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We combine Turyn’s self-conjugacy result, variance technique, Dillon dihedral trick, and Sylow
theorem to investigate the existence of (v, k, λ) difference sets in which k − λ is a square and
k < 1250.

1. Introduction

Let G be a multiplicative group of order v and letD be a subset of G consisting of k elements,
where 1 < k < v − 1. D is a nontrivial (v, k, λ) difference set if every nonidentity element
can be reproduced λ times by the multiset {d1d−1

2 : d1, d2 ∈ D,d1 /=d2}. The natural number
n = k − λ > 1 is known as the order of the difference set. The group structure determines
the nature of the difference set. For instance, if the underlying group G is abelian (resp.,
nonabelian or cyclic), then D is abelian (resp., nonabelian or cyclic) difference set. The study
of difference sets integrates various techniques ranging from algebraic number theory to
geometry, algebra, and combinatorics [1]. There are many classical results on constructions
and nonexistence of difference sets in the literature [2–14]. These results are mainly based on
Hall’s multiplier concept [15] or Turyn’s self-conjugacy method [14]. Recently, Schmidt [13]
developed a new method for studying combinatorial structures using group ring equations
without any restrictive assumptions. Arasu [2], Arasu and Sehgal [3, 16], Baumert [4],
Hughes [17], Iiams [7], Kibler [18], Kopilovich [10], Lander [11], and López and Sánchez [19]
among other authors studied the existence of abelian (v, k, λ) difference sets with k ≤ 150.
They were able to either indicate the existence or otherwise of difference sets. Some of these
authors also listed parameter sets that were open, whose existence or otherwise has been
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concluded by other authors. This papermainly uses Turyn’s self-conjugacy approach to study
a class of (v, k, λ) difference sets in which n = m2, wherem is a positive integer. We illustrate
with examples where 2 ≤ m ≤ 25 and the ideal generated by prime divisors of m factors
trivially in the respective cyclotomic rings. This assumption along with Dillon dihedral trick
and Sylow theorems provide sufficient information required to decide the nonesxistence of
the difference sets in some or all groups of order v.

We assume that G is a finite group of order v. Section 2 gives a brief description of
some basic results which include materials from group theory, representation, and algebraic
number theories. Section 3 lists difference sets parameters that do not exist and examples of
partial results of nonexistence of difference sets in groups of order v.

2. Preliminaries

2.1. Difference Sets

Let Z be the ring of integers and C be the field of complex numbers. Suppose that G is a
group of order v and D is a (v, k, λ) difference set in G. We sometimes view the elements of
D as members of the group ring Z[G], which is a subring of the group algebra C[G]. Thus,D
represents both subset of G and element

∑
g∈D g of Z[G]. The sum of inverses of elements of

D is D(−1) =
∑

g∈D g
−1. Consequently, D is a difference set if and only if

DD(−1) = n + λG, DG = kG. (2.1)

Suppose that D is a difference set in a group G of order v and N is a normal subgroup
of G. Suppose that ψ : G → G/N is a homomorphism. We can extend ψ by linearity, to
the corresponding group rings. Thus, the difference set image in G/N (also known as the
contraction of D with respect to the kernelN) is the multiset D/N = ψ(D) = {dN : d ∈ D}.
Let T ∗ = {1, t1, . . . , th} be a left transversal ofN inG. We can write ψ(D) =

∑
tj∈T∗ djtjN, where

the integer dj = |D ∩ tjN| is known as the intersection number of D with respect toN. In this
work, we will always use the notation D̂ for ψ(D) andmi ≥ 0 denotes the number of times di
equals i.

2.2. Representation and Algebraic Number Theories

A C-representation of G is a homomorphism, χ : G → GL(d,C), where GL(d,C) is the
group of invertible d × d matrices over C. The positive integer d is the degree of χ. A
linear representation (character) is a representation of degree one. The set of all linear
representations of G is denoted by G∗. G∗ is an abelian group under multiplication and if
G′ is the derived group of G, then G∗ is isomorphic to G/G′. Define ζm′ := e(2π/m

′)i to be a
primitive m′th root of unity and Km′ := Q(ζm′) to be the cyclotomic extension of the field
of rational numbers, Q, where m′ is the exponent of G. Without loss of generality, we may
replace C by the field Km′ . Thus, the central primitive idempotents in C[G] is

eχi =
χi(1)
|G|

∑

g∈G
χi
(
g
)
g−1 =

1
|G|

∑

g∈G
χi(g)g, (2.2)

where χi is an irreducible character of G.
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Aliases are members of group ring which enable us to transfer information from
C[G] to group algebra Q[G] and then to Z[G]. Let G be an abelian group and let Ω =
{χ1, χ2, . . . , χh}, be the set of characters of G. The element β ∈ Z[G] is known as Ω-alias
if for A ∈ Z[G] and all χi ∈ Ω, χi(A) = χi(β). Since A =

∑
χ∈G∗ χ(A)eχ, we can replace

the occurrence of χ(A), which is a complex number by Ω-alias, β, an element of Z[G].
Furthermore, two characters of G are algebraic conjugate if and only if they have the same
kernel and we denote the set of equivalence classes of G∗ by G∗/ ∼. The central rational
idempotents in Q[G] are obtained by summing over the equivalence classes Xi = {eχi |
χi ∼ χj} ∈ G∗/ ∼ on the eχ’s under the action of the Galois group of Km′ over Q. That is,
[eχi] =

∑
eχj ∈Xi

eχj , i = 1, . . . , s.

For instance, suppose G = Cpm′ = 〈x : xp
m′

= 1〉 (p is prime) is a cyclic group whose
characters are of the form χi(x) = ζipm′ , i = 0, . . . , pm

′ − 1. Then the rational idempotents are

[
eχ0

]
=

1
pm′ 〈x〉,

[
eχ

pj

]
=

1
pj+1

(
p
〈
xp

m′−j〉 −
〈
xp

m′−j−1〉)
, 0 ≤ j ≤ m′ − 1.

(2.3)

The following is the general formula employed in the search of difference set [22].

Theorem 2.1. Let G be an abelian group and G∗/ ∼ be the set of equivalence classes of characters.
Suppose that {χ0, χ1, . . . , χs} is a system of distinct representatives for the equivalence classes of
G∗/ ∼. Then for A ∈ Z[G], one has

A =
s∑

i=0

αi
[
eχi

]
, (2.4)

where αi is any χi-alias for A.

Equation (2.4) is known as the rational idempotent decomposition of A.
Suppose that χ is any nontrivial representation of degree d and χ(D̂) ∈ Z[ζ], where

ζ is the primitive root of unity. Suppose that x ∈ G is a nonidentity element. Then, χ(xG) =
χ(x)χ(G) = χ(G). This shows that (χ(x) − 1)χ(G) = 0. Since x is not an identity element,
(χ(x) − 1)/= 0 and χ(G) = 0 (Z[ζ] is an integral domain). Consequently, χ(D)χ(D) = n ·
Id + λχ(G) = n · Id, where Id is the d × d identity matrix. Furthermore, if χ is a nontrivial

representation ofG/N of degree d then D̂D̂(−1) = n ·1G/N+ |N|λ(G/N) and χ(D̂)χ(D̂) = n ·Id.
Recall that the ring of integers of the cyclotomic field Q[ζm′] is Z[ζm′]. This ring is also

an integral domain. Let p, a, b ∈ Z[ζm′]. The number p is irreducible if p = ab implies one of a
or b is a unit. The element p is prime if p | ab implies p | a or p | b [23]. A domain is a unique
factorization domain (UFD) if factorization into irreducibles is possible and unique. In UFD,
the irreducibles are also primes. In order to successfully obtain the difference set images,
we need the aliases. Suppose that G/N is an abelian factor group of exponent m′ and D̂ is a

difference set image inG/N. If χ is not a principal character ofG/N, then χ(D̂)χ(D̂) = n is an
algebraic equation in Z[ζm′]. The determination of the alias requires the knowledge of how
the ideal generated by χ(D̂) factors in cyclotomic ring Z[ζm′], where ζm′ is the m′th root of
unity. If δ := χ(D̂), then by (2.4), we seek α ∈ Z[G/N] such that χ(α) = δ. The task of solving
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the algebraic equation δδ = n is sometimes made easier if we consider the factorization of
principal ideals 〈δ〉〈δ〉 = 〈n〉. Suppose we are able to find δ =

∑φ(m′)−1
i=0 diζ

i
m′ ∈ Z[ζm′] such

that δδ = n, where φ is the Euler φ-function. A theorem due to Kronecker [12, 13] states that
any algebraic integer whose all conjugates have absolute value 1 must be a root of unity. We
use this theorem to characterize the solutions. If there is any other solution to the algebraic
equation, then it must be of the form δ′ = δu, where u = ±ζjm′ is a unit.

