively, with high AT patients being more tightly clustered. High AT patients had higher plasma
lipid and lower 3-hydroxybutyrate and acetoacetate levels than low AT patients post-operatively. Similar differences were identified
preoperatively. 1H-NMR metabolic profiling of plasma has identified molecules whose concentration correlates with AT scores.
These may prove a useful biomarker in conjunction with AT in predicting response to major surgical procedures.

1. Introduction

Open aortic aneurysm repair is associated with significant
morbidity and mortality [1–5]. An international audit of
vascular surgery reported a crude mortality for elective aortic
repair of 4.2% [6]. Others have reported mortality rates for
elective open aortic repair of 6-7% [7, 8]. The DREAM study
reported a combined mortality and severe complication rate
of 9.8% for elective open aortic repair [9]. Open aortic
repair is associated with a significant systemic inflammatory
response syndrome (SIRS) [10]. The more marked this
response, the greater (as quantified by the SIRS score) the
likelihood of postoperative death [11].

Many methods for the preoperative assessment of the risk
of surgery focus on cardiac risk. These include the Lee risk
index [12, 13], dobutamine stress echocardiography [14],
and radionuclide myocardial perfusion imaging methods
[1]. An alternative method of preoperative assessment is

cardiopulmonary exercise testing (CPX)10. A CPX test is an
exercise test in which an individual’s functional capacity is
quantified in terms of their oxygen uptake in the face of an
increasing workload. It offers an integrated assessment of
cardiac and respiratory reserve and tissue oxygen utilisation.
The anaerobic threshold (AT) is the exercise intensity at
which the blood lactate concentration starts to increase
during incremental exercise and is quantified in terms of
oxygen uptake expressed in mL kg−1 min−1. It has been
shown that patients with an AT of less than 11 mL min−1 kg−1

are at increased risk of death following surgery [15–18].
The CPX test may have predictive value because it mimics
the postoperative situation: that is, in order to satisfy an
increased oxygen demand, an increased respiratory oxygen
uptake and cardiac output are required, and thus patients
who have a poor oxygen delivery on the ergometer would
be expected to have a poor ability to increase cardiac output
after surgery [16]. This mechanistic explanation is appealing
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but does not take into account the fact that peak oxygen
consumption after surgery rarely exceeds VO2 peak even in
severely limited patients. An alternative explanation is that a
limited functional reserve on CPX testing identifies patients
who have deficits that result in a reduced capacity to with-
stand surgery and a greater likelihood of developing a SIRS
response after surgery. This is consistent with the concept of
frailty as representing reduced physiological reserve across a
number of organ systems [19].

Metabolomics is the technology concerned with the non-
targeted identification of all the metabolites in the metabol-
ome [20] and is emerging as a very useful tool for disease
diagnosis and biomarker identification [21–24]. By mea-
suring the levels of metabolites, the low-molecular-weight
products, and reactants of essential cellular processes, in
biofluids like blood plasma, it may be possible to identify
metabolic differences, and hence biomarkers from which two
or more classes of individuals can be distinguished. Typically,
metabolomics studies employ mass spectrometry (MS) or
nuclear magnetic resonance (NMR) spectroscopy to obtain
metabolic profiles of biofluid samples. NMR spectroscopy
has advantages over MS in that it requires minimal sample
preparation, is nondestructive to the sample, and produces
data with a greater reproducibility. NMR-based metabolo-
mics has been used for biomarker identification in a wide
range of fields; recent examples include diagnosis of early-
stage epithelial ovarian cancer [25], diagnosis of cerebral
infarction [26], identifying severity of chronic liver failure
[27], and diagnosis of children with asthma [28]. Of particu-
lar significance to the current study is the recent investigation
of metabolic changes in traumatic critically ill patients [29].
Some carbohydrate and amino acid levels were found to
change in the early part of critical illness, and these obser-
vations were in agreement with clinical observations.

The aim of this study was to establish that 1H-NMR-
based metabolomics has the potential to identify patients at
risk of preoperative deterioration following elective major
vascular surgery and to establish a correlation between
plasma composition and cardiopulmonary reserve. If such
differences are identified, this would support the hypothesis
that CPX testing identifies a group of patients who have a
metabolic makeup that makes them less able to cope with the
stress of surgery. In addition, for patients unable to perform
the CPX test such as those whose exercise tolerance is limited
by claudication, a new biofluid-accessible biomarker could
have real clinical use as a screening test for patients at
increased risk of complications.

