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This paper studies Bayesian filtering techniques applied to the design of advanced delay tracking loops in GNSS receivers with
multipath mitigation capabilities. The analysis includes tradeoff among realistic propagation channel models and the use of a
realistic simulation framework. After establishing the mathematical framework for the design and analysis of tracking loops in the
context of GNSS receivers, we propose a filtering technique that implements Rao-Blackwellization of linear states and a particle
filter for the nonlinear partition and compare it to traditional delay lock loop/phase lock loop-based schemes.

1. Introduction

Global Navigation Satellite Systems (GNSS) are the general
concept used to identify those systems that allow user posi-
tioning based on a constellation of satellites. Specific GNSS
are the well-known American GPS, the Russian GLONASS,
or the forthcoming European Galileo. All those systems rely
on the same principle: the user computes its position by
means of measured distances between the receiver and the set
of in-view satellites. These distances are calculated estimating
the propagation time that synchronously transmitted signals
take from each satellite to the receiver. Therefore, GNSS
receivers are only interested in estimating the delays of signals
which are received directly from the satellites, referred to as
line-of-sight signal (LOSS), since they are the ones that carry
information of direct propagation time. Hence, reflections
distort the received signal in a way that may cause a bias in
delay and carrier-phase estimations. Multipath is probably
the dominant source of error in high-precision applications,
especially in urban scenarios, since it can introduce a bias
up to a hundred of meters when employing a 1-chip wide
(standard) delay lock loop (DLL) to track the delay of the
LOSS, which is a common synchronization method used in
spread-spectrum receivers. This error might be unacceptable
in many applications.

Sophisticated synchronization techniques estimate not
only LOSS parameters but those of multipath echoes.

This results in enhanced, virtually bias-free pseudorange
measurements. In this paper, we investigate multipath
estimating tracking loops in realistic scenarios, where this
effect is known to be severe. The analysis is driven in two
directions. Firstly, a review of statistical characterization of
the channel model in such situations is performed and a
commercial signal simulator. Secondly, a novel multipath
estimating tracking loop is discussed, providing details on
the implementation, as well as comparisons to state-of-
the-art techniques when different channel characteristics
are considered. This tracking loop resorts to the Bayesian
nonlinear filtering framework, sequentially estimating the
unknown states of the system (i.e., parameters of the LOSS
and echoes) and providing robust pseudorange estimates,
subsequently used in the positioning solution. The so-
called multipath estimating particle filter (MEPF) considers
Rao-Blackwellization of signal amplitudes and the use of a
suitable nonlinear filter for the rest of nonlinear states, for
example, time-delays and their rate. More precisely, Rao-
Blackwellization involves marginalization of linear states and
the use of a standard Kalman filter to track signal amplitudes
with the goal of reducing the estimation variance, since (i)
the dimensionality of the problem that nonlinear filters solve
is reduced and (ii) linear states are optimally tackled. For
the nonlinear part of the state space we consider sequential
Monte-Carlo methods (specifically, the standard particle fil-
tering) as one of the most promising alternatives in advanced
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GNSS receiver designs. Realistic computer simulation results
are presented using the GRANADA FCM signal simulator
and the performance of the MEPF is evaluated.

The remainder of the paper is organized as follows.
Section 2.1 provides a brief overview of the fundamentals of
GNSS, their signal structure, available channel models, and
receivers’ architecture and describes a realistic simulation
platform. Section 3 sketches the basics of particle filters, and
Section 4 is devoted to their application to GNSS signal syn-
chronization in the presence of multipath. Section 5 presents
computer simulations, and finally Section 6 concludes the
paper. For the sake of completeness, the paper shows in
the Appendix the equivalence between precorrelation and
postcorrelation processing of GNSS signals. Notice that in
this paper, the MEPF method operates after correlation is
performed in order to operate at a lower data rate.

2. Fundamentals of Global Navigation
Satellite Systems

GNSS space vehicles broadcast a low-rate navigation message
that modulates continuous repetitions of pseudorandom
spreading codes, that in turn are modulating a carrier signal
allocated in the L band. The navigation message, after proper
demodulation, contains among other information the so-
called ephemeris, a set of parameters that allow the compu-
tation of the satellite position at any time. These positions,
along with the corresponding distance estimations, allow the
receiver to compute its own position and time, as we will see
hereafter. Basically, a GNSS receiver performs trilateration, a
method for determining the intersections of three or more
sphere surfaces given the centers and radii of the spheres. In
this case, the centers of the spheres are the satellites, whose
position can be computed from the navigation message, and
the radii of the spheres are the distances between the satellites
and the receiver, estimated from the time of flight.

The distance between the receiver and a given satellite can
be computed by

ρi = c
(
tRx
i − tTx

i

)
, (1)

where c = 299792458 m/s is the speed of light, tRx
i is

the receiving time in the receiver’s clock, and tTx
i the time

of transmission for a given satellite i. Receiver clocks are
inexpensive and not perfectly in sync with the satellite
clock, and thus this time deviation is another variable to be
estimated. The clocks on all of the satellites belonging to the
same system s, where s = {GPS, Galileo, GLONASS, . . .}, are
in sync with each other, so the receiver’s clock will be out
of sync with all satellites belonging to the same constellation
by the same amount Δt(s). In GNSS, the term pseudorange
is used to identify a range affected by a bias, directly related
to the bias between the receiver and satellite clocks. There
are other factors of error: since propagation at speed c
is only possible in the vacuum, atmospheric status affects
the propagation speed of electromagnetic waves modifying
the propagation time and thus the distance estimation. For
instance, the ionosphere, that is the part of the atmosphere
above 60 km until 2000 km of the Earth surface, is a plasmatic

medium that causes a slowdown in the group velocity and a
speed up of the phase velocity, having an impact in code and
phase delays and, thus, impeding precise navigation when its
effects are not mitigated. Actually, errors can be on the order
of tens of meters in geomagnetic storm episodes [1].