The following result is used to determine the number of factors of an ideal in a ring:
suppose p is any prime and m′ is an integer such that gcd(p,m′) = 1. Suppose that d is
the order of p in the multiplicative group Z

∗
m′ of the modular number ring Zm′ . Then the

number of prime ideal factors of the principal ideal 〈p〉 in the cyclotomic integer ring Z[ζm′]
is φ(m′)/d, where φ is the Euler φ-function, that is, φ(m′) = |Z∗

m′ | [25]. For instance, the ideal
generated by 2 has two factors in Z[ζ7], the ideal generated by 7 has two factors in Z[ζ20],
while the ideal generated by 3 has four factors in Z[ζ40]. On the other hand, since 2s is a power
of 2, the ideal generated by 2 is said to completely ramifies as power of 〈1− ζ2s〉 = 〈1 − ζ2s〉 in
Z[ζ2s].

According to Turyn [14], an integer n is said to be semi-primitive modulo m′ if for
every prime factor p of n, there is an integer i such that pi ≡ −1 mod m′. In this case, −1
belongs to the multiplicative group generated by p. Furthermore, n is self-cosnjugate modulo
m′ if every prime divisor of n is semi primitive modulom′

p, wherem′
p is the largest divisor of

m′ relatively prime to p. This means that all prime ideals over n in Z[ζm′] are fixed by complex
conjugation. For instance, 72 ≡ −1 (mod m′), where m′ = 2, 5, 10 and 7 ≡ −1 (mod m′), m′ =
2, 4, 8. Thus, 〈7〉 is fixed by conjugation in Z[ζm′],m′ = 2, 4, 5, 8, 10, 50.

Remark 2.2. If 〈n〉 = Πs
i=1θi in cyclotomic ring Z[ζm′], where θi is an ideal and s is an odd

integer, then there is no solution to δδ = n. To see this, assume that a δ exist such that 〈δ〉 =
Πk
i=1αi. Then 〈n〉 = 〈δ〉〈δ〉 has 2k factors but 〈n〉 has odd factors.

Remark 2.3. Let us consider the ideal generated by 2 which has two factors in the cyclotomic
ring Z[ζ23]. We claim that the algebraic number 2 is prime in this ring. Since (23, 11, 5)
difference sets exist, and there exists θ such that θθ = 6 and θ + θ = −1. This implies that
θ2 + θ + 6 = 0 and θ = (−1 ±√−23)/2. Consequently, θ ∈ Z[

√−23]. Suppose that the algebraic
number 2 is not prime in Z[

√−23]. As −23 ≡ 1 (mod4) ([23], chapter 3), we seek a, b ∈ Z

such that δ = (a + b
√−23)/2 and δδ = (a2 + 23b2)/4 = 2. The equation a2 + 23b2 = 8 has

no integer solution. Thus, there is no algebraic number such that δδ = 2. In fact, δδ = p has
no solution, where p = 2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22. However, the equation
a2 +23b2 = 4m2 has trivial solutions (a, b) = (−2m, 0) and (2m, 0), wherem = 2, 3, 4, 5, 7, 9, 10,
11, 13, 14, 15, 17, 19, 20, 21, 22, 25. We noticed that since the class number of the cyclotomic
ring Z[ζ23] is 3, the equation a2 + 23b2 = 4 · 23 has nontrivial solutions (a, b) = (−3,−1), (−3, 1),
(3,−1) and (3, 1). Also, a2 + 23b2 = 4m has nontrivial solutions form = 6, 8, 12, 18, 62, 82, 122,
162, 182 and 242.

In this paper, we will use the phase m factors trivially in Z[ζm′] if the ideal generated
by m is prime or ramifies in Z[ζm′]; m is self-conjugate modulo m′; the ideal generated by m
has odd factors or the algebraic equation δδ = m2 has no solution or has trivial solutions. In
summary, suppose that D̂ is the difference set image of order n = m2 in the cyclic factor group
G/N, where G/N is a group with exponentm′. Suppose thatm factors trivially in Z[ζm′] and
χ is a nontrivial representation of G/N. Then χ(D̂) = ±mζim′ , ζm′ is them′th root of unity [13].
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2.3. Characteristics of Difference Set Images in Subgroup of a Group

In this subsection, we use the attributes of subgroups of a group to obtain information about
the difference set image in the subgroups. Dillon [5] proved the following results which will
be used to obtain difference set images in dihedral group of a certain order if the difference
images in the cyclic group of same order are known.

Theorem 2.4 (dillon dihedral trick). LetH be an abelian group and letG be the generalized dihedral
extension ofH. That is, G = 〈q,H : q2 = 1, qhq = h−1, ∀h ∈ H〉. If G contains a difference set, then
so does every abelian group which containsH as a subgroup of index 2.

Corollary 2.5. If the cyclic group Z2m does not contain a (nontrivial) difference set, then neither does
the dihedral group of order 2m.

Remark 2.6. We look at subgroup properties of a group that can aid the construction of
difference set image. For the convenience of the reader, we reproduce the idea of Gjoneski
et al. [26]. Suppose that H is a group of order 2h with a central involution z. We take
T = {ti : i = 1, . . . , h} to be the transversal of 〈z〉 in H so that every element in H is viewed
as tizj , 0 ≤ i ≤ h, j = 0, 1. Denote the set of all integral combinations,

∑h
i=1 aiti of elements of

T , ai ∈ Z by Z[T]. Using the two representations of subgroup 〈z〉 and Frobenius reciprocity
theorem [27], we may write any element X of the group ring Z[H] in the form

X = X
(
1 + z
2

)

+X
(
1 − z
2

)

. (2.5)

Furthermore, letA be the group ring element created by replacing every occurrence of z in X
by 1. Also, let B be the group ring element created by replacing every occurrence of z in H
by −1. Then

X = A
(〈z〉

2

)

+ B
(
2 − 〈z〉

2

)

, (2.6)

where A =
∑h

i=1 aiti and B =
∑h

j=1 bjtj , ai, bj ∈ Z. As X ∈ Z[H], A and B are both in Z[T], and
A ≡ B mod 2. We may equate A with the homomorphic image of X in G/〈z〉. Consequently,
if X is a difference set, then the coefficients of ti in the expression for A will be intersection
number of X in the coset 〈z〉 [26]. In particular, it can be shown that if K is a subgroup of a
groupH such that

H ∼= K × 〈z〉, (2.7)

then the difference set image inH is

D̂ = A
(〈z〉

2

)

+ gB
(
2 − 〈z〉

2

)

, (2.8)

where g ∈ H,A is a difference set inK, α = (k +m)/|K| or α = (k −m)/|K|, B = A−αK and k
is the size of the difference set. Equation (2.8) is true as long as |K| | (k +m) or |K| | (k −m).



6 ISRN Algebra

Table 1: Parameter sets that do not exist by Criterion 1. C|G/N| = 〈x〉 and parameters with asterisk indicate
new results.