2. Materials and Methods

2.1. Subjects. This study was approved by the Bradford
Research Ethics Committee (REC: 06/Q1201/41). With
written informed consent, 15 male patients (mean age
77 (range: 87–68 years)) undergoing elective open aortic
aneurysm repair surgery at Leeds General Infirmary, Leeds,
UK were recruited for this study. Patients were excluded from
the study if they had any of the following: contraindications
to CPX testing as listed in the American Thoracic Society

Guidelines [30], an inflammatory aneurysm, or a recent
pyrexial illness. The patient demographics are shown in
Table 1.

All patients fasted from midnight on the night before
surgery and then gradually started to take fluids, and sub-
sequently food, over the next several days. Prior to surgery,
the patients underwent incremental CPX testing performed
using a cycle ergometer (MedGraphics Breeze suite software-
I). Patients were exercised to volitional exhaustion. Whilst
aneurysmal disease of the aorta and claudication due to
vascular occlusive disease can coexist, no patient in this study
was noted to have stopped exercising because of claudication
pain. All patients were monitored at rest until the respiratory
exchange ratio had settled to less than 1.0. After a period of
freewheel cycling, the workload was increased on a smooth
ramp at a rate such that if the patient achieved predicted
peak exercise, the test would last ten minutes. The test
was terminated when the patient could not maintain a
cadence of at least 45 rpm on the cycle or indicated that they
could not continue. The AT, expressed as oxygen uptake in
mL kg−1 min−1, was determined using the V-slope method
of Wasserman and confirmed by the dual criteria of the
nadirs in the ventilatory equivalent for oxygen and end-tidal
oxygen. All patients received combined general and epidural
anaesthesia and open aortic aneurysm repair. Following
echocardiography, all patients had normal left ventricular
function apart from one case of mild to moderate left
ventricular impairment in each AT group (see Table 1 and
text later for the grouping of patients according to high or
low AT). Approximately half the patients in each AT group
were on statins.

2.2. Plasma Samples. Whole blood samples were collected
into lithium-heparinised tubes from each patient. Baseline
blood samples were taken at approximately 8 am on the day
of surgery and then 1, 2, 24, 48, and 72 hours following
the surgery. Plasma samples were obtained by centrifugation
of whole blood at 3000 rpm for 10 min and discarding the
red blood cell precipitate. Plasma samples were stored in
Eppendorf tubes at −80◦C until NMR analysis.

2.3. 1H-NMR Spectroscopy. Plasma samples were defrosted
by warmth of hands or left at room temperature for 5
minutes before centrifugation at 1270 g for 2 minutes,
followed by transfer of 300 μL to an Eppendorf tube. To
this, 350 μL of a 0.17% (w/v) solution of the sodium salt
of 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid (TSP) (Sigma-
Aldrich, Poole, UK) in deuterium oxide (D2O) (Fluorochem,
Old Glossop, UK) was added. The mixture was stirred,
shaken, and transferred to a 5 mm NMR tube (528PP-
WILMAD, Sigma-Aldrich, Poole, UK).

1H-NMR spectra were acquired on a Varian Unity Inova
500 spectrometer, at 21◦C. The Carr-Purcell-Meiboom-Gill
(CPMG) pulse sequence [RD−90◦−(τ−180◦−τ)n−acq] was
used to obtain spectra with the signals of macromolecules,
such as proteins and lipoproteins, filtered out, leaving
only the signals of the low-molecular-weight metabolites of
interest. A relaxation delay (RD) of 2 seconds was used,
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Table 1: Patient cohort used in this study and their AT sores.