For each in-view satellite i of system s, we can write

ρi =
√(

xTx
i − x

)2
+
(
yTx
i − y

)2
+
(
zTx
i − z

)2
+ cΔt(s) + σe,

(2)

where (xTx
i , yTx

i , zTx
i ) is the satellite’s position (known from

the navigation message), (x, y, z) the receiver’s position, and
σe gathers other sources of error. Since the receiver needs
to estimate its own 3D position (three spatial unknowns)
and its clock deviation with respect to the satellites’ time
basis, at least 3 + Ns satellites must be seen by the receiver
at the same time, where Ns is the number of different
navigation systems available (in-view) at a given time. Each
received satellite signal, once synchronized and demodulated
at the receiver, defines one equation such as the one defined
in (2), forming a set of nonlinear equations that can be
solved algebraically by means of the Bancroft algorithm
[2] or numerically, resorting to multidimensional Newton-
Raphson and weighted least square methods [3]. When a
priori information is added we resort to Bayesian estimation,
a problem that can be solved recursively by a Kalman filter or
any of its variants. The problem can be further expanded by
adding other unknowns (for instance, parameters of iono-
spheric and tropospheric models), sources of information
from other systems, mapping information, and even motion
models of the receiver. In the design of multi-constellation
GNSS receivers, the vector of unknowns can also include
the receiver clock offset with respect to each system in order
to take advantage of a higher number of in-view satellites
and using them jointly in the navigation solution, therefore
increasing accuracy.

2.1. Signal Model. A general signal model for most naviga-
tion systems consists of a direct-sequence spread-spectrum
(DS-SS) signal [4], synchronously transmitted by all the
satellites in the constellation. This type of signals enables
code division multiple access (CDMA) transmissions, that
is, satellite signals are distinguished by orthogonal (or quasi-
orthogonal) codes. At a glance, these signals consists of
two main components: a ranging code (the PRN spreading
sequence) and a low rate data link (broadcasting necessary
information for positioning such as satellites orbital param-
eters and corrections). The complex baseband model of the
signal transmitted by a GNSS space vehicle reads as

sT(t) = √
PT

⎛
⎝γ

∞∑
u=−∞

dI(u)pI
(
t − uTbI

)

+ j
√

1− γ2
∞∑

l=−∞
dQ(l)pQ

(
t − lTbQ

)
⎞
⎠,

(3)
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where

pI(t) =
NcI−1∑

n=0

qI
(
t − nTPRNI

)
,

qI(t) =
LcI−1∑

k=0

cI(k)gT ,I
(
t − kTcI

)
,

(4)

being PT the transmitting power, γ a parameter controlling
the power balance, dI(m) ∈ {−1, 1} the data symbols, TbI the
bit period, NcI the number of repetitions of a full codeword
that spans a bit period, TPRNI = TbI /NcI the codeword period,
cI(k) ∈ {−1, 1} a chip of a spreading codeword of length
LcI chips, gT ,I(t) the transmitting chip pulse shape, which
is considered energy normalized for notation clarity, and
TcI = TbI /NcI LcI is the chip period. Figure 1 aims at clarifying
the relation between those bits/chips parameters. Subindex
I refers to the in-phase component, and all parameters
are equivalently defined for the quadrature component,
referred to with the subindex Q. This signal model describes
all GNSS’s signals-in-space, for instance GPS L1, GPS L5,
Galileo E1, and Galileo E5. Refer to [5] for the details.

2.2. Propagation Channel Model. A key aspect in the defi-
nition of the propagation channel model between satellites’
antenna and the user’s receiver antenna is whether it can
be considered narrowband or wideband, which depends on
the bandwidth of the propagation channel in which a given
signal is transmitted, being assessed with respect to the
channel coherence bandwidth. The coherence bandwidth is
defined as the frequency band within which all frequency
components are equally affected by fading due to multipath.
In narrowband systems, all the components of the signal are
equally influenced by multipath, while in wideband systems
the various frequency components of the signal are differ-
ently affected by fading. Narrowband systems, therefore, are
affected by nonselective fading, whereas wideband systems
are affected by selective fading. The coherence bandwidth
depends on the environment and is given by

Bc = 1
2πT

, (5)

where T is the delay spread, which is the time span between
the arrival of the first and the last multipath signals that
can be sensed by the receiver. In a fading environment, a
propagated signal arrives at the receiver through multiple
paths. For a typical GNSS multipath propagation channel in
which T < 0.5μs (the limit can be greater in nonurban areas,
but in general it is not lower), we obtain that the system
is wideband if transmitted signals are wider than 320 kHz,
which is the case for GNSS waveforms (in the order of MHz).
Hence, we conclude that we need to define propagation
channel models considering wideband systems. Another
important definition within this context concerns coherence
time. The coherence time, Tcoh, is defined as the time interval

1 2

t

· · ·1· · ·· · ·
TbI

NcI NcI

TPRNI = LcI TcI

Figure 1: Relation among the parameters defining bits and spread-
ing sequences in a generic navigation signal (in-phase component).

during which the characteristics of the propagation channel
remain approximately constant, and it is given as

Tcoh = 1
2 fm

, (6)

where fm is the maximum Doppler shift. The Doppler shift
is given as v/λ, where v is the radial speed of the mobile
terminal with respect to the satellite and λ is the signal
wavelength. A channel is considered WSSUS (wide-sense
stationary with uncorrelated scatterers) during the coherence
time.

In the following, we describe four of the most relevant
satellite channel models found in the literature.

2.2.1. Jahn’s Channel Characterization. Jahn et al. provided
a wideband channel model for land mobile satellite services
[6]. The model was derived from a channel measurements
campaign performed in the L band at 1820 MHz. An aircraft
transmitted a spread spectrum signal of 30 MHz, being
received by a mobile receiver (handheld or car terminal).
From those measurements, authors characterized the chan-
nel assuming WSSUS and modeling it as a filter structure
with delay taps. Then, they provided statistical models for
LOS (Rician probability density function for the amplitude
of the direct path), shadowing (ray amplitude following a
Raileigh distribution with a lognormal distributed mean
power), near echoes (the number of the near echoes follows
a Poisson distribution, with delays being exponentially dis-
tributed and amplitudes following a Rayleigh distribution),
and far echoes (same distributions than near echoes but with
other parameters). Table 1 summarizes the main features of
Jahn’s statistical channel model.

2.2.2. Loo’s Channel Characterization. The Loo’s land mobile
satellite channel model [7] is a statistical model that assumes
that the LOS component under foliage attenuation (shad-
owing) is lognormally distributed and that the multipath
effect is Rayleigh distributed. This model provides complete
statistical descriptions for different shadowing and multipath
conditions based on an extensive measurement campaign for
different frequency bands. For the L band, the “Inmarsat’s
Marecs A” satellite was used as transmitter, while a mobile
laboratory was considered for signal reception, resulting in
a fixed 19◦ elevation. Many more investigations on L-band
measurements are also referred to in [8], obtaining results for
other elevation angles. Table 1 summarizes the main features
of Loo’s statistical channel model.

