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Recombination within a DNA segment during the neutral fixation process is studied to determine the number of individuals in
previous generations which carry genetic material ancestral to that region in the present generation. If Nr � 1, where N is the
population size and r is the probability of a recombination event within that region per individual in a generation, the ancestors
of all the base pairs in that segment were probably in the same individual in an arbitrary generation in the asymptotic past (prior
to the most recent common ancestor) and all the base pairs in that segment share a common coalescent. If Nr � 1, the ancestors
of the base pairs in a segment are probably spread among several individuals in asymptotic generations; hence, there is not an
ancestral individual, but an ancestral pool, and the coalescents of base pairs do not coincide. The overlap of the ancestral pools of
unlinked genetic segments is less than 2pq where p and q are the relative frequencies of the two ancestral pools, which provides
that the size of the ancestral pool for the human genome is close to the .80 upper bound which ensues from the Poisson progeny
distribution.

1. Introduction

Gene substitution is a foundation of evolution. Greater
understanding of this process has been provided by the
diffusion approximation of Kimura and Ohta [1] which
yielded an estimate of the time until fixation of a new
mutation and the coalescent process of Kingman [2, 3] which
provided an estimate of the time since a common ancestor
(which is essentially the same quantity). This is the basis
of the time since the mitochondrial Eve [4] and the Y-
chromosome Adam [5] which penetrated the popular press.

But these calculations for Eve and Adam are based on
the fact that there is no recombination in the mitochondrial
DNA or the Y-chromosome. Eve and Adam only contained
the genes ancestral to all present genes in the mitochondria
and Y-chromosome, and the present genetic material in
the 22 autosomes and the X-chromosome had its ancestral
material in many different contemporaries of Eve and
Adam. There is not one genetic ancestor of the human
population, but an ancestral pool, in each generation a set
of individuals which contain genetic material ancestral to
the present population. (The pool may contract to a single
individual in some generations which provides a grand-most

recent common ancestor [6] but will expand in previous
generations.)

This paper studies how many base pairs (nucleotide sites)
a genetic segment (a contiguous set of base pairs in DNA)
can contain and have no recombination in that segment as a
reasonable model for evolution; and how many individuals
in a generation will contain material ancestral to the present
population (base pairs identical by descent to base pairs
in the present population) if recombination splits the ge-
netic segment, hence the ancestral graph. The number of
individuals in a given generation which contain material
ancestral to the present population is the size of the ancestral
genetic pool. Of course, recombination can split the ancestry
of two adjacent base pairs, and there may be some genera-
tions where the genetic material ancestral to the present pop-
ulation is in a single individual no matter how long the
genetic segment, but estimates for the expected size of the
ancestral genetic pool are obtained. This paper helps de-
lineate when recombination is an important factor in evo-
lution.

There are two results which provide information on
the size of the ancestral genetic pool. Chang [7] showed
that asymptotically as time goes back, 80 percent of
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Table 1: Bounds on identity probabilities for a genetic segment.

rN 2N MRCA Asymptotic ancestor Asymptotic pool size

Lower Upper Lower Upper Lower Upper 1.28R/ ln(1+R)

.001 200 .98 1.000 .996 1.00 1.00 1.004 1.28

.01 2000 .77 .998 .96 .98 1.02 1.04 1.29

.1 2 × 104 .03 .977 .6 .83 1.19 1.4 1.40

1 2 × 105 <10−19 .795 .20 2.32 5 2.33

10 2 × 106 <10−234 .100 .00018 6.59 41 8.41

100 2 × 107 “0” 1.048 × 10−10 10−15 20.25 401 48.27

The diploid population size is N , and r is the probability of recombination within a segment. The value r = 10−5 is used for the columns which bound the
probability that the MRCA of a base pair is the MRCA of the entire segment. The bounds on the probability that an asymptotic ancestor of a base pair is an
asymptotic ancestor of the entire segment and the asymptotic expected size of the ancestral pool of a segment are functions of rN . The last column is the
estimate from Wiuf and Hein [8] which was obtained for a limited range of parameter values (R = 2rN).

the population are pedigree ancestors of the present pop-
ulation, the others have no living descendants. This does
not mean that entire 80 percent contains genetic material
ancestral to the present population, rather that is an upper
bound on the size of the ancestral pool for the entire genome.