ID Age/years AT/mL min−1 kg−1 Previous history∗∗
Cross clamp time/min

HTN IHD Diabetes

Low-AT group (n = 7)∗

1 73 6.1 Y Y N 120

2 83 9.8 N N N 90

3 87 10.1 N N N 70

4 76 10.7 Y N N 70

5 82 10.3 Y Y Y 63

6 80 9.6 Y N N 75

7 71 10.2 Y Y Y 75

79± 6† 9.5± 1.6† 5/7 3/7 2/7 80± 19†

High-AT group (n = 8)∗

8 68 11.0 Y Y N 90

9 71 11.5 Y N N 83

10 85 11.7 N N N 145

11 79 12.2 N N N 60

12 68 13.3 N N N 45

13 71 13.7 Y N Y 75

14 79 14.0 N Y N 75

15 82 14.4 Y N N 85

75 ± 7† 12.7 ± 1.3† 4/8 2/8 1/8 82± 29†
∗
Low AT was classified as < 11 mL min−1 kg−1 and high AT as >11 mL min−1kg−1.
∗∗HTN: hypertension; IHD: ischaemic heart disease; N: no; Y: yes.
†Average value ± standard deviation.

during which the water resonance was selectively saturated.
A spin-spin relaxation time (2nτ) of 450 ms was used, where
τ was 1.5 ms and n was 150. 256 transients were collected
into 16.384 data points with a spectral width of 6499.84 Hz.
An exponential line broadening of 1 Hz was applied to the
free induction decays (FIDs) before zero filling in to 64 K.
The resulting spectra were phased, baseline corrected, and
referenced to TSP at 0.00 ppm.

2.4. NMR Spectral Data Reduction. Spectral data are multi-
variate, and, thus multivariate statistical analysis techniques,
such as principal components analysis (PCA) and partial
least squares discriminant analysis (PLS-DA), are required
to interpret trends from the data. To remove the effects of
peak shifting due to variations in pH and ionic strength,
the spectral data were reduced prior to PCA and PLS-DA by
“binning,” a technique whereby an entire spectrum is divided
into “n” equally spaced regions (bins) and the signal area
measured within each bin [31]. Data reduction was carried
out using VnmrJ 1.1D (Varian Inc., Palo Alto, CA, USA). 225
bins were created over the range −1.00–10.00 ppm, giving a
bin width of 0.049 ppm. Labels in figures refer to the centre
of a bin. The spectral region between 4.70 and 5.08 ppm was
set to zero in order to remove the effects of variation in the
efficiency of suppression of the water resonance. The regions
3.21–3.96 ppm (and bins 4.66 and 5.22 ppm) where glucose
signals arise were also excluded since glucose concentration
can fluctuate greatly amongst samples due to variation in diet
of the subjects [32].

To account for the differences in dilution of the plasma
samples, and thus, to ensure that the spectra were directly
comparable, the areas in each bin for a spectrum were
normalised to the total area for that spectrum [33]. Further
in the analysis, it became apparent that the postoperative
samples varied as a function of the preoperative state of
the patient. Therefore, the normalised postoperative samples
were normalised a second time, this time by subtracting the
preoperative bin values from each of the postoperative bin
values.

2.5. Multivariate Statistical Analysis. The binned and nor-
malised NMR data were Pareto scaled and mean centred
before PCA was carried out using SIMCA-P+ 11 (Umetrics,
Umeå, Sweden) [33]. PCA is an unsupervised technique
and so a model is built with no class information about
the observations, and only the intrinsic clustering within
the dataset is revealed. PCA works by reducing the number
of variables in multivariate data into a smaller number
of orthogonal variables called principal components (PCs)
which describe the maximal variation in the data set. The
first principal component (PC) describes the biggest source
of variation in the data, the second, the second biggest
source, and so on. There could be as many PCs as there
are bins; however, many of the PCs will display negligible
variation and thus only a few PCs need to be considered
when interrogating the features of the sample set. Each
observation (in this case, patient) is given a coordinate value
for each PC called a “score.” Thus by plotting the score
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values for each patient along two PCs, the intrinsic clustering
between samples is revealed. The variables (bins) are also
given a set of coordinates called “loadings,” and by plotting
these along the same two PCs, the regions of the spectrum
responsible for the positioning of the observations in the
scores plot can be determined. The quality of the model can
be assessed based on the goodness of fit (R2X value, where
X refers to the original variable data matrix) and the model’s
ability to predict the class membership of new samples (Q2

value).
In this study, PCA was unable to identify a clear sep-

aration between postoperative samples from patients with
high and low AT. Therefore, PLS-DA was performed on the
postoperative samples after they had been normalised to the
preoperative data, as previously described. Unlike PCA, PLS-
DA is supervised and thus relies on a parameter that separates
the samples into classes, in this case low or high AT. The PLS-
DA model was validated using the “leave-one-out method”;
one patient (their preoperative and all their postoperative
samples) was excluded from the dataset, and a PLS-DA
model built from the remaining patients’ samples. This
model was then used to predict the class membership of the
excluded patient. This step was repeated until every patient
had been excluded and their class membership predicted.
PLS-DA model quality can be assessed by R2X , Q2, and R2Y
values, where Y represents the classification parameter(s).