2.2.3. Pérez-Fontán’s Channel Characterization. The model
presented by Fontán et al. in [9] addressed the statistical
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modeling of shadowing and multipath effects in land mobile
satellite applications for a wide range of environments with
different clutter densities (from open to dense urban areas)
and elevation angles (from 5◦ to 90◦) at L, S, or Ka Bands,
using a comprehensive experimental database to extract the
model parameters for the different bands, environments,
and elevations. One of its main contributions consists of
producing time series of any channel parameter whose study
is required, instead of just cumulative distribution functions.
These ones may be computed later from the generated
series. The model uses a first-order Markov chain to describe
the slow variations of the direct signal, basically due to
shadowing/blockage effects. The overall signal variations due
to shadowing and multipath effects within each individual
Markov state are assumed to follow a Loo distribution with
different parameters for each shadowing condition (Markov
state). Up to this point the model is of the narrow-band type
since it does not account for time dispersion effects. These
effects are introduced by using an exponential distribution
to represent the excess delays of the different echoes. Table 1
summarizes the main features of Pérez-Fontán’s channel
model.

2.2.4. Steingass/Lehner’s Channel Characterization. The Ste-
ingass/Lehner land mobile channel model presented in [10]
was developed using data recorded in a high-resolution
measurement campaign carried out in Munich in 2002.
Different types of environments (urban, suburban, and
rural) were measured for car and pedestrian applications.
It has been approved as standard by the ITU [11]. For the
measurements, a 100 MHz signal near the GPS L1 band
was used. This signal provided a time resolution of about
10 ns. The received signal was processed using a super-
resolution algorithm to extract the single reflections. With
this information, the probability density distribution of the
parameters of the reflected rays, such as Doppler shift,
power of echoes, duration of a reflector, and number of
echoes, were extracted. In urban environments, three major
obstacles influence the propagation of the LOS signal: house
fronts, trees, and lamp posts. The model is comprised
of a deterministic part with a generated scenery, which
computes geometrically the LOS signal shadowing and knife-
edge diffraction for house fronts, lamp posts, and trees.
The other observables like the number of coexisting echoes,
life span of reflectors, and the mean power of the echoes
are generated stochastically, using the probability density
distribution extracted from the measurements. The output
of the model is a complex time-variant channel impulse
response recalculated each time step. Table 1 summarizes the
main features of Steingass/Lehner’s channel model.

2.3. A Realistic Signal/Channel Simulator. When transmitted,
satellite’s signals travel through a propagation channel
which modifies its amplitude, phase, and delay. Indeed,
many replicas of the same transmitted signal can reach
the receiver’s antenna due to multipath propagation. In
general, these replicas are caused by reflections of the direct
signal in surrounding obstacles (e.g., buildings, trees, and

ground etc.). As shown above, such propagation channel
is generically modeled by a linear time-varying impulse
response with Mi propagation paths:

hi(t; ξ) =
Mi−1∑

m=0

αi,m(t)e jφi,m(t)δ
(
ξ − τi,m(t)

)
, (7)

where αi,m, φi,m(t) and τi,m(t) are the amplitude, phase, and
delay of the mth propagation path for the ith satellite, ξ is
the multipath delay axis and the index m = 0 stands for the
line-of-sight signal. These channel parameters can be seen as
realizations of random processes with underlying probability
density functions fαp(α), fφp(φ), and fτp(τ), respectively,
whose shape and parameters are approximated by the models
outlined above.

Therefore, considering Ms visible satellites, the signal r(t)
received at the receiver’s antenna is the superposition of the
transmitted signals, as propagated through the correspond-
ing channel, and corrupted by additive noise,w(t). This reads
as

r(t) =
Ms−1∑

i=0

sT ,i(t)∗ hi(t; ξ) + w(t)

=
Ms−1∑

i=0

∫ +∞

−∞
sT ,i(t − ξ)hi(t; ξ)dξ + w(t)

=
Ms−1∑

i=0

Mi−1∑

m=0

αi,m(t)e jφi,m(t)sT ,i
(
t − τi,m(t)

)
+ w(t),

(8)

where sT ,i(t) is the transmitted signal sT(t) corresponding to
the i-th satellite.

As shown in [12], the term φi,m(t) can be approximated
by its first-order Taylor expansion as φi,m(t) ≈ 2π fdi,m(t)t +
φi,m,0. Hence, the general baseband equivalent model that will
be used along this paper is

r(t) =
Ms−1∑

i=0

Mi−1∑

m=0

αi,m(t)e j2π fdi,m (t)t

· e jφi,m,0sT ,i
(
t − τi,m(t)

)
+ w(t).

(9)

The first element in the receiver RF chain is a right hand
circularly polarized (RHCP) antenna, usually with nearly
hemispherical gain coverage, with the mission to receive the
radionavigation signals of all the satellites in view. The RF
signals collected by the antenna are immediately amplified
by a low noise amplifier (LNA), a key element which is the
most contributing block to the noise figure of the receiver.
The LNA also acts as a filter, minimizing out-of-band RF
interferences and setting the sharpness of the received code.
After the LNA, the amplified and filtered RF signals are
then downconverted to an intermediate frequency (IF) using
signal mixing frequencies from local oscillators (LOs). These
LOs are derived from a receiver reference oscillator, often
an oven-stabilized clock with typical accuracies of 10−8.
There is a need for one LO per down-conversion stage.
Two or three down-conversion stages are commonly devoted
to reject mirror frequencies or large out of band jamming
signals, in particular the 900 MHz used by the GSM mobile
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communication system. However, depending on the subse-
quent analog-to-digital converter (ADC) characteristics, a
one-stage downconversion or even a direct L-band sampling
is also possible [13]. The lower sideband generated by the
mixer process is selected, while the upper sideband is filtered
by a postmixer bandpass filter. It is important to point out
that signal Doppler’s and PRN codes are preserved after the
mixing stage, only the carrier frequency is lowered.