Wiuf and Hein [8] obtained an estimate for the size of
the ancestral pool of chromosome 20 using the model of
Hudson and Kaplan [9] for incorporating recombination
into the coalescent process. Their estimate is 1.28R/ ln(1 +
R), where R is defined as the (effective) population size
(N) times the length of the genetic material in morgans
(r) (the number of morgans is the expected number of
recombination events in an individual in one generation).
This formula, which was obtained from curve fitting based
on numerical simulations, produces the estimate that the
ancestral pool for chromosome 20 is 13 percent of the diploid
population size (R = 20, 000). They employed the range of
values 1000 ≤ R ≤ 20, 000 for their numerical simulations,
which includes neither 1000 contiguous base pairs (unless
N > 108) nor the entire genome (unless N < 400). The
formula 1.28R/ ln(1 + R) is consistent with our results for
1000 contiguous base pairs but cannot be valid for the entire
genome if N < 1012 (because the size of the ancestral pool
would exceed the size of the population). Since their formula
is obtained from a diffusion approximation holding N × r
constant as N → ∞, it should not be expected to remain
valid for large r.

We first calculate asymptotic bounds for the expected size
of the ancestral pool, hence the probability that the ancestral
pool is a single individual. This addresses the question: does
a common ancestor exist (i.e, is there high probability that
the ancestral pool is a single individual for most generations
in the asymptotic past)? We use the word “common” in
the sense of shared by all the individuals in the present
generation (which is the standard usage), but also in the sense
of shared by all the nucleotide sites in a segment. The results
depend on the product of the (effective) population size
(N) and the length of the genetic segment (r) in morgans.
For concreteness, we identify the results with the product
rN and also various population sizes for a segment of 1000
contiguous base pairs (i.e., r = 10−5 morgans). This choice

is motivated as a contiguous DNA sequence coding for a 333
amino acid protein.

We next calculate bounds for the probability that the
most recent common ancestor (MRCA) of a nucleotide site
in a DNA segment is indeed the MRCA of the entire segment
(i.e., the MRCA of every base pair in the segment is in the
same individual). These bounds are not functions of rN , so
we employ the value r = 10−5 above and various values forN .
However, we have numerically confirmed that the results do
not change much as r and N vary with rN constant. Results
for the asymptotic pool size and for the MRCA are presented
in Table 1.

Sets of base pairs which are not contiguous (i.e., multiple
segments) are of interest but difficult to analyze because
recombination between the segments will depend on the
locations within the segments. But our last results provide
information on multiple genetic segments by bounding the
overlap of ancestral pools of unlinked genetic segments.
This provides a loose bound for the size of genetic pools of
multiple genetic segments. In particular, it is informative for
the size of the ancestral pool of the entire genome if the sizes
of the ancestral pools of chromosomes are known.

2. Results

2.1. The Model. The results are obtained using the coalescent
[6, 10]. The population size is N diploid individuals (i.e., 2N
haploid gametes); we are assuming this is also the effective
population size. However, the analysis is haploid; hence,
the word “individual” (when not preceded by “diploid”)
refers to a single copy of the genetic segment. The length
of a segment (r) is measured in morgans, 1 morgan is the
length over which the expected number of crossover events
in one individual (in one generation) is 1. When we study
the MRCA, we shall employ the length r = 10−5, which is
motivated by a segment of 1000 contiguous base pairs with
the crossover probability between two adjacent nucleotides
of 10−8. The value 1000 corresponds to DNA coding for 333
amino acids, and 10−8 was used by Wiuf and Hein [8] (the
recombination rate varies between species, and hotspots may
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impact the recombination rate by a factor of 10; Wiuf and
Hein [11] assumed the recombination rate 10−7). This model
is for a single contiguous segment.

By coalescent, we are always referring to the coalescent of
the entire population which is the ancestral graph containing
all of the ancestors of the individuals in the present genera-
tion. The coalescent process (merging of ancestral lineages)
is essentially the inverse of the fixation process. Time (t) is
measured in generations from the common ancestor hence
increases with real time. Recombination (crossing over)
within the segment is incorporated using the model of
Hudson and Kaplan [9] as employed by Wiuf and Hein [8].

In computing bounds, some approximations are
employed (such as rounding off to lowest-order terms or
employing estimates for the coalescent size). Hence, the
bounds could be interpreted as approximate bounds but,
when paired, give a good indication of the measures of
identity for various parameter values.

2.2. Asymptotic Ancestral Pools. The coalescent may not
exist for a segment, different base pairs may have different
ancestral pedigrees; but it does exist for every base pair.
Before (i.e., after in negative time) the MRCA of a base pair,
there is an ancestral lineage which extends back to the dawn
of time. Such a lineage exists for each base pair. The ancestral
pool of a segment is the union of the individuals (gametes)
which contain the ancestral lineages of the base pairs in that
segment in a given generation. By asymptotic, we mean the
behavior of those pools as time goes backward to negative
infinity. Two questions which are of interest are what is the
probability that all the lineages coincide in a single gamete
(i.e., a common ancestor exists) in a given generation, and
what is the average size of the ancestral pool (averaged as
time goes back to negative infinity)? It is possible to bound
these two quantities.