(v, k, λ) m p |G/N| Factoring of p in
Z[ζ|G/N|]

No. of
groups of
order v

Solutions in
G/N

1 (115, 19, 3) 4 2 23 Remark 2.3 1 −4 + 〈x〉
2 (1333, 37, 1) 6 2, 3 43 a ≡ −1(mod43)

a = 27, 321 1 −6 + 〈x〉

3 (221, 45, 9) 6 2, 3 17 a ≡ −1 (mod 17)
a = 24, 38 1 −6 + 3〈x〉

4 (145, 64, 28) 6 2, 3 29 a14 ≡ −1 (mod 29),
a = 2, 3 1 6 + 2〈x〉

5 (1463, 86, 5) 9 3 19 39 ≡ −1 (mod 19) 1 −9 + 5〈x〉
6 (583, 97, 16) 9 3 53 326 ≡ −1 (mod 53) 1 −9 + 2〈x〉
7 (345, 129, 48) 9 3 23 Remark 2.3 1 −9 + 6〈x〉
8 (3503, 103, 3) 10 2, 5 113 a ≡ −1 (mod 113)

a = 214, 556 1 −10 + 〈x〉
9 (2185, 105, 5) 10 2, 5 23 Remark 2.3 1 −10 + 5〈x〉
10 (1309, 109, 9) 10 2, 5 17 a ≡ −1 (mod 17)

a = 24, 58 1 −10 + 7〈x〉

11 (1037, 112, 12) 10 2, 5 61 a ≡ −1 (mod 61)
a = 230, 515 1 −10 + 2〈x〉

12∗ (621, 125, 25) 10 2, 5 69

511 ≡ −1 (mod b)
b = 23, 69

2 factors trivially in
Z[ζa], a = 23, 69

5 10 + 5〈x〉 in C23;
None in C69

13 (469, 144, 44) 10 2, 5 67 a ≡ −1 (mod 67)
a = 233, 511 1 10 + 2〈x〉

14 (407, 175, 75) 10 2, 5 37 a18 ≡ −1 (mod 37)
a = 2, 5 1 −10 + 5〈x〉

15 (3151, 126, 5) 11 11 137 1134 ≡ −1 (mod 137) 1 −11 + 〈x〉
16∗ (483, 241, 120) 11 11 23 1111 ≡ −1 (mod b)

b = 23, 69 2 11 + 10〈x〉 in
C23; None in C69

17 (561, 176, 55) 11 11 187
118 ≡ −1(mod17)

11 factors trivially in
Z[ζa], a = 17, 187

1 −11 + 11〈x〉 in
C17; None in C187

18 (20881, 145, 1) 12 2, 3 157 a ≡ −1 (mod 157)
a = 226, 339 1 −12 + 〈x〉

19 (1591, 160, 16) 12 2, 3 43 a ≡ −1 (mod 43)
a = 27, 321 1 −12 + 4〈x〉

20 (9805, 172, 3) 13 13 37 1318 ≡ −1 (mod 37) 1 −13 + 5〈x〉
21∗ (3895, 177, 8) 13 13 19 139 ≡ −1 (mod 19) 2 −13 + 10〈x〉
22∗ (1711, 190, 21) 13 13 29 137 ≡ −1 (mod 29) 2 −13 + 7〈x〉
23 (2323, 216, 20) 14 14 23 1411 ≡ −1 (mod 23) 1 −14 + 10〈x〉
24∗ (9951, 200, 4) 14 2, 7 107 a53 ≡ −1 (mod 107)

a = 2, 7 2 −14 + 2〈x〉

25 (8041, 201, 5) 14 2, 7 43 a ≡ −1 (mod 43)
a = 27, 73 1 −14 + 5〈x〉

26 (793, 352, 156) 14 2, 7 61 a30 ≡ −1 (mod 61)
a = 2, 7 1 −14 + 6〈x〉

27 (50851, 226, 1) 15 3, 5 241 a ≡ −1 (mod 241)
a = 360, 520 1 −15 + 〈x〉
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Table 1: Continued.

(v, k, λ) m p |G/N| Factoring of p in
Z[ζ|G/N|]

No. of
groups of
order v

Solutions in
G/N

28∗ (2871, 246, 21) 15 3, 5 29 a ≡ −1 (mod 29)
a = 314, 57 2 −15 + 9〈x〉

29 (2491, 250, 25) 15 3, 5 53 a26 ≡ −1 (mod 53)
a = 3, 5 1 −15 + 5〈x〉

30∗ (13573, 261, 5) 16 2 277 246 ≡ −1 (mod 277) 2 −16 + 〈x〉
31 (4879, 271, 15) 16 2 41 210 ≡ −1 (mod 41) 1 −16 + 7〈x〉
32∗ (26815, 328, 4) 18 2, 3 173 a86 ≡ −1 (mod 173)

a = 2, 3 2 −18 + 2〈x〉

33∗ (4551, 351, 27) 18 2, 3 41 a ≡ −1 (mod 41)
a = 210, 34 2 −18 + 9〈x〉

34∗ (16975, 369, 8) 19 19 97 1916 ≡ −1 (mod 97) 2 −19 + 4〈x〉
35∗ (15171, 370, 9) 19 19 389 1997 ≡ −1 (mod 389) 2 −19 + 〈x〉
36 (2599, 433, 72) 19 19 113 1956 ≡ −1 (mod 113) 1 −19 + 4〈x〉
37 (11455, 415, 15) 20 2, 5 29 a ≡ −1 (mod 29)

a = 214, 57 1 −20 + 15〈x〉

38 (3657, 457, 57) 20 2, 5 53 a26 ≡ −1 (mod 53)
a = 2, 5 1 −20 + 9〈x〉

39 (194923, 442, 1) 21 3, 7 463 a ≡ −1 (mod 463)
a = 3231, 777 1 −21 + 〈x〉

40 (28609, 448, 7) 21 3, 7 67 a ≡ −1 (mod 67)
a = 311, 733 1 −21 + 7〈x〉

41∗ (18533, 452, 11) 21 3, 7 43 a ≡ −1 (mod 43)
a = 321, 73 2 −21 + 11〈x〉

42∗ (13833, 456, 15) 21 3, 7 53 a ≡ −1 (mod 53)
a = 326, 713 2 −21 + 9〈x〉

43 (4891, 490, 49) 21 3, 7 73 a ≡ −1 (mod 73)
a = 36, 712 1 −21 + 7〈x〉

44 (3649, 513, 72) 21 3, 7 89 a44 ≡ −1 (mod 89)
a = 3, 7 1 −21 + 6〈x〉

45 (2941, 540, 99) 21 3, 7 173 a86 ≡ −1 (mod 173)
a = 3, 7 1 21 + 3〈x〉

46 (1919, 686, 245) 21 3, 7 101 a50 ≡ −1 (mod 101)
a = 3, 7 1 −21 + 7〈x〉

47 (1769, 833, 392) 21 3, 7 61 a ≡ −1 (mod 61)
a = 35, 730 1 −21 + 14〈x〉

48∗ (78895, 487, 3) 22 2, 11 509 a ≡ −1 (mod 509)
a = 2254, 11127 2 −22 + 〈x〉

49 (20461, 496, 12) 22 2, 11 37 a ≡ −1 (mod 37)
a = 218, 113 1 −22 + 14〈x〉

50 (4081, 561, 77) 22 2, 11 53 a ≡ −1 (mod 53)
a = 226, 1113 1 −22 + 11〈x〉

51 (3835, 568, 84) 22 2, 11 59 a29 ≡ −1 (mod 59)
a = 2, 11 1 −22 + 10〈x〉

52 (3601, 576, 92) 22 2, 11 277 a ≡ −1 (mod 277)
a = 246, 11138 1 22 + 2〈x〉

53 (94165, 532, 3) 23 23 37 236 ≡ −1 (mod 37) 1 −23 + 15〈x〉
54∗ (18531, 545, 16) 23 23 71 237 ≡ −1 (mod 71) 2 −23 + 8〈x〉



8 ISRN Algebra

Table 1: Continued.