In the sequel, we focus on the contribution of a single
satellite and thus omit the dependence with i of the
signal model. Considering a generic data sequence d, chip
code c, chip-shaping pulse gT(t), chip period Tc, Nc full
codes in a whole bit, and data period Tb, the baseband
equivalent received signal for a channel model as in (7) but
particularized to Mi = 1 (i.e., only one line of sight signal)
can be put in the form

r̃0(t) = a0(t)
∞∑

u=−∞
d(u)

Nc−1∑

n=0

Lc−1∑

k=0

c(k)

· g̃R(t − τ0(t)− kTc − nTPRN − uTb) + w̃(t)

= a0(t)
∞∑

u=−∞
d(u) p̃(t − τ0(t)− uTb) + w̃(t)

= |a0(t)|e j(2π fd(t)t+φ0)
∞∑

u=−∞
d(u) p̃(t − τ0(t)− uTb)

+ w̃(t),
(10)

where g̃R(t) is the pulse received at the antenna and then
filtered by a precorrelation filter (usually the LNA), p̃(t) is the
filtered version of p(t) = pI(t) + j pQ(t), and the term w̃(t)
stands for the filtered thermal noise and other unmodeled
terms. The objective of a synchronization method is to
estimate the time delay τ0(t), Doppler shift fd(t) and the
carrier phase information φ0 embedded into the phase of the
complex amplitude a0(t) = |a0(t)|e j(2π fd(t)t+φ0).

The analog-to-digital conversion and the automatic gain
control (AGC) processes take place at IF or baseband, where
all the signals from GNSS satellites in view are buried in
thermal noise. Once the received signal is digitized, it is ready
to feed each of the N digital receiver channels. Every receiver
channel is intended to acquire and track the signal of a single
GNSS satellite; typical receivers are equipped with N = 12
channels. The multiplication of the IF digitized signal by a
local replica of its carrier frequency allows to produce the
in-phase (I) and quadrature-phase (Q) components of the
digitized signal.

Assuming w̃(t) as additive white Gaussian noise
(AWGN), at least in the band of interest, it is well known that
the optimum receiver is the code matched filter, expressed as

hMF

(
t; τ̂0, f̂d0 , φ̂0

)
=

Lc−1∑

k=0

c∗(k)g∗R (−t − kTc + τ̂0 + LcTc)

· e− jφ̂0e− j2π f̂d0 (t)t

= q∗R (−t + τ̂0 + LcTc)e− jφ̂0e− j2π f̂d0 (t)t,
(11)

where τ̂0, f̂d0 , φ̂0 are local estimates of the time delay, Doppler
shift, and carrier phase of the received signal, and (dot)∗

stands for the complex conjugate operator. Theoretically
gR(t) = gT(t), but actual implementations make use of
approximated versions: while gT(t) is a rectangular pulse
filtered at the satellite, gR(t) is digitally generated at the
receiver and therefore not filtered. In addition, gT(t) is
usually filtered again by a precorrelation filter before the
matched filter, as expressed in (10) with g̃R(t). The code
matched filter output can be written in the form

y
(
t; τ̆0, f̆d0 , φ̆0

)
= r̃0

(
t; τ0, fd0 ,φ0

)∗ hMF

(
t; τ̆0, f̆d0 , φ̆0

)
.

(12)

Notice that, in the matched filter, we have substituted
the estimates τ̂0, f̂d0 , and φ̂0 for trial values obtained from
previous (in time) estimates of these parameters which we
have defined as τ̆0, f̆d0 , and φ̆0, respectively. This is the usual
procedure in GNSS receivers, since the estimates are not
really available, but to be estimated after correlation.

In DS-SS terminology, the matched filter is often referred
to as correlator, while the processing it performs is called
despreading. Since the correlators perform accumulation of
the sampled signal during a period Tint and then release an
output, we can write the discrete version of the signal as

yn =
�Tint/Ts−1�∑

s=0

y
(
nTint − sTs; τ̆0, f̆d0 , φ̆0

)
, (13)

where Ts is the sampling period, Tint is the integration time
(usually, Tint = TcLc) and �·� stands for the nearest integer
towards zero.

Equation (13) can be expressed more conveniently by
solving the convolution in (12), which yields [14]

yn,I = |a0|
2

K
sin
(
πΔ f Tint

)

πΔ f Tint
d
(

[n]Tb/Tint

)
Rp̃q

(
Δτ0

)

· cos
(
πΔ f Tint + Δφ

)
+ vI(n),

(14)

where we defined Δ f = fd0 − f̆d0 , Δφ = φ0 − φ̆0 and Δτ0 =
τ0 − τ̆0 (i.e., the estimation errors), �·� stands for the nearest
integer toward zero, and [n]Tb/Tint

means the integer part of
nTint/Tb, being Tb the navigation bit period, and

Rp̃q(ξ) = 1
TPRN

∫ TPRN+ξ

ξ
p̃(t)q∗(t − ξ)dt (15)

is the correlation function. An equivalent derivation for the
Q arm leads to

yn,Q = |a0|
2

K
sin
(
πΔ f Tint

)

πΔ f Tint
d
(

[n]Tb/Tint

)
Rp̃q

(
Δτ0

)

· sin
(
πΔ f Tint + Δφ

)
+ vQ(n).

(16)

Terms Δ f , Δφ, and Δτ0 should be regarded as the average
local phase error over the integration interval, that is, Δφ =
Δφ + 2πΔ f (Tint/2), assuming a frequency rate error Δ ḟ
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(i.e., a phase acceleration error) equal to zero. In case of
inclusion of such effect in the model, the average phase error
can be expanded as

Δφ = Δφ + 2πΔ f
Tint

2
+ 2π

T2

6
Δ ḟ . (17)

In this expression, the terms Δφ, Δ f , and Δ ḟ are referred to
the error values at the beginning of the integration interval.

In the following, we will consider K = (Tint/Ts) as the
integer number of samples collected in an accumulation.
This number will not be integer in receiver configurations
having a sample rate incommensurable with the chip rate,
and thus some integration blocks will have K + 1 samples
instead of K . This effect can be considered negligible for the
analysis presented in this paper.

In the case of Mi > 1 (i.e., in the presence of multipath),
(12) becomes a sum of all the replicas convoluted with a
filter matched to the line of sight signal, whose estimated
parameters are possibly biased by the presence of multipath.
Since the convolution is a linear operator, the correlator
output will be a linear combination of the contributions
made by each signal path.

Note that an arbitrary number of correlators (very early,
early, prompt, late, very late, etc.) can be used in the filter
update, just adding or subtracting the correlator offset to the
argument of Rp̃q (i.e., Rp̃q(Δτ0,n + δ), Rp̃q(Δτ0,n − δ), etc.).
The correlators’ output can be stacked in a vector yn, which
will be the measurements used in next section.