A sequence [8] is defined as a segment which contains
one or more ancestral base pairs, perhaps contiguous,
perhaps with intervening nonancestral base pairs. For a given
segment (region of DNA), denote the number of sequences
in a generation in the past as k. At equilibrium, the number
of coalescent events decreasing the number of sequences is
equal to the number of crossing over events increasing the
number of sequences. Unfortunately, we cannot characterize
the latter exactly but have two inequalities:

r ≤ E
[
k(k − 1)

(4N)

]
≤ E[k × r]. (1)

The outer quantities are bounds on the number of
crossing over events, and the middle quantity is the frequency
of coalescent events. Equality on the left assumes all the
ancestral base pairs in a sequence are contiguous so that only
crossovers between adjacent ancestral base pair can increase
the number of sequences. Equality on the right assumes
that ancestral material is dispersed everywhere (within the
segment region) in sequences carrying ancestral material
so that crossovers anywhere within the segment region will
generate an additional sequence. (Simulations by Wiuf and
Hein [8] suggest that the former is closer to reality.)

From convexity and the right hand inequality,

(E[k])2 − E[k] ≤ E
[
k2]− E[k] ≤ 4NE[k]× r. (2)

Solving this quadratic inequality for E[k] yields E[k] ≤ 1 +
4N × r.

This provides E[k] ≤ 1.004 for Nr = .001, 1.04 for Nr =
.01, 1.4 for Nr = .1, 5 for Nr = 1, 41 for Nr = 10, and 401
for Nr = 100 (the number of base pairs is always an upper
bound, since each sequence contains at least one ancestral
base pair). Because k ≥ 1 (there is at least one ancestor), we
can calculate P(k = 1) > .996 for Nr = .001, .96 for Nr =
.01, and .6 for Nr = .1 (these bounds are based on the worst
case scenario k = 2 if k /= 1). These values are in Table 1.

An upper bound for the probability of there being a single
sequence (a true coalescent common ancestor) and a lower
bound for the expected number of sequences is obtained by
using the lower bound for the frequency of crossover events
generating new sequences r with the coalescent probability
k(k − 1)/4N (i.e., the left hand inequality in (1)). Recall
that increased frequency of crossing over increases the
number of sequences and coalescence decreases the number
of sequences (going backward in time). Hence, a model
employing a smaller frequency of crossovers will generate
fewer sequences than the actual crossover frequency would
generate. This will provide a higher probability that there will
be a single sequence in the asymptotic past and a smaller
asymptotic expected number of sequences than the actual
crossover rate would provide.

To calculate the bounds, the transitions r and k(k −
1)/4N can be put into an infinite stochastic matrix governing
the distribution of the number of sequences with r on
the subdiagonal increasing the number of sequences by
recombination, k(k−1)/4N on the superdiagonal decreasing
the number of sequences due to coalescence, and 1−r−k(k−
1)/4N on the diagonal manifesting no change in the number
of sequences. (The coalescent probability k(k − 1)/4N is an
approximation which is only valid for small k, but this does
not affect our calculations which only employ small k.) The
ith entry in the stochastic vector the matrix acts on is the
probability that the ancestral pool contains i sequences. The
upper left hand corner of this matrix is displayed below:

1− r
2

4N
0 0 0 · · ·

r 1−r− 2
4N

6
4N

0 0 · · ·

0 r 1−r− 6
4N

12
4N

0 · · ·

0 0 r 1−r− 12
4N

20
4N

· · ·

0 0 0 r 1−r− 20
4N

· · ·
...

...
...

...
...

. . .

.

(3)

Because (3) is a nondegenerate stochastic matrix, there is
a unique stochastic eigenvector which is the equilibrium
(asymptotic) distribution for the stochastic process governed
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by (3), and repeated multiplication of any stochastic vec-
tor by (3) will converge to that equilibrium distribution.
The first component of this eigenvector is the asymptotic
probability that there is a single sequence, and the expected
number of sequences is

∑∞
i=1 i × ei where ei is the ith

component of the eigenvector.
This eigenvector can be calculated iteratively using 1 as

the first component, 2N × r for the second component,
and ((i − 1)(i − 2)ei−1 + (4N × r)(ei−1 − ei−2))/(i(i − 1))
for the ith component where ei is the ith component, and
then normalizing to a stochastic vector. Computations were
performed truncating both at 10,000 components and at
50 components to make sure that error was not introduced
by k being too large (the results were the same for both
truncations) and normalizing. (Truncating is consistent with
the direction of the bound.)