(v, k, λ) m p |G/N| Factoring of p in
Z[ζ|G/N|]

No. of
groups of
order v

Solutions in
G/N

55 (8557, 621, 45) 24 2, 3 43 a ≡ −1 (mod 43)
a = 27, 321 1 −24 + 15〈x〉

56 (2959, 783, 207) 24 2, 3 269 a134 ≡ −1 (mod 269)
a = 2, 3 1 −24 + 3〈x〉

57∗ (131253, 628, 3) 25 5 653 5326 ≡ −1 (mod 653) 2 −25 + 〈x〉
58 (11289, 664, 39) 25 5 53 526 ≡ −1 (mod 53) 1 −25 + 13〈x〉
59 (6205, 705, 80) 25 5 73 536 ≡ −1 (mod 73) 1 −25 + 10〈x〉
60 (3115, 865, 240) 25 5 89 522 ≡ −1 (mod 89) 1 −25 + 10〈x〉

2.4. Amalgamation of Results

In this paper, we study (v, k, λ) difference sets in which n = k−λ = m2 and the ideal generated
bym factors trivially in the cyclotomic ring Z[ζm′]. That is, if n = m2, then (n) = (m)(m) up to
units in Z[ζm′]. This method is very useful in the investigation of difference sets in solvable
groups. A group G is solvable if the sequence G ⊇ G′ ⊇ G′′ · · · ⊇ · · · ⊇ G(i) · · · terminates
in the identity, G(e) = 1, in a finite number of steps, each G(i) is the derived group of the
preceding one [28]. Consequently, each i, the factor group G(i)/G(i+1) is Abelian. We now
state the extended Sylow theorem in solvable groups ([28], page 141).

Theorem 2.7. Let G be a solvable group of ordermn, in which gcd(m,n) = 1. Then

(1) G possesses at least one subgroup of orderm;

(2) any two subgroups of orderm are conjugates;

(3) any subgroup whose orderm′ dividesm is contained in a subgroup of orderm;

(4) the number nm of subgroups of order m may be expressed as a product of factors, each of
which (a) is congruent to 1 modulo some prime factor of m, and (b) is a power of a prime
and divides one of the chief factors of G.

The next three criteria enable us to rule out the existence of difference sets.

Criterion 1. Suppose that G is a group of order v = p′s, where p′ is prime, s and t are integers.
Then G does not admit (v, k, λ) if there exists a normal subgroupN of G such that

(1) k − λ = m2,m is a natural number,

(2) |G/N| = p′,

(3) m factors trivially in the cyclotomic ring Z[ζp′], where ζp′ is the p′th root of unity,

(4) the difference set solution in G/N is one of the forms α(G/N) +m, α +m > |N| or
α(G/N) −m, α < m.
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Table 2: Partial results in groups of order v by Criterion 1. C|G/N| = 〈x〉 and parameters with asterisk
indicate new results. ? means the number of groups of order v is unknown.

(v, k, λ) m p |G/N| Factoring of p in
Z[ζ|G/N|]

No. of
groups of
order v

No. of
groups
ruled out

Solutions in
G/N

1 (171, 51, 15) 6 2,3 19 a9 ≡ −1 (mod 19)
a = 2, 3 5 2 −6 + 3〈x〉

2 (155, 56, 20) 6 2,3 31 315 ≡ −1 (mod 31) 2
factors trivially [20] 2 1 −6 + 2〈x〉

3 (231, 70, 21) 7 7 77
75 ≡ −1 (mod 11) 7
factors trivially in
Z[ζb], b = 11, 77

2 1 −7 + 7〈x〉 in C7;
None in C77

4∗ (2325, 84, 3) 9 3 31 315 ≡ −1 (mod 31) 10 3 −9 + 3〈x〉,
5∗ (10101, 101, 1) 10 2,5 37 a18 ≡ −1 (mod 37)

a = 2, 3 14 5 −10 + 3〈x〉

6 (715, 154, 33) 11 11 143
116 ≡ −1 (mod 13)

11 factors trivially in
Z[ζb], b = 13, 143

2 1 11+ 11〈x〉 in C13;
None in C143

7∗ (7155, 147, 3) 12 2,3 53 a26 ≡ −1 (mod 53)
a = 2, 3 ? ? −12 + 3〈x〉

8∗ (38613, 197, 1) 14 2,7 211 a105 ≡ −1 (mod 211)
a = 2, 7 5 2 −14 + 〈x〉

9∗ (5859, 203, 7) 14 2,7 31
715 ≡ −1 (mod 31)
2 factors trivially

[20]
? ? −14 + 7〈x〉

10∗ (903, 287, 91) 14 2,7 43 a ≡ −1 (mod 43)
a = 27, 73 7 2 −14 + 7〈x〉

11∗ (2255, 392, 68) 18 2,3 41 a ≡ −1 (mod 41)
a = 210, 34 7 2 −18 + 10〈x〉

12∗(160401, 401, 1) 20 2,5 421 a ≡ −1 (mod 421)
a = 2210, 5105 5 2 −20 + 〈x〉

13∗ (23607, 407, 7) 20 2,5 61 a ≡ −1 (mod 61)
a = 230, 515 11 5 −20 + 7〈x〉

14∗ (22451, 450, 9) 21 3,7 157 a ≡ −1 (mod 157)
a = 339, 726 2 1 −21 + 3〈x〉

15∗(2619, 561, 120) 21 3,7 97 a ≡ −1 (mod 97)
a = 324, 748 13 5 −21 + 6〈x〉

16 (2211, 715, 231) 22 2,11 67 a33 ≡ −1 (mod 67)
a = 2, 11 4 1 −22 + 11〈x〉

17 (7450, 573, 44) 23 23 149 2374 ≡ −1 (mod 149) 10 5 −23 + 4〈x〉
18 (111555, 579, 3) 24 2,3 67 a ≡ −1 (mod 67)

a = 233, 311 ? ? −24 + 9〈x〉

19 (37961, 585, 9) 24 2,3 29 a14 ≡ −1 (mod 29)
a = 2, 3 2 1 −24 + 21〈x〉

20 (23247, 591, 15) 24 2,3 41 a ≡ −1 (mod 41)
a = 210, 34 ? ? −24 + 15〈x〉

21 (25641, 641, 16) 25 5 37 518 ≡ −1 (mod 37) 14 4 −25 + 18〈x〉
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Table 3: Parameter sets that do not exist by Criterion 2. C|H| = 〈x, y : xq = y2 = [x, y]〉 and parameters with
asterisk indicate new results. No diff. set image inH implies no difference set image in Dihedral group of
same order.

(v, k, λ) m p |H| Factoring of p in
Z[ζ|H/〈g〉|]

No. of
groups of
order v

Solutions inH

1 (56, 11, 2) 3 3 14 33 ≡ −1 (mod 7) 13 −3 + 2〈x〉 in
H/〈g〉

2 (154, 18, 2) 4 2 22 25 ≡ −1 (mod 11) 4 −4 + 2〈x〉 in
H/〈g〉

3 (66, 26, 10) 4 2 22 25 ≡ −1 (mod 11) 2
4 + 〈x〉〈y〉;

〈x〉〈y〉 + 2(1 +
x + y − xy)

4 (112, 37, 2) 5 5 14 53 ≡ −1 (mod 7) 43 −5 + 3〈x〉〈y〉
5∗ (690, 53, 4) 7 7 10 72 ≡ −1 (mod 5) 8 −7 + 6〈x〉〈y〉
6 (496, 55, 6) 7 7 62 7 factors trivially

see [21] 42 −7 + 2〈x〉 in
H/〈g〉

7∗ (306, 61, 12) 7 7 34 78 ≡ −1 (mod 17) 10 −7 + 4〈x〉 in
H/〈g〉

8∗ (2146, 66, 2) 8 2 74 218 ≡ −1 (mod 37) 4 −8 + 2〈x〉 in
H/〈g〉

9∗ (806, 70, 6) 8 2 26 26 ≡ −1 (mod 13) 4 −8 + 6〈x〉 in
H/〈g〉

10∗ (430, 78, 14) 8 2 86 27 ≡ −1 (mod 43) 4 −8 + 2〈x〉 in
H/〈g〉

11∗ (370, 82, 18) 8 2 74 218 ≡ −1 (mod 37) 4
8 + 〈x〉〈y〉;