2.6. Univariate Statistical Analysis. Comparisons of the mean
values of normalised areas from influential regions of the
spectrum were performed using t-tests or Mann-Whitney U
tests using SPSS 15.0.0 software (SPSS Inc., Chicago, Illinois,
USA), following tests for normality. All P values were
adjusted for multiple comparisons using false discovery
rate in the software R 2.7.0 (R Foundation for Statistical
Computing, Vienna, Austria).

3. Results and Discussion

The anaerobic thresholds for the 15 patients in this study
are shown in Table 1. Almost half the patients had an AT <
11 mL min−1 kg−1; these were classified as having a low
AT (lAT) for the purposes of this study. Patients with AT
> 11 mL min−1 kg−11 were classified as having a high AT
(hAT) for the purposes of this study. Whilst AT is clearly
a continuous variable, Older et al. [15, 16] demonstrated
that patients with an AT of less than 11 mL min−1 kg−11 were
at high risk of dying following surgery. This observation
has subsequently been confirmed by Wilson and colleagues
following an investigation involving over 800 patients [17].
Therefore, for this study, 11 mL min−1 kg−1 was considered
the “threshold” value for AT and hence the assignments
“lAT” and “hAT.”

A PCA model was created containing only the preop-
erative plasma spectral data which indicated that hAT and
lAT patients had differences in their metabolic profiles even
before surgery (see Supplementary Material available online
at doi:10.5402/2012/341763). However, the differences in the
levels of the metabolites permitting discrimination between

Table 2: Metabolites causing the separation between lAT and hAT
patients in the PLS-DA scores plot.

Bin(s)/ppm Metabolite [34] lAT versus hAT P-valuea

1.20 and 2.32 3-Hydroxybutyrate ↑ 0.038

2.28 Acetoacetate ↑ 0.264

0.92 and 1.30 Lipids ↓ 0.037

1.95 Acetate ↓ 0.067
a
For metabolites with signals in more than one bin, the average P value is

displayed.

lAT and hAT patients were not found to be statistically
significant. Nevertheless, there was indication that there was
a difference in the metabolic profiles of patients with lAT
and those with hAT, and so this was further investigated.
PCA scores plots were created for every postoperative time
point versus the preoperative time point, and in each case,
a separation between pre- and postoperative samples was
shown, irrespective of AT (Figure 1 and see Supplementary
Data for metabolites). For all of the PCA models, the third
PC revealed a separation between the patients with hAT
from those with lAT. The “degree” of separation decreased
with time following surgery (Figure 1). Furthermore, the
hAT patients were generally more tightly clustered than the
lAT patients, suggesting greater metabolic disorder in the
lAT patients. The lAT patients appeared to be split into
two groups, consisting of patients 1; 6; 5 and 3; 4; 7; 2,
respectively. In contrast, the hAT patients were clustered
together in one group.

PCA models were created from all patients’ plasma
samples at each individual postoperative time point to see if a
separation between lAT and hAT patients could be achieved.
However, these models did not identify a separation between
high- and low-AT patients (data not shown), and it was clear
that there was inter-sample variation depending on the pre-
operative state. Therefore, the NMR data for each patient at
each time point was normalised to their preoperative sample,
and a PLS-DA model (R2X = 0.62, R2Y = 0.74, and Q2 =
0.57) was built from all of the normalised postoperative data.
A separation was identified (Figure 2(a)), and the loadings
plot (Figure 2(b)) revealed several chemical shift regions that
were responsible for this separation (Table 2). hAT patients
had significantly higher plasma levels of lipids and lower lev-
els of 3-hydroxybutyrate than lAT patients. hAT patients also
had higher acetate and lower acetoacetate than lAT patients,
but these were not statistically significant differences.