To show that the result is really a function of the product
r × N , note that the eigenvectors of a matrix are unchanged
when the matrix is multiplied by a nonzero constant or
has a multiple of the identity matrix added to it (excluding
degenerate cases). Hence, the eigenvectors for (3) are the
same as the eigenvectors for

−Nr
2
4

0 0 0 · · ·

Nr −Nr − 2
4

6
4

0 0 · · ·

0 Nr −Nr − 6
4

12
4

0 · · ·

0 0 Nr −Nr − 12
4

20
4

· · ·

0 0 0 Nr −Nr − 20
4

· · ·
...

...
...

...
...

. . .

,

(4)

which is obtained by multiplying (3) by N , and then
subtracting NI from it (I is the identity matrix). Since the
matrix (4) is a function of rN , so are its eigenvectors, hence
the bound for the asymptotic ancestral pool sizes associated
with (3).

The result from calculating the eigenvectors is that for
rN = .001, the probability of a single ancestral sequence
was less than 1.00, the expected number of sequences was
greater than 1.00; for rN = .01, the probability of a single
ancestral sequence was less than .98, the expected number of
sequences was greater than 1.02; for rN = .1, the probability
of a single ancestral sequence was less than .83, the expected
number of sequences was greater than 1.19; for rN = 1,
the probability of a single ancestral sequence was less than
.20, the expected number of sequences was greater than 2.32;
for rN = 10, the probability of a single ancestral sequence
was less than .00019, the expected number of sequences
was greater than 6.59; for rN = 100, the probability of a
single ancestral sequence was less than 10−15, the expected
number of sequences was greater than 20. Note that rN = 1
corresponds to N = 105 if r = 10−5 which ensues from
a segment length of 1000 base pairs. These values are in
Table 1.

z1 z2 z3 z4

y1 y2 y3 y4

x1 x2 x3 x4

w1 w2 w3 w4

Figure 1: Schematic of coalescence. Lines connect individuals
with their ancestors, with each generation a horizontal array of
individuals (e.g., x1 x2 x3 x4). Time advances going up the page;
hence, the parent of an individual is in the line below (e.g., x2
is the parent of w4). The coalescent is indicated with thick lines.
Individuals x1 and x2 are in the coalescent; x3 is not in the
coalescent but is descended from the MRCA of the coalescent; x4
is not in the coalescent and is not descended from the MRCA of the
coalescent.

2.3. The Most Recent Common Ancestor. In addition to the
asymptotic history, we can ask whether the MRCA really is
an MRCA, that is, whether the MRCA of a single base pair
(which must exist) is the MRCA of every base pair in the
segment. This is not the requirement that the coalescents of
all the base pairs in a segment coincide, merely that they
terminate in the same individual. Crossing over during the
coalescent process divides the genetic material in a single
individual among two individuals, causing the ancestry of
the gene to be contained in two different ancestral subgraphs;
those graphs may terminate in the same MRCA or in
different MRCAs. This is illustrated in Figure 1, where a
crossover between individuals x1 and x2 or x1 and x3 would
change the ancestral graph of the genetic material involved in
the crossover but leave the same MRCA; a crossover between
x1 and x4 would change the ancestral graph and change
the MRCA to a more distant ancestor. The schematic of a
coalescent in Figure 1 also illustrates that, during the process
of coalescence or fixation, there are individuals not in the
coalescent (ancestral pedigree) which share the common
ancestor of the coalescent (e.g., x3) and individuals not in
the coalescent which do not share the common ancestor of
the coalescent (e.g., x4).

The probability of no crossing over involving individuals
in the coalescent provides a lower bound for the probability
of a common MRCA because that will assure a common
MRCA, but allowing crossing over to individuals sharing
the MRCA, whether inside or outside the coalescent, will
also provide that MRCA. The probability of no crossing over
involving individuals in the coalescent can be approximated
employing the estimate for the cumulative number of
individuals in the coalescent 4N(ln(4N) − 0.5) ([12]; the
cumulative size of the coalescent is the total number of
individuals in the coalescent: in Figure 1, z1, y1, x1, x2, w1,
w2, w3, and w4 are in the coalescent; hence, the cumulative
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size is 8) and probability of a crossover in a single individual
10−5, and assuming crossing over is a Poisson process.
The result is that the probability of no crossover involving
individuals in the coalescent is approximately exp(−10−5 ×
4N(ln(4N) − 0.5)). The quantity 4N(ln(4N) − 0.5) is an
estimate for the expected size of the coalescent based on
the expected time between changes in the size of the
coalescent; convexity of the exponential function provides
that exp(E[X]) ≤ E[exp(X)] (in this case, X is the size of
the coalescent), which is consistent with providing a lower
bound.