〈x〉〈y〉 + 4(1 +
x + y − xy)

12∗ (266, 106, 42) 8 2 38 29 ≡ −1 (mod 19) 4 −8 + 6〈x〉 in
H/〈g〉

13∗ (3404, 83, 2) 9 3 46 Remark 2.3 11 −9 + 4〈x〉 in
H/〈g〉

14∗ (714, 93, 12) 9 3 34 38 ≡ −1 (mod 17) 12 −9 + 6〈x〉 in
H/〈g〉

15∗ (2668, 127, 6) 11 11 46 Remark 2.3 11 −11 + 6〈x〉 in
H/〈g〉

16∗ (1704, 131, 10) 11 11 142 1135 ≡ −1 (mod 71) 39 −11 + 2〈x〉 in
H/〈g〉

17∗ (1450, 162, 18) 12 2,3 58 a14 ≡ −1 (mod 29)
a = 2, 3 10 −12 + 6〈x〉 in

H/〈g〉
18∗ (760, 253, 84) 13 13 38 139 ≡ −1 (mod 19) 39 −13 + 7〈x〉〈y〉
19∗ (13054, 229, 4) 15 3,5 122 a5 ≡ −1 (mod 61)

a = 3, 5 4 −15 + 4〈x〉 in
H/〈g〉

20∗ (4064, 239, 14) 15 3, 5 254 a ≡ −1 (mod 127)
a = 363, 521 195 −15 + 2〈x〉 in

H/〈g〉
21∗ (3268, 243, 18) 15 3,5 86 a21 ≡ −1 (mod 43)

a = 3, 5 9 −15 + 6〈x〉 in
H/〈g〉

22∗ (2278, 253, 28) 15 3,5 134 a11 ≡ −1 (mod 67)
a = 3, 5 4 −15 + 4〈x〉 in

H/〈g〉
23∗ (1886, 261, 36) 15 3,5 46 Remark 2.3 4 −15 + 12〈x〉 in

H/〈g〉
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Table 3: Continued.

(v, k, λ) m p |H| Factoring of p in
Z[ζ|H/〈g〉|]

No. of
groups of
order v

Solutions inH

24∗ (1406, 281, 56) 15 3,5 74 a ≡ −1 (mod 37)
a = 39, 518 4 −15 + 8〈x〉 in

H/〈g〉
25∗ (1054, 325, 100) 15 3,5 34 a8 ≡ −1 (mod 17)

a = 3, 5 4 −15 + 10〈x〉〈y〉

26∗ (918, 393, 168) 15 3,5 34 a8 ≡ −1 (mod 17)
a = 3, 5 30 −15 + 12〈x〉〈y〉

27∗ (902, 425, 200) 15 3,5 82 a ≡ −1 (mod 41)
a = 34, 510 4 15 + 5〈x〉〈y〉

28∗ (33154, 258, 2) 16 2 274 234 ≡ −1 (mod 137) 10 −16 + 2〈x〉 in
H/〈g〉

29∗ (11398, 262, 6) 16 2 278 269 ≡ −1 (mod 139) 4 −16 + 2〈x〉 in
H/〈g〉

30∗ (2466, 290, 34) 16 2 274 234 ≡ −1 (mod 137) 10
16 + 〈x〉〈y〉;
〈x〉〈y〉 + 8(1 +
x + y − xy)

31∗ (1660, 316, 60) 16 2 166 241 ≡ −1 (mod 83) 11 −16 + 4〈x〉 in
H/〈g〉

32∗ (1066, 426, 170) 16 2 82 210 ≡ −1 (mod 41) 4
16 + 5〈x〉〈y〉;
5〈x〉〈y〉 + 8(1 +
x + y − xy)

33∗ (7526, 301, 12) 17 17 106 1713 ≡ −1 (mod 53) 4 −17 + 6〈x〉 in
H/〈g〉

34∗ (5796, 305, 16) 17 17 46 1711 ≡ −1 (mod 23) 111 −17 + 14〈x〉 in
H/〈g〉

35∗ (20758, 408, 8) 20 2,5 214 a53 ≡ −1 (mod 107)
a = 2, 5 4 −20 + 4〈x〉 in

H/〈g〉
36∗ (7474, 424, 24) 20 2,5 74 a18 ≡ −1 (mod 37)

a = 2, 5 4 −20 + 12〈x〉 in
H/〈g〉

37∗ (5038, 438, 38) 20 2,5 458 a ≡ −1 (mod 229)
a = 238, 557 4 −20 + 2〈x〉 in

H/〈g〉

38∗ (2014, 550, 150) 20 2,5 106 a26 ≡ −1 (mod 53)
a = 2, 5 4

20 + 5〈x〉〈y〉;
5〈x〉〈y〉 +

10(1+x+y−xy)
39∗ (1918, 568, 168) 20 2,5 274 a ≡ −1 (mod 137)

a = 234, 568 4 20 + 4〈x〉 in
H/〈g〉

40∗ (24346, 541, 12) 23 23 94 2323 ≡ −1 (mod 47) 8 −23 + 12〈x〉 in
H/〈g〉

41∗ (34282, 586, 10) 24 2, 3 122 a ≡ −1 (mod 61)
a = 230, 35 4 −24 + 10〈x〉 in

H/〈g〉
42∗ (20770, 645, 20) 25 5 134 511 ≡ −1 (mod 67) 12 −25 + 10〈x〉 in

H/〈g〉

Proof. The nonexistence of viable difference set image in G/N implies that G does not admit
(v, k, λ) difference set.

In this criterion, we may replace |G/N| = p′ with |G/N| = p′q if q > 2 is prime power,
q | s, gcd(p′, q) = 1, and the ideal generated by p factors trivially in Z[ζp′q], where p is a prime
divisor ofm (see Remark 2.3).
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Table 4: Partial results in groups of order v by Criterion 2. C|H| = 〈x, y : xq = y2 = [x, y]〉 and parameters
with asterisk indicate new results. No difference set image in H implies no diff. set image in Dihedral
group of same order. ? means the number of groups of order v is unknown.

(v, k, λ) m p |H| Factoring of p in
Z[ζ|H/〈g〉|]

No. of
groups of
order v

No. of
groups
ruled out

Solutions inH

1 (78, 22, 6) 4 2 26 26 ≡ −1 (mod 13) 6 4 −4 + 2〈x〉 in
H/〈g〉

2 (204, 29, 4) 5 5 34 58 ≡ −1 (mod 17) 12 10 −5 + 2〈x〉 in
H/〈g〉

3∗ (1140, 68, 4) 8 2 38 29 ≡ −1 (mod 19) 41 29 −8 + 4〈x〉 in
H/〈g〉

4∗ (396, 80, 16) 8 2 66 25 ≡ −1 (mod b)
b = 11, 33 30 15 None inH/〈g〉

5∗ (300, 92, 48) 8 2 50 210 ≡ −1 (mod 25) 49 9 −8 + 4〈x〉 in
H/〈g〉

6∗ (980, 89, 8) 9 3 14 33 ≡ −1 (mod 7) 34 31 −9 + 7〈x〉〈y〉
7∗ (456, 105, 24) 9 3 38 39 ≡ −1 (mod 19) 54 39 −9 + 6〈x〉 in