Since it is a supervised method, PLS-DA requires valida-
tion, usually by holding back 33.3% of the data and predict-
ing the class membership of these samples using a PLS-DA
model built from the remaining 66.7%. Since the number
of patients in this cohort was quite small a “leave-one-
out” validation was used instead, revealing a predictability
of 60%. To further validate the PLS-DA model, the class of
the samples was randomly permutated for 20 times. Figure 3
shows the resultant R2Y (cum) and Q2 (cum) values for the
models resulting from the permutated data (Figure 3 left)
and the original PLS-DA model (Figure 3 right). Both Q2

(cum) and R2Y (cum) for the original model were far greater
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Figure 1: PCA scores plots from models created using spectral data for some postoperative time point versus the preoperative spectra. Each
model had 3 PCs; (a) 1 hour after operation (R2X = 0.64 and Q2 = 0.34); (b) 2 hours after operation (R2X = 0.67 and Q2 = 0.46); (c)
24 hours after operation (R2X = 0.65 and Q2 = 0.39); (d) 48 hours after operation (R2X = 0.63 and Q2 = 0.37); and (e) 72 hours after
operation (R2X = 0.65 and Q2 = 0.28). Open shapes are preoperative samples, and filled shapes are postoperative samples. Black triangles
represent patients who scored lATs, and red squares represent hAT patients. The dashed line represents the visual divide between pre- and
postoperative samples, and the solid line and dashed ovals are for ease of visualisation of grouping of lAT and hAT patients, respectively,
and are not statistically relevant. The main solid black ellipse surrounding the majority of the scores in each plot is Hotelling’s T2 elliptical
tolerance region, which indicates the 95% confidence limits. These plots show a clear separation between pre- and postoperative samples
which diminishes with time. Furthermore, hAT patients are more tightly clustered than the lAT patients, who appear to split into two groups.

than for any of the permutated models, suggesting that the
original model was unlikely to be spurious. Furthermore,
the Q2 (cum) intercepted the y-axis below −0.5 indicating
that the original PLS-DA model was not overfit and that
the permutated data only produced models with very poor
predictability.

As mentioned previously, AT is a continuous variable and
so separating the patients into groups of high and low AT
may be crude. Therefore, an OPLS (orthogonal projections
to latent structures) model was built for postoperative
samples normalised to the preoperative samples but using
the AT values as a continuous vector to regress the plasma
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Figure 2: (a) PLS-DA plot (R2X = 0.62, R2Y = 0.74, and Q2 = 0.57) for the postoperative samples normalised to the preoperative sample
for each patient. Black triangles represent patients who scored lATs, and red squares represent hAT patients. The main solid black ellipse
surrounding the majority of the scores in each plot is Hotelling’s T2 elliptical tolerance region, which indicates the 95% confidence limits. A
clear separation can be seen between hAT and lAT preoperative scores. (b) The loadings plot reveals the chemical shift regions responsible
for this separation.
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Figure 3: Validation plot for PLS-DA model (Figure 2) of postoperative samples normalised to the preoperative samples, where 20
permutations have been performed. This plot assesses the risk that the current PLS-DA model is spurious. The goodness of fit (R2) and
predictive ability (Q2) of the original model are compared with that of several models based on data where the classification parameter (in
this case, lAT or hAT) has been randomly permuted, while the original spectral data has been kept intact. The y-axis shows the values of R2

and Q2 for the original model (on the far right) and the permuted models (further to the left). The x-axis shows the correlation between
the permuted y-vectors and the original y-vector for the selected y, where y represents the parameter used to class the samples. Thus, the
original y has a correlation of 1 with itself. For the PLS-DA model in this study, the original model has higher R2 and Q2 values than the
permuted models, and the permuted models all have negative Q2 values, indicating that the PLS-DA model is valid.