A higher lower bound is obtained by calculating an
upper bound for the probability that a recombination event
involving a member of the coalescent resulted in at least
one nucleotide base pair which did not share the MRCA
of the coalescent being in the ancestry of that individual.
To this end, we calculate the probability that a member of
the coalescent crossed over with an individual outside the
coalescent (e.g., x1 with x3 or x4); this overestimates the
probability of recombination with an individual not sharing
the MRCA because some individuals outside the coalescent
(e.g., x3 in Figure 1) will share the same MRCA. The number
of individuals in the coalescent at time t (t is the expected
time from the MRCA until the coalescent has the specified
size; this function is the inverse of the expected time to the
coalescent size) is approximately (1 + 1/2N − t/4N)−1 [12].
Because t is the expected time until the coalescent size, this
is only valid until the expected time to fixation (4N) when
the size of the coalescent becomes the population size (2N ,
which is N diploid individuals); hence, it is not relevant
that the quantity becomes negative for t > 4N + 2. Because
(1 + 1/2N − t/4N)−1 is obtained from the coalescent process
by employing the expected transition times for decreasing
the number of individuals in the coalescent by one (i.e.,
manifests the expected time at each size), the summation
(5) manifests the expected time at each coalescent size hence
gives the expected number of crossing over events; variation
in the timing of coalescent events does not introduce any
error since expected times are used, any error results from the
approximation (1 + 1/2N − t/4N)−1 (and perhaps summing
instead of integrating). The expected number of crossover
events between individuals inside and outside the coalescent
is

10−5 ×
4N∑
t=0

(
1+

1
2N

− t

4N

)−1 2N−(1+1/2N−t/4N)−1

2N
, (5)

where 10−5 is the probability that a crossover occurs in a
single individual, (1 + 1/2N − t/4N)−1 is the number of
individuals in the coalescent at time t, and 1/2N × (2N −
(1 + 1/2N − t/4N)−1) is the probability that the crossover
is with an individual outside the coalescent. This, assuming
crossover events are a Poisson process, provides the probabil-
ity of no such crossovers

e−10−5×∑4N
t=0 (1+1/2N−t/4N)−1(2N−(1+1/2N−t/4N)−1)/2N , (6)

(The variation in duration of the coalescent process will
provide greater variation than a Poisson process; hence,

the exponentiation in (5) underestimates the probability of
no crossovers, which is consistent with providing a lower
bound.)

For a population of 100 diploid individuals (i.e., 200
gametes, 2N = 200), this provides the lower bound for the
probability that all nucleotide sites in a segment have the
same MRCA .98; for 2N = 2000, .77; for 2N = 20, 000, .03;
for 2N = 200, 000 or more, less than 10−19. Thus, all the
nucleotide sites in a segment probably have the same MRCA
in populations smaller than 1000 but may not in larger
populations (this is only a lower bound for all nucleotide sites
having the same MRCA). This information is presented in
Table 1.

In order to obtain an upper bound for the probability
that the MRCA for a nucleotide base pair is indeed the MRCA
for the entire 1000 base pairs in the segment, we shall use
a lower bound for the probability that a crossover occurred
between an individual in the coalescent and an individual
not sharing the MRCA of the coalescent (e.g., x1 and x4 in
Figure 1).

Heuristically, this can be obtained from the growth of the
coalescent (1 + 1/2N− t/4N)−1 and the rate of increase of the
allele destined to fixation (which includes individuals such as
x3 which are not in the coalescent). For the Poisson progenies
distribution with λ = 1, the expected number of siblings of
an individual is 1. Therefore, since all progeny are equally
likely to become fixed, the expected increase in frequency,
conditioned on fixation, is 1−(k−1)/(2N−1) < 1, where the
1 is the expected number of siblings of the progeny destined
for fixation and the (k − 1)/(2N − 1) reflects that the other
2N −1 individuals in the parental generation (k−1 of which
are of the same type as the progeny destined for fixation)
must have on average 1 − 1/(2N − 1) progeny to maintain
a constant population size. This provides that the expected
number of copies of the allele destined for fixation is less than
or equal to t at time t; hence, r

∑2N
0 (1+1/2N−t/4N)−1(2N−

t)/2N should be a lower bound for the probability that the
MRCA of a nucleotide pair is not the MRCA of all the
nucleotide pairs (a crossover occurred with an individual not
descended from the MRCA). Truncating the summation at
2N is consistent with calculating a lower bound, but because
the factors in the summation are an expected value and a
bound on an expected value, this may not be a lower bound.