H/〈g〉
8∗ (1856, 106, 6) 10 2, 5 58 a ≡ −1 (mod 29)

a = 214, 57 1630 1387 −10 + 4〈x〉 in
H/〈g〉

9∗ (7504, 123, 2) 11 11 134 1133 ≡ −1 (mod 67) ? ? −11 + 2〈x〉 in
H/〈g〉

10∗ (3876, 125, 4) 11 11 34 118 ≡ −1 (mod 17) 40 34 −11 + 8〈x〉 in
H/〈g〉

11∗ (2870, 152, 8) 12 2, 3 82 a ≡ −1 (mod 41)
a = 210, 34 12 8 −12 + 4〈x〉 in

H/〈g〉
12∗ (666, 210, 66) 12 2, 3 74 a ≡ −1 (mod 37)

a = 218, 39 18 10 −12 + 6〈x〉 in
H/〈g〉

13∗ (610, 232, 88) 12 2, 3 122 a ≡ −1 (mod 61)
a = 230, 35 6 4 −12 + 4〈x〉 in

H/〈g〉
14∗ (14536, 171, 2) 13 13 46 Remark 2.3 ? ? −13 + 8〈x〉 in

H/〈g〉
15∗ (7440, 173, 4) 13 13 62 1315 ≡ −1 (mod 31) ? ? −13 + 6〈x〉 in

H/〈g〉
16∗ (5076, 175, 6) 13 13 94 1323 ≡ −1 (mod 47) ? ? −13 + 4〈x〉 in

H/〈g〉
17∗ (2716, 181, 12) 13 13 194 1348 ≡ −1 (mod 97) 11 9 −13 + 2〈x〉 in

H/〈g〉
18∗ (19504, 198, 2) 14 2, 7 106 a ≡ −1 (mod 53)

a = 226, 713 ? ? −14 + 4〈x〉 in
H/〈g〉

19∗ (1696, 226, 30) 14 2, 7 212
226 ≡ −1 (mod 53)
713 ≡ −1 (mod b)
b = 53, 106, 212

235 194 14 + 〈x〉〈y〉

20∗ (8856, 231, 6) 15 3, 5 82 a ≡ −1 (mod 41)
a = 34, 520 ? ? −15 + 6〈x〉 in

H/〈g〉
21∗ (1508, 275, 50) 15 3, 5 58 a ≡ −1 (mod 29)

a = 314, 57 15 11 −15 + 10〈x〉 in
H/〈g〉

22∗ (976, 351, 126) 15 3, 5 122 a ≡ −1 (mod 61)
a = 35, 515 51 14 −15 + 6〈x〉 in

H/〈g〉
23∗ (3256, 280, 24) 16 2 74 218 ≡ −1 (mod 37) ? ? −16 + 8〈x〉 in

H/〈g〉
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Table 4: Continued.

(v, k, λ) m p |H| Factoring of p in
Z[ζ|H/〈g〉|]

No. of
groups of
order v

No. of
groups
ruled out

Solutions inH

24∗ (1036, 460, 204) 16 2 74 218 ≡ −1 (mod 37) 11 9
16 + 6〈x〉〈y〉;
6〈x〉〈y〉 + 8(1 +
x + y − xy)

25∗ (21390, 293, 4) 17 17 62 1715 ≡ −1 (mod 31) 36 16 −17 + 10〈x〉 in
H/〈g〉

26∗ (52976, 326, 2) 18 2, 3 86
321 ≡ −1 (mod 43)
See Remark 2.2 for

〈2〉
? ? −18 + 8〈x〉 in

H/〈g〉

27∗ (18096, 330, 6) 18 2, 3 58 a14 ≡ −1 (mod 29)
a = 2, 3 ? ? −18 + 12〈x〉 in

H/〈g〉
28∗ (1776, 426, 102) 18 2, 3 74 a ≡ −1 (mod 37)

a = 218, 39 260 170 −18 + 12〈x〉 in
H/〈g〉

29∗ (65704, 363, 2) 19 19 382 1995 ≡ −1 (mod 191) ? ? −19 + 2〈x〉 in
H/〈g〉

30∗ (22388, 367, 6) 19 19 386 1996 ≡ −1 (mod 193) 15 11 −19 + 2〈x〉 in
H/〈g〉

31∗ (13728, 371, 10) 19 19 26 196 ≡ −1 (mod 13) ? ? −19 + 15〈x〉〈y〉
32∗ (7960, 379, 18) 19 19 398 199 ≡ −1 (mod 199) ? ? −19 + 2〈x〉 in

H/〈g〉
33∗ (5084, 391, 30) 19 19 82 1920 ≡ −1 (mod 41) 11 9 −19 + 10〈x〉 in

H/〈g〉
34∗ (2256, 451, 90) 19 19 94 1923 ≡ −1 (mod 47) ? ? −19 + 10〈x〉 in

H/〈g〉
35∗ (40704, 404, 4) 20 2, 5 106 a26 ≡ −1 (mod 53)

a = 2, 5 ? ? −20 + 8〈x〉 in
H/〈g〉

36∗ (16770, 410, 10) 20 2, 5 86 a ≡ −1 (mod 43)
a = 27, 521 48 24 −20 + 10〈x〉 in

H/〈g〉
37∗ (1830, 590, 190) 20 2, 5 122 a ≡ −1 (mod 61)

a = 230, 515 18 8 −20 +
10〈x〉in H/〈g〉

38∗ (49369, 445, 4) 21 3, 7 466 a ≡ −1 (mod 233)
a = 3116, 758 15 11 −21 + 2〈x〉 in

H/〈g〉
39∗ (17064, 453, 12) 21 3, 7 158 a39 ≡ −1 (mod 79)

a = 3, 7 ? ? −21 + 6〈x〉 in
H/〈g〉

40∗ (14756, 455, 14) 21 3, 7 34 a8 ≡ −1 (mod 17)
a = 3, 7 27 23 −21 + 14〈x〉〈y〉

41∗ (10604, 461, 20) 21 3, 7 482 a ≡ −1 (mod 241)
a = 360, 7120 11 9 −21 + 2〈x〉 in

H/〈g〉
42∗ (7380, 471, 30) 21 3, 7 82 a ≡ −1 (mod 41)

a = 34, 720 149 89 −21 + 12〈x〉 in
H/〈g〉

43∗ (5336, 485, 44) 21 3, 7 46 Remark 2.3 ? ? −21 + 11〈x〉〈y〉
44∗ (3128, 531, 90) 21 3, 7 46 Remark 2.3 ? ? −21 + 12〈x〉〈y〉
45∗ (2408, 581, 140) 21 3, 7 86 a ≡ −1 (mod 43)

a = 321, 73 ? ? −21 + 14〈x〉 in
H/〈g〉

46∗ (70890, 533, 4) 23 23 278 2323 ≡ −1 (mod 139) 24 16 −23 + 4〈x〉 in
H/〈g〉

47∗ (47616, 535, 8) 23 23 62 235 ≡ −1 (mod 31) ? ? −23 + 18〈x〉 in
H/〈g〉

48∗ (13776, 551, 22) 23 23 82 235 ≡ −1 (mod 41) ? ? −23 + 7〈x〉〈y〉
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Table 4: Continued.