In the context of this work, we used the GRANADA
(Galileo Receiver ANAlysis and Design Application) simula-
tion platform to simulate realistic channel and receiver sce-
narios. The GRANADA Factored Correlator Model (FCM)
blockset (see Figure 2) is a MATLAB/Simulink (MATLAB
and Simulink are registered trademarks of The MathWorks,
Inc.) library that provides a swift, flexible, and realistic way
of simulating different signal processing architectures, either
of standalone GNSS receivers or multisystem solutions. The
FCM was included in a Simulink blockset, which, since 2007,
has been commercially available as part of the GRANADA
product family, whose remaining products were developed
by DEIMOS Space in the frame of the Galileo Receiver
Development activities (GARDA), funded by the Galileo
Joint Undertaking (now European GNSS Agency, GSA)
under the 6th Framework Program of the European Union.

The FCM separates the effects of carrier and code
Doppler and misalignment on a GNSS receiver’s correlator
outputs into several multiplicative factors and allows the
inclusion (or not) of each factor independently. Since it is an
analytical model, the computation rate can be as low as the
tracking loop rate, dramatically increasing simulation speed:
the FCM provides directly the correlators’ output, precluding
the need of simulating the lower-level signal processing
stages, significantly reducing the computational load and
hence decreasing processing and memory requirements,
while still accounting for various effects (as filtering, carrier
phase and frequency errors, code delay error, code Doppler,
noise, and multipath), thus keeping a high level of realism
[15]. Since, statistically speaking, it is equivalent to work with
samples before or after the correlation process (proof in the

Appendix), we take advantage of working at the correlator
output since it considerably reduces the computational load.

Once configured (type of signal, propagation channel,
user dynamics, sampling frequency before correlation, num-
ber of correlators and their spacing, integration period,
environment, etc., see Figure 3), FCM provides the measure-
ments yn used in the simulations presented in Section 5.

3. Particle Filtering

Bayesian filtering involves the recursive estimation of states
xn ∈ Rnx given measurements yn ∈ Rny at time n based on all
available measurements, y1:n = {y1, . . . , yn}. To that aim, we
are interested in the filtering distribution p(xn|y1:n), which
can be recursively expressed as

p
(

xn | y1:n
) =

p
(

yn | xn

)
p(xn | xn−1)

p
(

yn | y1:n−1
) p

(
xn−1 | y1:n−1

)
,

(18)

with p(yn|xn) and p(xn|xn−1) referred to as the likelihood
and the prior distributions, respectively. Unfortunately, (18)
can only be obtained in closed-form in some special cases.
For instance, when the model is linear and Gaussian, the
Kalman Filter (KF) [16] provides the optimal solution. In
more general setups—nonlinear and/or non-Gaussian—we
should resort to more sophisticated methods [17]. In this
paper we consider particle filters (PFs) [18, 19].

PFs approximate the filtering distribution by a set of
N weighted random samples, forming the so-called set of

particles {x(i)
n ,w(i)

n }Ni=1. These random samples are drawn
from the importance density distribution, π(·),

x(i)
n ∼ π

(
xn | x(i)

0:n−1, y1:n

)
, (19)

and weighted according to the general formulation

w(i)
n ∝ w(i)

n−1

p
(

yn | x(i)
0:n, y1:n−1

)
p
(

x(i)
n | x(i)

n−1

)

π
(

x(i)
n | x(i)

0:n−1, y1:n

) . (20)

Algorithm 1 outlines the operation of the Standard PF
(SPF) when a new measurement yn becomes available.
After particle generation, weighting, and normalization, a
minimum mean square error (MMSE) estimate can be
obtained by a weighted sum of particles. A typical problem
of PFs is the degeneracy of particles, where all but one weight
tend to zero. This situation causes the particle to collapse to a
single state point. To avoid the degeneracy problem, we apply
resampling, consisting in eliminating particles with low
importance weights and replicating those in high-probability
regions [20, 21]. In this work, we consider a multinomial
sampling scheme for the resampling step.

3.1. Rao-Blackwellized Particle Filter. In this paper, we ana-
lyze a way to alleviate the dimensionality problem based on
the marginalization of linear states. The basic idea is that
a KF can optimally deal with these states, while reducing
the dimension of the state space that the nonlinear filter
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Figure 2: Schematic of the tracking stage of a GNSS receiver and substitution of the high frequency stage of the receiver (correlation and
carrier wipe-off) with the FCM blockset [22].

Figure 3: Configuration screen of the FCM blockset.

has to explore. The procedure was proposed in [23, 24]
for the case of dealing with the nonlinear states with a
PF. The algorithm was termed Marginalized particle filter
(MPF), although the same concept is also referred to as
Rao-Blackwellized PF (RBPF) in other works [25, 26]. The
latter nomenclature is because marginalization resorts to a
general result due to [27, 28] referred to as the Rao-Blackwell
theorem, which shows that the performance of an estimator
can be improved by using information about conditional

probabilities. The Rao-Blackwell theorem states let θ̂ =
g(x) represent any unbiased estimator for θ and T(x) be a
sufficient statistic for θ under p(x, θ). Then the conditional

expectation θ̂RB = E{g(x)|T(x)} is independent of θ, and
it is the uniformly minimum variance unbiased estimator
(cf. [29, 30] for the details) The result of a corollary points

Require: {x(i)
n−1,w(i)

n−1}
N

i=1 and yn

Ensure: {x(i)
n ,w(i)

n }Ni=1 and x̂n

1: for i = 1 to N do
2: Generate x(i)

n ∼ π(xn|x(i)
0:n−1, y1:n)

3: Calculate w̃(i)
n = w(i)

n−1
p(yn|x(i)

0:n, y1:n−1)p(x(i)
n |x(i)

n−1)

π(x(i)
n |x(i)

0:n−1, y1:n)
4: end for
5: for i = 1 to N do

6: Normalize weights: w(i)
n = w̃(i)

n∑N
j=1 w̃

( j)
n

7: end for

8: MMSE state estimation: x̂n =
N∑
i=1
w(i)

n x(i)
n

9: {x(i)
n , 1/N}Ni=1 = Resample({x(i)

n ,w(i)
n }Ni=1)

Algorithm 1: Standard particle filtering (SPF).

out that the use of a Rao-Blackwellized estimator effectively
reduces the variance of the estimation error. Therefore, when
possible, it is desirable to apply marginalization procedures.