Rigorously, a weaker bound can be obtained using
Tchebychev’s theorem. The variance of the change in allele
frequency in a generation is k(2N − k)/2N where k is the
number of alleles of the designated type (the actual model is
the binomial distribution, the Poisson progeny distribution
is an approximation which is useful for many purposes, but
the binomial variance is tractable here). Because the rate of
increase of the designated allele is less than 1, the expected
number of copies of the designated allele at time t is less
than t (assuming one copy at time 1); hence, the variance
of the change in allele frequencies at time t is less than t (i.e.,
k × (2N − k)/2N < t; because of the convexity of k(2N − k),
the expected value of the variance is less than the variance
calculated using the expected value). Independence between
generations provides that the variance of the cumulative
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change over t generations is less than
∑t

i=1 i = t(t+ 1)/2 < t2;
hence, the cumulative standard deviation is less than t.

This provides that 4t is three standard deviation units
above the expected number of copies at time t; hence, by
Tchebychev’s theorem, there are at least 2N − 4t alleles not
identical by descent with the designated allele at time t with
probability 8/9. Because the argument t of the coalescent size
(1 + 1/2N − t/4N)−1 is the expected time to that size and
2N−4t is linear, multiplying (1 + 1/2N − t/4N)−1 by 2N −4t
entails an accurate pairing of coalescent and nondescendant
sizes (i.e., for a given E(t) which is the argument of (1 +
1/2N− t/4N)−1, the actual value of t in 2N−4t will vary, but
conditioning on E(t) as the argument for (1+1/2N−t/4N)−1,
averaging over all the associated values of 2N − 4t will be the
same as using that E(t) as the argument for 2N − 4t. (The
truncation of 2N − 4t is consistent with the direction of the
bound.) This provides the upper bound for the probability
that the MRCA of a nucleotide pair is the MRCA of all the
nucleotide pairs in the segment:

e−10−5×∑N/2
t=0 (1+1/2N−t/4N)−1×(2N−4t)/2N×.88, (7)

where r = 10−5 and .88 is the 8/9 from Tchebychev’s
theorem.

Numerical evaluation of this expression produces 1.000
for 2N = 200, .998 for 2N = 2000, .977 for 2N =
20, 000, .795 for 2N = 200, 000, .100 for 2N = 2, 000, 000,
and 10−10 for 2N = 20, 000, 000. As noted above, this is a
generous bound; hence, there is very low probability that all
the nucleotide sites in a gene have the same MRCA for N
greater than 1,000,000. These values are in Table 1.

2.4. Multiple Unlinked Segments. Genetics is seldom con-
cerned with single contiguous segments of DNA, but often
multiple segments with significant separation, hence recom-
bination, between them. Although we should consider an
arbitrary recombination frequency between segments, that
frequency will depend on the locations within the segments
(recombination within one segment will result in part, but
not all, of that segment recombining with another segment),
making it a difficult problem. Free recombination is the
opposite extreme to no recombination and is appropriate for
some cases including segments on different chromosomes
or segments which are entire chromosomes. The specific
question which we address is if the sizes of the ancestral pools
of two unlinked segments are known, what is the size of the
combined ancestral pool? It is at least the size of the larger of
the two pools and at most the sum of the sizes of the pools.
We provide a more precise bound. Calculations are based on
lowest-order terms in power series.

First consider the case where the segment lengths and
population size are small enough so that each ancestral pool
is a single individual; hence, there are two ancestral lineages.
This case lays a foundation for the following cases hence is
of interest beyond the circumstances when its assumptions
are met. The population size is N , hence 2N gametes. If
the ancestral lineages of two unlinked segments are in the
same gamete, then the previous generation they were in the
same gamete half the time (because the zygote they came

from was two gametes). If they are in different gametes,
then 1/N of the time they came from the same zygote (this
follows from Kingman’s [3] observation that the Wright-
Fisher model is equivalent to each individual choosing its
parent independently from the previous generation), hence
1/2N of the time they came from the same gamete the
previous generation. This defines a Markov process going
backward in time with the two states that the lineages are or
are not in the same gamete, and the matrix for this Markov
process is

.5
1

2N
,

.5 1− 1
2N

,

(8)

which has the eigenvector (stable distribution) 〈(1/(1 +
N),N/(1 + N))〉, hence the diploid structure provides that
two independent lineages will coincide (be in the same
gamete) approximately 1/N of the time rather than 1/2N
which would occur from random association.