data against, rather than using, a dummy matrix of variables
based on low or high AT. One predictive component and
three orthogonal components were produced (R2X = 0.60,
R2Y = 0.77, and Q2 = 0.61), and the scores and loadings
plots for the predictive component (see Supplementary
Data) confirmed a continuous trend in the postopera-
tive plasma compositions of increasing lipids, acetate, and
decreasing ketones with increasing AT. Furthermore, similar
OPLS models were built for samples taken at each post-
operative time point individually to investigate temporal

differences in plasma metabolic profile with respect to AT.
Valid models could not be produced for samples taken 1,
2, 48, or 72 hours after surgery, possibly due in part to
the reduction in sample numbers in the model, but also
as a result of a weaker discrimination between samples of
different AT at these time points. A valid model was, however,
produced for samples taken 24 hours after surgery (R2X =
0.73, R2Y = 0.94, and Q2 = 0.46) with the scores and
loadings plots (Figure 4) confirming the previous findings.
This indicates that the largest difference in the metabolic
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Figure 4: (a) Scores plot and (b) loadings line plot for the predictive component (t[1]) of the OPLS model created using 24 hours
postoperative spectral data normalised to the preoperative data regressed against the AT values of the patients (1 predictive component
and 3 orthogonal components, R2X = 0.73, R2Y = 0.94, and Q2 = 0.46). OPLS is an extension of PLS(-DA) where the PLS components
are rotated so as to remove any noise in the dataset, producing predictive components, which only account for the variation in the dataset
that is related to the response variable. Any variation not related to the response variable is placed into orthogonal components (to[i]).
This makes interpretation of the scores plots easier, since the influence of noise is removed. Black triangles represent patients with AT <
11 mL min−1 kg−11 (for display only, the model was not built to discriminate according to this cut-off value of AT), and red squares represent
patients with AT > 11 mL min−1 kg−11. The AT values of the samples are displayed on the plot. The main solid black ellipse surrounding the
majority of the scores in each plot is Hotelling’s T2 elliptical tolerance region, which indicates the 95% confidence limits. A clear trend can
be seen between the plasma metabolic profile and AT score at 24 hours, with AT values increasing from the left hand side of the plot to the
right in a continuous fashion. (b) The loadings plot reveals the chemical shift regions responsible for this trend, and as previously shown,
lipids, acetate, and ketones are influential.

profiles of patients with low and high AT occurs 24 hours
after surgery, and this difference then diminishes by 48 hours
after surgery.

Major surgery is known to cause an increase in reactive
oxygen species (ROS) production, and hence the onset of
oxidative stress (OS) [15, 35–39]. The occurrence of oxida-
tive stress in aortic aneurysm repair specifically has been
recently reviewed [40]. Aivatidi et al.’s findings supported the
occurrence of OS during aortic aneurysm repair. It is well
established that major surgery is associated with metabolic
changes including glycogenolysis, gluconeogenesis, insulin
resistance, lipolysis, and the production of ketone bodies
[41]. Ketosis is associated with OS. 3-Hydroxybutyrate and
its pre-cursor, acetoacetate, have been shown to generate
ROS [42–44], and lipids are peroxidised by ROS. These
observations are consistent with the lAT patients being more
susceptible to oxidative stress during surgery than the hAT
patients, since they had higher levels of 3-hydroxybutyrate
and acetoacetate, and lower levels of lipids. Developing an
understanding of an association between AT and OS could
have clinical value, for example, there is evidence in the
literature to suggest benefit from antioxidant supplemen-
tation such as with vitamin C. Mao et al. [29] used an
NMR-based metabolomic approach to compare patients
presenting with SIRS, those who had progressed to multiple
organ dysfunction syndrome (MODS), and healthy controls.
A difference was found between healthy and critically ill
patients, though the metabolites causing this were not
discussed. When comparing SIRS and MODS patients, the

former had higher levels of sugars and amino acids, whereas
the latter had higher levels of lipids, creatinine and lactate
[29]. In the present study, plasma lactate, creatinine, sugars,
and amino acids were not found to differ between hAT and
lAT patients, although, as one would expect, lactate, lipids,
and amino acid levels were altered in all patients as a result
of the stress response to surgery (see S1) [41]. Plasma lipid
levels were influential in the separation of the lAT and hAT
patients; hAT patients had higher levels of lipids suggesting a
difference in the extent of lipolysis between the two groups.
Levels of acetoacetate increase during starvation, and indeed
the patients in this study fasted prior to giving the initial
plasma samples, and thus, the levels of acetoacetate may
reflect the metabolic response preoperative fasting as well as
the response to surgery. However, even if levels had risen
in both lAT and hAT patients, they were still nevertheless
higher in lAT patients compared to hAT patients indicating
differences in ketone body production.