Corollary: let θ̂ be an unbiased estimator and let θ̂RB be the
Rao-Blackwell estimator, then

E
{(

θ − θ̂
)2
}
≥ E

{(
θ − θ̂RB

)2
}
. (21)

Final remarks on Rao-Blackwellization are worth men-
tioning.

(i) Rao-Blackwellization is a procedure suitable when
linear substructures are present in the dynamical
model.
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(ii) It is a variance reduction technique, in the sense
that the estimation variance of a filter considering
this marginalization procedure is less than a filter
estimating the complete state space.

(iii) Filtering linear states with a Kalman filter has twofold
benefits: (1) linear states are optimally filtered and
(2) the system coped by the nonlinear filter has
reduced dimensionality (with large benefits in terms
of computational resources).

4. Joint Filtering of LOSS and
Multipath Parameters

The technique herein investigated attempts to estimate the
synchronization parameters of both the LOSS and M − 1
multipath components. We refer to the algorithm as the
multipath estimating particle filtering, or MEPF for short.
Here the term Bayesian means that the algorithm is using
some sort of a priori information regarding these parameters
(such as interdependencies and time evolution models). This
approach was first introduced in [31] and further refined in
[32], although other papers might be found following the
same scheme [33] with more complex time-evolving models.
The application of Bayesian filtering techniques becomes
straightforward when one describes the problem at hand in
terms of a measurement equation and a process equation
(i.e., how unknowns evolve randomly over time).

4.1. Observations. A receiver implementing such Bayesian
tracking loops typically processes each satellite indepen-
dently, and most of the work in the literature discusses
architectures using IF signal. Here we are interested in
operating at the output of the bank of correlators.

Observations for the i-th satellite are gathered into a
random vector yn, where we omitted the subindex i for the
sake of clarity. The 
th element in yn corresponds to the
sample of the 
-th correlator, and it is expressed as

yn,

(
αn,φn, τn

) =
M−1∑

m=0

αm,ne
jΔφm,nRn,


(
Δτ
,m,n

)
+ vn,
 , (22)

accounting that Δτ
,m,n = τm,n − τ̂0,n−1 + δ
 corresponds to
the point where the 
-th early/late sample is evaluated. As
usual, m = 0 denotes LOSS. Here we consider a noncoherent
tracking architecture that operates with the squared outputs.
This scheme avoids the estimation of carrier phases, and thus
it reduces the state-space dimension. In our implementation,
a conventional PLL/FLL network is used in parallel to the
MEPF. Therefore, the observations are the parallel outputs
of the correlation bank, which we denote as

yn =
(∣∣yn,1(αn, τn)

∣∣2, . . . ,
∣∣yn,L(αn, τn)

∣∣2
)T

, (23)

where L is the total number of correlators used at the receiver.
We made apparent the dependence of measures on unknown
states: real amplitude (αn) and time delay (τn) of each replica
m of the signal.

4.2. Process Dynamics. The state space is composed of the
unknown parameters of the model, namely, delay, delay rate,
and real amplitude of the LOSS and its multipath replica:

xn =

⎛
⎜⎜⎝τ0,n, . . . , τM−1,n︸ ︷︷ ︸

τn

, τ̇0,n, . . . , τ̇M−1,n︸ ︷︷ ︸
τ̇n

,α0,n, . . . ,αM−1,n︸ ︷︷ ︸
αn

⎞
⎟⎟⎠

T

,

(24)

where τ̇m,n is the delay rate of the m-th component, related
to the Doppler shift. We have introduced this delay rate to
better capture the dynamics of the time-evolving delay of the
signals.

One could adopt many alternatives to specify the time-
evolving processes for each state, ranging from the simplistic
(although effective in some situations) autoregressive model
to more sophisticated models. Here, we adopt a channel
state model based on that presented in [34], adapted to the
noncoherent scheme. This model was motivated by channel
modeling work for multipath prone environments such as
the urban satellite navigation channel [35].

The dynamics of time delay and delay rate for the LOSS
(i.e., m = 0) are described by

(
τ0,n

τ̇0,n

)
=
(

1 Tint

0 1

)(
τ0,n−1

τ̇0,n−1

)
+ uτ

0,n, (25)

where Tint is the integration period and the process noise is
an uncorrelated zero-mean Gaussian random variable with
diagonal entries σ2

0,τ and σ2
0,τ̇ .

The evolution of τm,n and τ̇m,n for the echoes is modeled
with a truncated Gaussian distribution as in [31], which
allows us to introduce the fact that due to physical reasons

τm,n > τ0,n ∀m ∈ {1, . . . ,M − 1}, (26)

in outdoor propagation channels [6, 11, 36]. Taking (26) into
account, we force this situation using the evolution

τm,n = τ0,n +
∣∣∣τm,n−1 + uτm,n

∣∣∣,

τ̇m,n = τ̇0,n + uτ̇m,n,
(27)

with uτm,n and uτ̇m,n being zero-mean Gaussian random
variables with variances σ2

m,τ and σ2
m,τ̇ , respectively. For the

evolution of each αm,n we consider independent autoregres-
sive models with variance σ2

m,α. The overall covariance matrix
of the process is denoted as Σx and is constructed with σ2

0,τ ,
σ2
m,τ , σ2

0,τ̇ , σ2
m,τ̇ , σ2

0,α, and σ2
m,α in its diagonal.

4.3. Algorithm Implementation. From the previous mod-
eling, we realize that the state space can be partitioned
into linear and nonlinear subspaces. Clearly, these can be
identified as

xl
n = αn,

xnl
n =

(
τTn , τ̇Tn

)T
.

(28)
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By the chain rule of probability, linear states can be
analytically marginalized out from p(xn | y1:n):

p
(

xl
n, xnl

0:n | y1:n

)
= p

(
xl
n | xnl

0:n, y1:n

)
p
(

xnl
0:n | y1:n

)
(29)

and, taking into consideration that xl
n generates a linear

Gaussian state-space, p(xl
n | xnl

0:n, y1:n) can be updated
analytically via a KF conditional on xnl

0:n and only the non-
linear part of xn needs to be estimated with a nonlinear
filter. In the proposed scheme, an SPF is run to characterize
p(xnl

0:n | y1:n) and a KF is executed to obtain p(xl
n | xnl

0:n, y1:n).
Notice that both linear and nonlinear states are interde-

pendent, thus the algorithm has to be aware of this coupling.
The details might be consulted in [23] for the general
algorithm and in [12] for the specific GNSS setup considered
here. At a glance, each particle in the PF has an associated
KF that tracks amplitudes. Then, before particle generation,
KF prediction is run and the results are used in the particle
filter. Similarly, once particles are weighted this information
is used in the update step of the KF.