Next consider a single ancestral lineage (ancestral pool of
size one) and the ancestral pool of size greater than one of an
unlinked segment; u is the relative frequency (size/2N) of the
ancestral pool at the gamete stage. In order to maintain an
equilibrium size u of the ancestral pool, coalescence must be
balanced by crossing over (recombination) going backward
in time. Coalescence reduces the size of the ancestral pool
from u to 1−e−u in a generation, u−(1−e−u) = u2/2 to lowest
order terms, hence crossing over must increase the number
of ancestral lineages by that amount. Only crossing over in
individuals in which exactly one of the alleles is ancestral
to the ancestral pool will increase the size of the ancestral
pool, the frequency of such individuals is 2e−u(1− e−u) (e−u

is the probability that a parental allele (half a zygote) is not
an ancestor of the ancestral pool). Therefore, the frequency
of crossing over, which we designate with ρ, satisfies u2/2 =
ρ× 2e−u(1− e−u) or ρ = u/4 to order u.

This provides that the probability that if the lineage
was in a gamete with a part of the ancestral pool, it was
in a gamete with part of the ancestral pool the previous
generation is .5 + .5(1 − e−u) + .5ρe−u, which is obtained by
summing the probability the ancestral pool material was in
the same gamete the previous generation (.5), the probability
the gamete the previous generation contained the other copy
of the allele in the zygote, but it was also ancestral (.5(1 −
e−u)), and the probability the gamete the previous generation
contained the other copy of the allele in the zygote which
was not ancestral, but it was made ancestral by crossing
over (.5ρe−u). To first-order terms in u, this is equal to .5 +
.625u, hence the probability that if a lineage was in a gamete
with part of the ancestral pool, it was in a gamete without
part of the ancestral pool the previous generation is .5 −
.625u. If the lineage was in a gamete without material from
the ancestral pool, then its gamete the previous generation
could have material from the ancestral pool if either its
gamete the previous generation contained the ancestor of
that nonancestral allele, but that allele had coalesced with
an allele with ancestral material, or it contained the ancestor
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of the other allele in the parent to the gamete and that allele
contained ancestral material (crossing over produces higher-
order terms), the respective probabilities are .5(1− e−u) and
.5(1 − e−u). To order u, summing these yields u. Hence,
the probability that if the lineage was in a gamete without
ancestral material, it was also in a gamete without ancestral
material the previous generation is 1 − u. This yields the
Markov matrix governing cooccurrence of the lineage and
ancestral pool

.5 + .625u u,

.5− .625u 1− u,
(9)

which has the eigenvector (stable distribution) 〈u/(.5 +
.375u), (.5− .625u)/(.5+ .375u)〉; hence, the diploid structure
provides that a lineage will coincide with part of an unlinked
ancestral pool of size u approximately u/(.5 + .375u) (i.e.,
approximately 2u) of the time rather than u which would
occur from random association.

Now consider two unlinked segments (or unlinked col-
lections of genetic material) for which the sizes of the
ancestral pools are known. Assume the asymptotic proba-
bilities of gametes containing ancestral material for those
segments are u and v, respectively (hence, we shall refer
to them as “u” and “v” segments). Then, the ancestral
lineage for each nucleotide pair in the “v” segment will
be in a gamete with material in the “u” ancestral pool
with probability u/(.5 + .375u) (or u/(.5 + .375u) of such
lineages will be in “u” gametes). If all gametes containing
“v” ancestral material had equal probability of containing
“u” ancestral material, the probability that a gamete with “v”
ancestral material contained “u” ancestral material would be
u/(.5 + .375u), the probability for a “v” lineage containing
“u” ancestral material. Hence, the probability that a gamete
contained ancestral material from both segments would be
vu/(.5 + .375u) (v is the probability of containing ancestral
material from the second segment, and u/(.5 + .375u) is the
conditional probability of containing ancestral material from
the first segment).

However, gametes containing many (as opposed to
fewer) “v” ancestral lineages are likely to have recently coa-
lesced (because coalescence combines ancestral lineages and
crossing over separates them). The “u” segment (whether
or not ancestral) in that gamete is also likely to have
recently coalesced because the sexual reproduction process
keeps independent segments together (with probability .5
each generation), and because it coalesced, it is more likely
to contain ancestral material. Hence, gametes with many
ancestral “v” lineages are more likely to contain ancestral
“u” material than gametes with few ancestral “v” lineages.
This provides that the probability that a gamete containing
ancestral “v” material also contains ancestral “u” material
will be less than the probability that an ancestral “v” lineage is
in a gamete with ancestral “u” material. Thus, the probability
that a gamete contains both “u” and “v” ancestral material is
less than vu/(.5 + .375u) (and less than vu/(.5 + .375v) by
symmetry). In particular, the probability that an individual
contains ancestral material from both pools is less than twice
the product of the probabilities of the two pools (2uv).