PCA models were created for each individual patient to
reveal the trajectories of each patient’s metabolic profile over
time, with “personalized” medicine strategies in mind. An
example of a hAT and a lAT patient trajectory is shown in
Figure 5. It can be seen that the metabolic profile for the hAT
patient 72 hours after surgery is closer to the original compo-
sition (time points 72 and 0, resp.) (Figure 5(a)) than is the
profile for the lAT patient (Figure 5(b)), suggesting a faster
resolution of the metabolic changes induced by the surgical
stress response in the hAT patient. This observation, along
with the previous finding that lAT patients had more diverse
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Figure 5: PCA scores plots of (a) patient 14 (who scored a hAT) (2 PCs, R2X = 0.72 and Q2 = 0.17) and (b) patient 7 (who scored a lAT)
(2 PCs, R2X = 0.84 and Q2 = 0.19) to show the trajectory of their individual metabolic profiles over time. The hAT patient appears to have
recovered faster than the lAT patient.

metabolic profiles postoperatively than the hAT patients
(Figure 1), is consistent with the hypothesis that patients who
have a limited cardiopulmonary reserve are less able to meet
the metabolic demands of surgery. This is also congruent
with the fact that these patients tend to have lower mixed
venous oxygen saturation in the postoperative period. Two
groups of lAT patients were evident postoperatively, suggest-
ing differing, though not obvious, reasons for their deviation
from the hAT postoperative group. The two groups consisted
of patients 1; 6; 5 and 3; 4; 7; 2, respectively (Table 1). This
initially looks like differentiation within the lAT group simply
on the basis of AT. However, patient 168 M had the highest
AT of the lAT group, so this division is not so easily explained.
Whilst no rationale for this observation can currently be
given, it is interesting to note that 18 M, who showed
deviation from the other lAT samples between 1 and 24 hours
after surgery, had the lowest AT of all the patients. Future
studies, with increased sample numbers, may reveal whether
this dichotomization is a feature of the oxidative stress status
of the patient or some other underlying condition.

As illustrated above, using NMR-based metabolomics in
the pursuit of biomarkers, a myriad of metabolites, from
different biochemical pathways, can be identified simulta-
neously, offering a meticulous search. Furthermore, correla-
tions between metabolites can be identified, and it may be
the case that discriminations can be made based on com-
binations of metabolites, rather than single biomarkers.
NMR spectroscopy is not as sensitive as other techniques,
such as MS, but it has a much greater reproducibility and
a higher through-put. Furthermore, most plasma metabolite
NMR signals can be assigned, whereas there are still many
unknowns in MS-based metabolomics. In the present study,
several biomarkers have been identified whose levels vary
with AT. Therefore, with further investigation, these poten-
tially could have clinical use in the generation of a “scoring”
of risk of developing cardiac complications following major
vascular surgery. Ultimately plasma analysis in this way may
replace the CPX test, but clearly this is some way off. As

shown in the Supplementary Material, samples from patients
with AT at the extremes were clearly distinguished, whereas
those with values between 9 and 13 mL min−1 kg−11 were
overlapped. However, in situations where a patient is too ill
or frail to perform a CPX test, a less invasive blood test could
be performed to predict a patient’s risk instead. NMR has
been used here to identify critical chemical markers which
correlate with CPX score (which in turn correlates with risk
of postoperative problems). However, it may be that some of
these chemicals could be detected by assays more routinely
accessible in clinical pathology laboratories. This is an area
worthy of further investigation.

4. Conclusions

In conclusion, this pilot study has shown that PCA and
PLS-DA of blood plasma metabolic profiles through 1H-
NMR spectroscopic analysis have the potential to reveal
evidence of OS and how long it takes for recovery following
major vascular surgery. We have shown that it is possible
to distinguish between patients with high and low AT, from
CPX testing, where high-risk/high-score patients show a
more stable and rapid recovery than low-risk/score patients.
Furthermore, differences in the metabolic profiles of high-
and low-risk patients exist even before surgery, and so the
methods applied here may have potential applications in
predicting an individual patient’s risk of developing periop-
erative organ dysfunction. These methods may prove useful
as an adjunct, or in some cases an alternative, to the CPX
test. This was a pilot study, and so the sample size is quite
small. However, even in this small cohort, some interesting
trends have been identified. These findings need firming up
by performing this analysis on a large sample cohort.
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