5. Results in Realistic Scenarios

We used the GRANADA FCM blockset of Simulink to
simulate the GPS L1 C/A signal, the propagation channel,
and the inaccuracies of the receiver front end. An initial
set of controlled scenarios is simulated to analyze the
method. Then, from the set of reviewed channel models,
we have selected Jahn’s to show simulation results in a
realistic environment. The GPS signal is spread spectrum
with a code length of 1023 chips and a chip rate of 1.023
Mchips/s (notice that a chip of the signal corresponds to
approximately 300 meters in length and the duration of an
entire codeword is one millisecond). The carrier frequency
of the transmitted signal was 1575.42 MHz and the receivers
precorrelation bandwidth was 2 MHz. Estimates of time
delay were performed at a rate of 50 Hz, which corresponds
to an integration time of 20 milliseconds, assuming bit
synchronization. The carrier-to-noise density ratio (C/N0)
of the simulated satellite was 38 dB-Hz. The dynamics of
the scenario were due to the relative motion of the satellite-
receiver, which is completely simulated by the GRANADA
FCM blockset, and the receiver performed a pedestrian-like
trajectory at 1 m/s. Simulation time was 50 seconds.

We compared the performance of the MEPF with the
results of a narrow 0.125-chip spacing DLL (state-of-the-
art in GNSS receivers) with an equivalent noise bandwidth
of 1 Hz. This architecture uses 3 correlators. Also, the
benchmark receiver implements a coherent phase lock loop
(PLL) carrier phase discriminator using a second-order filter
and an error accumulator with equivalent noise bandwidth
10 Hz. The initial time-delay ambiguity at which the filter
was initialized was drawn from N (τ0,0,Tchip/2), with Tchip

the chip period.
It has been reported in [37] that the number of correla-

tors (L) used in the PF plays an important role. For instance,
in AWGN on the order of L = 11 correlators are required
to obtain stable results. Also, the algorithm improves its
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Figure 4: Evolution of pseudorange error in DLL/PLL scheme
under severe multipath propagation.

performance with the number of particles although this
improvement saturates at 300 particles.

Figures 4–7 show the behavior of the classical DLL/PLL
scheme and the proposed MEPF, respectively, in a multipath
scenario. In this experiments, we used L = 21 correlators
for the MEPF in order to span correlators along regions of
interest in terms of multipath estimation and mitigation.
The results are organized as follows. Top figure represents
the obtained pseudorange error. Central figure is the relative
delay between the LOSS and the multipath replica, in the
first representative interval (t ∈ [10, 20]) it has been set
to 0.25 chips and in the second interval (t ∈ [25, 40]) to
0.5 chips. Bottom figure plots the signal-to-multipath ratio
(SMR) in linear scale of the simulated scenario. During
the first interval, the SMR was abruptly kept constant to
0.75 and during the second interval it grew linearly from
0 to 0.75. Since the MEPF is very sensitive to the tuning
of process covariance matrix—as many Bayesian filtering
solutions,—we have investigated three different setups with
N = 1000 particles. Namely, (i) in Figure 5 we used standard
deviations σ0,τ = .03/c, σ0,τ̇ = 0.03/c, σm,τ = 100/c, σm,τ̇ =
0.03/c, σ0,α = 0.0001, and σm,α = 0.01; (ii) in Figure 6 we
used σ0,τ = 30/c, σ0,τ̇ = 0.3/c, σm,τ = 30/c, σm,τ̇ = 0.3/c,σ0,α =
0.0001, and σm,α = 0.0001; and finally (iii) in Figure 7 we
used σ0,τ = 3/c, σ0,τ̇ = 0.3/c, σm,τ = 30/c, σm,τ̇ = 0.3/c,σ0,α =
0.0001, and σm,α = 0.01. At the light of the results, the latter
configuration provided a good performance as it allowed for
sufficient delay excursions to explore the state space and fast
variations in multipath amplitude were coped. A summary
of results in terms of bias, variance, and RMSE over the
entire simulation can be consulted in Table 2. We can observe
that, compared to DLL schemes, a remarkable performance
improvement can be obtained after properly adjusting the
covariances.

Finally, we tested the algorithm in a more realistic
scenario. We selected the Jahn’s channel model with the same
receiver parameters as before. Particularly, the considered
channel was that of a satellite at an elevation angle of 55◦

in an urban scenario with an average C/N0 of 38 dB-Hz.
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Figure 5: Evolution of pseudorange error in MEPF scheme under
severe multipath propagation, setup number 1.
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Figure 6: Evolution of pseudorange error in MEPF scheme under
severe multipath propagation, setup number 2.

Table 2: Comparison of pseudorange error metrics in meters.

DLL/PLL MEPF (no. 1) MEPF (no. 2) MEPF (no. 3)

Bias (m) 10.66 3.97 5.48 1.24
std dev (m) 13.23 6.42 8.75 4.05
RMSE (m) 17.00 7.55 10.33 4.24

The results can be consulted in Figure 8, where it can be
observed that MEPF requires an initial convergence time
(depending on the covariance matrix set) larger than DLL
schemes. Conversely, it appears more robust to channel
impairments. Numerically, the RMSE in the overall simula-
tion is of 8.48 m and 4.82 m for DLL and MEPF, respectively.
For the MEPF we used M = 2 paths, N = 1000 particles, and
σ0,τ = .03/c, σ0,τ̇ = 0.03/c, σm,τ = 3/c, σm,τ̇ = 0.03/c, σ0,α =
0.0001, and σm,α = 0.001.