(v, k, λ) m p |H| Factoring of p in
Z[ζ|H/〈g〉|]

No. of
groups of
order v

No. of
groups
ruled out

Solutions inH

49∗ (166754, 578, 2) 24 2, 3 86 a ≡ −1 (mod 43)
a = 27, 321 12 8 −24 + 14〈x〉 in

H/〈g〉
50∗ (56358, 582, 6) 24 2, 3 202 a50 ≡ −1 (mod 101)

a = 2, 3 ? ? −24 + 6〈x〉 in
H/〈g〉

51∗ (10388, 612, 36) 24 2, 3 106 a26 ≡ −1 (mod 53)
a = 2, 3 34 28 −24 + 12〈x〉 in

H/〈g〉
52∗ (4844, 668, 92) 24 2, 3 346 a86 ≡ −1 (mod 173)

a = 2, 3 11 9 −24 + 4〈x〉 in
H/〈g〉

53∗ (3690, 714, 138) 24 2, 3 82 a ≡ −1 (mod 41)
a = 210, 34 30 20 −24 + 18〈x〉 in

H/〈g〉

54∗ (3172, 756, 180) 24 2, 3 122 a ≡ −1 (mod 61)
a = 230, 35 15 11

24 + 6〈x〉〈y〉,
6〈x〉〈y〉 + 12(1 +
x + y − xy)

55∗ (2332, 1036, 460) 24 2, 3 106 a26 ≡ −1 (mod 53)
a = 2, 3 11 9 −24 + 20〈x〉 in

H/〈g〉
56∗ (196252, 627, 2) 25 5 326 527 ≡ −1 (mod 163) ? ? −25 + 4〈x〉 in

H/〈g〉
57∗ (66256, 631, 6) 25 5 82 510 ≡ −1 (mod 41) ? ? −25 + 16〈x〉 in

H/〈g〉
58∗ (50008, 633, 8) 25 5 94 523 ≡ −1 (mod 47) ? ? −25 + 14〈x〉 in

H/〈g〉
59∗ (17524, 649, 24) 25 5 674 556 ≡ −1 (mod 337) 15 11 −25 + 2〈x〉〈y〉
60∗ (14280, 655, 30) 25 5 34 58 ≡ −1 (mod 17) ? ? −25 + 20〈x〉〈y〉
61∗ (11040, 665, 40) 25 5 12 5 ≡ −1 (mod b)

b = 2, 3 ? ? −25 + 115〈x〉 in
H/〈g〉

62∗ (11040, 665, 40) 25 5 46 Remark 2.3 ? ? −25 + 15〈x〉〈y〉
63∗ (5104, 729, 104) 25 5 58 57 ≡ −1 (mod 29) ? ? −25 + 13〈x〉〈y〉
64∗ (2812, 937, 312) 25 5 74 518 ≡ −1 (mod 37) 11 9 −25 + 13〈x〉〈y〉

Criterion 2. Suppose that G is a group of even order v and H is a factor group of G with
|H| = 2q, where q is prime. Let g be an element of order 2 in H. Then G does not admit
(v, k, λ) if

(1) k − λ = m2,m is a natural number,

(2) m factors trivially in the cyclotomic rings Z[ζq], where ζq is qth root of unity,

(3) the difference set solution in H/〈g〉 is one of the forms α(H/〈g〉) + m, α + m >
|G/(H/〈g〉)| or α(H/〈g〉) −m, α < m; alternatively, the difference set image in H
is one of the forms α(H) +m, α +m > |G/H| or α(H) −m, α < m.

Proof. The proof follows from Criterion 1 and the fact that if |H| ≡ 2 (mod 4), the cyclotomic
rings Z[ζ2q] and Z[ζq] are the same.

Criterion 3. Suppose that G is a group of order v = 22 × q × s, where q ≥ 3 is prime and s is
an integer. Suppose that H is a factor group of G of order 2q. The group G does not admit
(v, k, λ) difference set if there exists a normal subgroupN such that G/N ∼= H × C2 and

(1) k − λ = m2, m is a natural number,

(2) every prime divisorm′ ofm factors trivially in the cyclotomic rings Z[ζq], where ζq
is qth root of unity, gcd(m′, q) = 1
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Table 5: Partial results in groups of order v by Criterion 3. Parameters with asterisk indicate new results.?
means the number of groups of order v is unknown.

(v, k, λ) m p
Factoring of p in

Z[ζq]

No. of
groups of
order v

No. of
groups
ruled out

Solutions inH

1 (40, 13, 4) 3 3 32 ≡ −1 (mod b)
b = 5, 10 14 10 3 +H, |H| = 10

2∗ (400, 57, 8) 7 7 72 ≡ −1 (mod b)
b = 5, 10 221 166 7 + 5H, |H| = 10

3∗ (280, 63, 14) 7 7 72 ≡ −1 (mod b)
b = 5, 10 40 30 −7 + 7H, |H| = 10

4∗ (220, 73, 24) 7 7 72 ≡ −1 (mod b)
b = 5, 10 15 7 −7 + 8H, |H| = 10

5∗ (820, 91, 10) 9 3 32 ≡ −1 (mod b)
b = 5, 10 20 7 −9 + 10H, |H| = 10

6∗ (540, 99, 18) 9 3 32 ≡ −1 (mod b)
b = 5, 10 119 56 9 + 9H, |H| = 10

7∗ (3876, 125, 4) 11 11 11 ≡ −1 (mod b)
b = 3, 6, 12 40 32 11 + 19H, |H| = 6

8∗ (1464, 133, 12) 11 11 112 ≡ −1 (mod 61) 61 30 11 +H, |H| = 122

9∗ (988, 141, 30) 11 11 116 ≡ −1 (mod b)
b = 13, 26 11 5 11 + 5H, |H| = 26

10∗ (756, 151, 30) 11 11 11 ≡ −1 (mod b)
b = 3, 6, 12 189 96 −11 + 27H, |H| = 6

11∗ (2380, 183, 14) 13 13 132 ≡ −1 (mod 17) 35 15 13 + 5H, |H| = 34

12∗ (1056, 211, 42) 13 13 135 ≡ −1 (mod 11) 1028 995 13 + 9H, |H| = 22

13∗ (1456, 195, 26) 13 13 13 ≡ −1 (mod 7) 179 171 13 + 13H, |H| = 14

14∗ (1380, 197, 28) 13 13 132 ≡ −1 (mod b)
b = 5, 10 29 15 −13 + 21H, |H| = 10

15∗ (1548, 273, 48) 15 3, 5 a21 ≡ −1 (mod 43)
a = 3, 5 46 6 15 + 3H, |H| = 86

16∗ (1160, 305, 80) 15 3, 5 a ≡ −1 (mod 29)
a = 314, 57 49 33 15 + 5H, |H| = 58

17∗ (1012, 337, 112) 15 3, 5 511 ≡ −1 (mod 23)
Remark 2.3 13 5 15 + 7H, |H| = 46

18∗ (1300, 433, 144) 17 17 172 ≡ −1 (mod b)
b = 5, 10 50 16 −17 + 45H, |H| = 10

19∗ (5220, 307, 18) 17 17 172 ≡ −1 (mod b)
b = 5, 10 113 50 17 + 29H, |H| = 10

20∗ (5220, 307, 18) 17 17 172 ≡ −1 (mod 29) 113 50 17 + 5H, |H| = 58

21∗ (5220, 307, 18) 17 17 17 ≡ −1 (mod b)
b = 3, 6 113 50 −17 + 27H, |H| = 12

22∗ (33216, 365, 4) 19 19 1986 ≡ −1 (mod 173) ? ? 19 +H, |H| = 346

23∗ (11564, 373, 12) 19 19 193 ≡ −1 (mod 7) 28 16 −19 + 28H, |H| = 14

24∗ (7240, 381, 20) 19 19 192 ≡ −1 (mod 181) ? ? 19 +H, |H| = 362

25∗ (4368, 397, 36) 19 19 193 ≡ −1 (mod 7) ? ? 19 + 27H, |H| = 14

26∗ (4180, 399, 38) 19 19 195 ≡ −1 (mod 11) 36 15 −19 + 19H, |H| = 22

27∗ (2508, 437, 76) 19 19 195 ≡ −1 (mod 11) 34 20 19 + 19H, |H| = 22

28∗ (1976, 475, 114) 19 19 196 ≡ −1 (mod 13) 39 30 −19 + 19H, |H| = 26

29∗ (1624, 541, 180) 19 19 1914 ≡ −1 (mod 29) 56 30 19 + 9H, |H| = 58
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Table 5: Continued.