Therefore, the size of the combined ancestral pool is at
least u + v − 2uv (and at most u + v). This argument can
be extended recursively to find a bound on the size of the
ancestral pool of an arbitrary number of unlinked segments
for which the ancestral pool size is known. In particular, it
can be used to find a bound on the size of the ancestral pool
of the entire genome if the size of the ancestral pool for each
chromosome is known.

3. Discussion

The main result from Table 1 is that a segment will probably
have a single ancestor (i.e., ancestral pool of size 1) if rN �
1 (the probability is greater than .6 if rN = .1, greater
than .96 if rN = .01, and greater than .99 if rN = .001).
Complementarily, the probability of a single ancestor is close
to zero for rN � 1 (the probability is less than .00019 for
rN = 10 and less than 10−15 for rN = 100). The bounds on
the expected size of the asymptotic pool are of course close to
1 for rN < 1, but are not very useful for rN > 1 (numerical
calculations provide that the lower bound approaches 51 as
rN gets large while the upper bound is approximately 4rN).
For rN = 1, there is a rather tight bound on the expected size
of the asymptotic pool size (between 2.3 and 5). However,
rN = 1 is of limited interest. rN = 1 corresponds to a gene
or a piece of a gene of 103 or 102 contiguous base pairs if
the population size is 105 or 106. But it certainly does not
correspond to an entire chromosome, a chromosome in man
or Drosophila is about one morgan in size, which would
require an effective population size close to 1. (This assumes
a recombination rate of 10−8 between adjacent base pairs,
there are other estimates for that rate, and variation in the
rate (hotspots) further complicates the analysis [13].)

These results provide insight into the question: what is
the integrity of the gene? Is the gene the atom of evolution or
does evolution occur on a finer scale? In small populations
(N < 1000), the gene (defined as 1000 contiguous base
pairs) is indeed a meaningful entity, the most recent common
ancestor (MRCA) is the same for all of its base pairs and
that individual has an ancestral lineage which contains
common ancestors for all the nucleotide pairs in that gene.
Periods when the ancestral material is spread among multiple
individuals are infrequent; hence, all the base pairs change
their frequency as a unit. In larger populations (N >
1, 000, 000), the MRCAs for the various base pairs in the
gene do not coincide, and it is rare that the ancestral lineages
for all the base pairs coincide. There is not an ancestral
individual, but an ancestral pool. Positive probability, no
matter how small, provides that the lineages of all the base
pairs will coincide at some time in the past (hence, there
is a common ancestor), but, if Nr � 1, the base pairs will
not all stay together and evolve (change frequency) as a unit.
These conclusions are from the numerical bounds calculated
in Table 1. Some of the bounds are quite loose, but they still
support the conclusions.

These results are for neutral drift with no mutation (i.e.,
identity by descent). Selection will speed up the fixation
process and increase identity by descent [14], hence increase
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the likelihood that the MRCA for a base pair is the MRCA
for all the base pairs in the gene, it might also eliminate
aberrant forms of the gene, thereby further contributing
to integrity. Mutation will decrease the physical identity of
the genes. Since the mutation rate is comparable to the
recombination rate (both are around 10−8 (per nucleotide
site or between adjacent nucleotide sites; both have great
variation)), probabilities of identity by type will be similar.
But because much recombination will be with individuals
which are identical by descent, identity by type is less likely
than identity by descent.

The bounds in this paper on the size of the ancestral pool
are most useful for a genetic segment of 1000 contiguous
base pairs, and Wiuf and Hein [8] have presented an estimate
for the size of the ancestral pool for a chromosome. Indeed,
it would be nice to have tighter bounds for a genetic
segment and an estimate for chromosomes which does not
rely on simulation for the population size of interest. But
it is also necessary to extend results for genetic segments
to results for unions of genetic segments, whether a few
separated contiguous segments or the entire genome. We
have improved the bounds obtained by assuming that the
genetic material in different segments (or chromosomes) is
in the same individuals as much as possible, or in different
individuals as much as possible (i.e., if the sizes of two
genetic pools are u and v, the size of the combined pool
is between max(u, v) and u + v); we have shown that the
overlap of the two pools is less than 2uv if the genetic
segments are unlinked. This enables us to show, based on the
chromosomal pool size of Wiuf and Hein [8] and recursively
applying the 2uv bound, that the size of the ancestral pool
of the human genome is close to the 80 percent pedigree
ancestor upper bound of Chang [7]. But tighter bounds
should be sought in general, especially for the difficult
problem of genetic segments which are linked.
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