6. Conclusions

In this paper we have analyzed an advanced tracking loop
for time-delay and carrier-phase estimation in a GNSS
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Figure 7: Evolution of pseudorange error in MEPF scheme under
severe multipath propagation, setup number 3.
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Figure 8: Pseudorange error in DLL and MEPF schemes in an
urban scenario at an elevation of 55◦, as modeled by Jahn’s model.

receiver based on sequential Monte-Carlo methods. The
algorithm builds upon previous work by the authors on
Rao-Blackwellized particle filtering while introducing more
realistic process dynamics and the usage of postcorrelation
observations, that reduce the computational burden at the
receiver. The paper presents the general signal model, GNSS
concept, and trade-offs the most common propagation
channel models. A realistic scenario simulator based on
the FCM blockset of Simulink was used Section 5. Results
point out the need for properly setting not only the
number of particles but the number of correlation outputs
used as observations. Also, degradation of conventional
DLL/PLL schemes in multipath-rich scenarios became clear.
Nevertheless, the correct selection of a process covariance
matrix was seen to affect significantly the performance of the
MEPF and future work should be devoted in self-adjustment
of such matrix.
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Appendix

Equivalence of Pre/Postcorrelation
Receiver Architectures

In this appendix we establish a basic result showing the
equivalence between processing pre- and postcorrelation
signals. That is to say, from a statistical point of view, an
estimator of a given parameter (e.g., time delay) computed
using a bunch of snapshots taken at the IF signal level
(r0(t; υ)) is the same as that which is derived using the
output of the correlators (y(t; υ)). It is a well-known result
in statistical signal processing that both signals are sufficient
statistics, and thus one is able to derive an estimator of
υ = (τ0, fd0 ,φ0)T using either. However, we will see that
this equivalence becomes evident when one examines the
likelihood distribution (the density where the information
from measurements is gathered) for each approach.

If we analyze first the case of using the IF signal we should
be aware of the following.

(i) This approach does not force an implementation
based on early, prompt, and late samples; as observa-
tions are directly the baseband signal at the sampling
frequency.

(ii) It is necessary to use a sufficiently large set of IF data
to be able to infer any parameter from it. That is,
one has to integrate over a certain integration time,
Tint, since the signal-to-noise ratio of GNSS signals is
typically well below the noise level.

The term rn ∈ CK stands for the vector of snapshots
of the IF signal, as gathered for the nth integration interval,
defined as

rn =

⎛
⎜⎜⎝

r0(nTint)
...

r0(nTint + (K − 1)Ts)

⎞
⎟⎟⎠, (A.1)

using the same notation conventions used along the doc-
ument. Then, the likelihood can be decomposed as the
independent contribution of each snapshot

log
(
p(rn | υn)

) =
K∏

k=1

p

⎛
⎜⎜⎝r0(nTint + (k − 1)Ts)︸ ︷︷ ︸

r0,n(k)

| υn

⎞
⎟⎟⎠, (A.2)

and assuming Gaussianity for the noise term, we could
identify that

log
(
p(rn | υn)

)∝ −
K∑

k=1

∥∥∥r0,n(k)− h(1)
n (k; υn)

∥∥∥2
, (A.3)

where h(1)
n stands for the precorrelation signal model, which

was defined earlier as

h(1)
n (t; υn) = |a0(t)|e j(2π fd0 t+φ0)dn p̃(t − τ0). (A.4)

Further manipulation of the loglikelihood yields to

log
(
p(rn | υn)

)∝
K∑

k=1

∣∣r0,n(k) p̃∗(t − υn)
∣∣2 − ∣∣r0,n(k)

∣∣2

∝ ∣∣yn(υ − υn)
∣∣2,

(A.5)

with the latter step being clear if one accounts for the
definition of yn as the output of a correlator. Recall that υ is
the true unknown parameter of the signal. An ML estimator
of υ could be obtained after maximizing the latter equation.

Drawbacks of this approach are twofold.

(i) It might be computationally expensive as large data
sets need to be processed to increase the signal-to-
noise ratio, and thus K might be large depending on
Ts.

(ii) There is a requirement for performing signal process-
ing operations at a high rate, since it operates at the
sampling frequency.

If we turn our attention to the conventional approach in
which one uses samples at the output of a bank of correlators,
we should see the following.

(i) This approach forces an implementation based on
early, prompt, and late samples; this means that
samples are taken assuming a previous estimation
(prompt) of the parameters, denoted as ῠ =
(τ̆0, f̆d0 , φ̆0)

T
.

(ii) Few samples are sufficient to infer estimates of υ.
After correlation an integration over a certain interval
is already done, Tint, and therefore the signal-to-noise
ratio is relatively high.

In this case, measurements can be expressed as yn(υ− ῠ)
at the output of the n-th integration interval. In this mea-
surement we explicitly expressed that samples are taken with
respect to the error between true and prompt parameters,
Δυ = υ−ῠ. Notice that we considered that only the prompt is
used for the sake of clarity. It is easy to obtain a similar result,
as the one shown here, when one accounts for several early
and late samples.

Then, the log-likelihood under the Gaussian assumption
is

log
(
p
(
yn | υn

))∝
∥∥∥yn(Δυ)− h(2)

n (υn − ῠ)
∥∥∥2

∝

{
yn(Δυ)

(
h(2)
n (υn − ῠ)

)∗}
,

(A.6)

with h(2)
n being the postcorrelation signal model

h(2)
n (Δυ) = |a0|

2
K

sin
(
πΔ f Tint

)

πΔ f Tint
d
(

[n]Tb/Tint

)

· Rp̃q(Δτ0) cos
(
πΔ f Tint + Δφ

)
,

(A.7)

and υn the unknown parameter we want to estimate at n.
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If we set υn = ῠ, we can identify that

log
(
p
(
yn | υn

))∝

{
yn(υ − υn)

(
h(2)
n (0)

)∗}

∝ ∣∣yn(υ − υn)
∣∣2
.

(A.8)

From the latter mathematical derivations, we can con-
clude an important result:

log
(
p(rn | υn)

)∝ log
(
p
(
yn | υn

))
(A.9)

for a given integration interval Tint considering KTs snap-
shots. As said, similar results apply for larger integration and
more early/late samples.

As a consequence, we can state the following: the ML
estimator of υ computed from the data sets rn and yn is
equivalent.

To sum up, from a statistical point of view, both
approaches are equivalent and the choice should be made
considering implementation aspects. For instance, it is clear
that using precorrelation measurements rn involves larger
computational burden than using post-correlation samples.
Another important conclusions is that since in the pre-
correlation approach we also need to integrate in order to
increase the signal-to-noise ratio, effects happening faster
than Tint will not be captured by the estimation algorithm.
The same happens in the post-correlation case. Therefore,
the limitation of which phenomena could be tracked is
inherent to the GNSS signal, instead of the way it is processed
(i.e., pre-or postcorrelated samples).
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