(v, k, λ) m p
Factoring of p in

Z[ζq]

No. of
groups of
order v

No. of
groups
ruled out

Solutions inH

30∗ (1520, 589, 228) 19 19 193 ≡ −1 (mod b)
b = 5, 10 178 147 19 + 57H, |H| = 10

31∗ (97904, 443, 2) 21 3, 7 a105 ≡ −1 (mod 211)
a = 3, 7 ? ? 21 +H, |H| = 422

32∗ (11680, 459, 18) 21 3, 7 a ≡ −1 (mod 73)
a = 36, 712 ? ? 21 + 3H, |H| = 146

33∗ (9724, 463, 22) 21 3, 7 a8 ≡ −1 (mod 17)
a = 3, 7 35 15 21 + 13H, |H| = 34

34∗ (7840, 469, 28) 21 3, 7 a2 ≡ −1 (mod 5)
a = 3, 7 ? ? −21 + 49H, |H| = 10

35∗ (7380, 471, 30) 21 3, 7 a2 ≡ −1 (mod 5)
a = 3, 7 149 66 21 + 45H, |H| = 10

36∗ (3128, 531, 90) 21 3, 7 a8 ≡ −1 (mod 17)
a = 3, 7 ? ? 21 + 15H, |H| = 34

37∗ (2756, 551, 110) 21 3, 7 a ≡ −1 (mod 53)
a = 326, 713 20 5 21 + 5H, |H| = 106

38∗ (2296, 595, 154) 21 3, 7 a ≡ −1 (mod 41)
a = 34, 720 ? ? 21 + 7H, |H| = 82

39∗ (1904, 693, 252) 21 3, 7 a8 ≡ −1 (mod 17)
a = 3, 7 186 147 −21 + 21H, |H| = 34

40∗ (1836, 735, 294) 21 3, 7 a ≡ −1 (mod 17)
a = 32, 72 117 56 21 + 21H, |H| = 34

41∗ (1820, 749, 308) 21 3, 7 a ≡ −1 (mod 5)
a = 32, 72 35 15 −21 + 77H, |H| = 10

42∗ (1800, 771, 330) 21 3, 7 a ≡ −1 (mod 5)
a = 32, 72 749 412 21 + 75H, |H| = 10

43∗ (47616, 535, 6) 23 23 23 ≡ −1 (mod 3) ? ? −23 + 93H, |H| = 6

44∗ (35980, 537, 8) 23 23 2332 ≡ −1 (mod 257) 35 15 23 +H, |H| = 514

45∗ (12720, 553, 24) 23 23 232 ≡ −1 (mod 5) ? ? 23 + 53H, |H| = 10

46∗ (12720, 553, 24) 23 23 232 ≡ −1 (mod 53) ? ? 23 + 5H,
|H| = 106

47∗ (7176, 575, 46) 23 23 233 ≡ −1 (mod 13) ? ? −23 + 23H, |H| = 26

48∗ (4320, 617, 88) 23 23 23 ≡ −1 (mod 3) ? ? 23 + 99H, |H| = 6

49∗ (3220, 667, 138) 23 23 232 ≡ −1 (mod 5) 27 15 −23 + 69H, |H| = 10

50∗ (2760, 713, 184) 23 23 23 ≡ −1 (mod 3) ? ? 23 + 115H, |H| = 6

51∗ (2760, 713, 184) 23 23 232 ≡ −1 (mod 5) ? ? 23 + 69H, |H| = 10

52∗ (2380, 793, 264) 23 23 238 ≡ −1 (mod 17) 35 15 −23 + 24H, |H| = 34

53∗ (2380, 793, 264) 23 23 232 ≡ −1 (mod 5) 35 15 23 + 77H, |H| = 10

54∗ (196252, 627, 2) 25 5 53 ≡ −1 (mod 7) ? ? 25 + 43H, |H| = 14

55∗ (196252, 627, 2) 25 5 521 ≡ −1 (mod 43) ? ? 25 + 7H, |H| = 86

56∗ (40260, 635, 10) 25 5 515 ≡ −1 (mod 61) 370 66 25 + 5H, |H| = 122

57∗ (16276, 651, 26) 25 5 54 ≡ −1 (mod 313) 20 5 25 +H, |H| = 626

58∗ (14280, 655, 30) 25 5 53 ≡ −1 (mod 7) ? ? 25 + 45H, |H| = 14

59∗ (11040, 665, 40) 25 5 5 ≡ −1 (mod 3) ? ? −25 + 115H, |H| = 6

60∗ (9100, 675, 50) 25 5 52 ≡ −1 (mod 13) 118 50 25 + 25H, |H| = 26
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Table 5: Continued.

(v, k, λ) m p
Factoring of p in

Z[ζq]

No. of
groups of
order v

No. of
groups
ruled out

Solutions inH

61∗ (6328, 703, 78) 25 5 556 ≡ −1 (mod 113) ? ? 25 + 3H, |H| = 226
62∗ (4620, 745, 120) 25 5 53 ≡ −1 (mod 7) 140 66 −25 + 55H, |H| = 14
63∗ (4380, 755, 130) 25 5 536 ≡ −1 (mod 73) 53 15 25 + 5H, |H| = 146
64∗ (3400, 825, 200) 25 5 58 ≡ −1 (mod 17) ? ? −25 + 25H, |H| = 34
65∗ (3060, 875, 250) 25 5 58 ≡ −1 (mod 17) 113 50 25 + 25H, |H| = 34
66∗ (2640, 1015, 390) 25 5 5 ≡ −1 (mod 3) ? ? 25 + 165H, |H| = 6
67∗ (2520, 1145, 520) 25 5 5 ≡ −1 (mod 3) ? ? −25 + 195H, |H| = 6

(3) the difference set solution inH is of the form αH +m, and α is an odd integer or

(4) the difference set solution inH is of the form αH −m, α is an even integer, m is an
odd integer, andm > α/2.

Proof. There are two groups of order 2q, cyclic and dihedral groups. Since every prime divisor
m′ ofm factors trivially in the cyclotomic rings Z[ζq], gcd(m′, q) = 1, it follows thatm factors
trivially in Z[ζq]. Consequently, the (v, k, λ) difference set image inH is of the form αH +m
or αH −m. Suppose that the (v, k, λ) difference set image inH is of the form αH +m and α is
an odd integer. Using (2.8), the difference set image inH × C2 is

D̂ = A
(〈z〉

2

)

+ gB
(
2 − 〈z〉

2

)

, (2.9)

where g ∈ H×C2,A = αH+m is the difference set image inH, B = A−αH with α = (k+m)/2q
or (k −m)/2q and z is the generator of C2. Since α is odd, A(〈z〉/2) consists of at least 2q − 2
odd entries while B((2 − 〈z〉)/2) consists of at least 2q − 2 even entries. Thus, (2.8) has no
integer solutions. On the other hand, suppose that the (v, k, λ) difference set image inH is of
the form αH −m, α is an even integer, m is odd an odd integer, and m > α/2. The difference
set image is of the form (2.9) with A = αH −m. Since α is even and m is odd, A(〈z〉/2) and
B((2 − 〈z〉)/2) have two entries that are fractions. In particular, we can translate if necessary,
to ensure that the coefficients of the identity in both components are (α − m)/2 and −m/2,
respectively. The sum and difference of these two entries are, respectively, (α − 2m)/2 and
α/2. But m > α/2 and 2m > α. Hence, (α − 2m)/2 is a negative integer. Thus, there is no
difference set image inH × C2 and the criterion follows.

Notice that there are five factor groups of order 22 × q if q ≡ 1 (mod 4) and four factor
groups if q ≡ 3 (mod4). Criterion 3 rules out the existence of difference set images in Cq ×
C2 × C2 and D2q

∼= Dq × C2. In addition to conditions of Criterion 3, if m factors trivially also
in Z[ζ22×q], then three of the four or five factor groups (C2q, Cq × C2 × C2 and D2q) of order
22 × q do not admit difference sets.
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3. Some Difference Sets Parameters (Tables 1–5)

We list some parameter sets (both known and new) that do not exist. In each of these cases,
G is a group of order v and ϕ : G → H is a group homomorphism. Suppose that D is a
k-subset of G and n = k − λ = m2 such that m factors trivially in the cyclotomic ring Z[ζ|H|].
We use Criteria 1, 2 and 3 to rule out the existence of (v, k, λ) difference set. Examples of such
parameters are listed in Tables 1 and 3. We also listed partial results in Tables 2, 4, and 5.
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