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The main purpose of this paper is to derive some coefficient inequalities and subordination
properties for certain subclasses of analytic functions involving the Salagean operator. Relevant
connections of the results presented here with those obtained in earlier works are also pointed out.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

j=2

ajz
j , (1.1)

which are analytic in the open unit disk

U := {z : z ∈ C, |z| < 1}. (1.2)

For 0 � α < 1, we denote by S∗(α) and K(α) the usual subclasses of A consisting of
functions which are, respectively, starlike of order α and convex of order α in U. Clearly, we
know that

f ∈ K(α) ⇐⇒ zf ′ ∈ S∗(α). (1.3)
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A function f ∈ A is said to be in the class M(β) if it satisfies the inequality

�
(
zf ′(z)
f(z)

)
< β (z ∈ U), (1.4)

for some β (β > 1). Also, a function f ∈ A is said to be in the class N(β) if and only if
zf ′ ∈ M(β). The classes M(β) and N(β) were introduced and investigated recently by Owa
and Srivastava [1] (see also Nishiwaki and Owa [2], Owa and Nishiwaki [3], and Srivastava
and Attiya [4]).

Sălăgean [5] introduced the operator

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z),

Dnf(z) = D
(
Dn−1f(z)

)
(n ∈ N := {1, 2, . . .}).

(1.5)

We note that

Dnf(z) = z +
∞∑

j=2

jnajz
j (n ∈ N0 := N ∪ {0}). (1.6)

Given two functions f, g ∈ A, where f is given by (1.1) and g is defined by

g(z) = z +
∞∑

n=2

bnz
n, (1.7)

the Hadamard product (or convolution) f ∗ g is defined by

(
f ∗ g)(z) := z +

∞∑

n=2

anbnz
n =:

(
g ∗ f)(z). (1.8)

For two functions f and g, analytic in U, we say that the function f is subordinate to g
in U, and write

f(z) ≺ g(z) (z ∈ U) (1.9)

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0, |ω(z)| < 1 (z ∈ U) (1.10)

such that

f(z) = g(ω(z)) (z ∈ U). (1.11)
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Indeed, it is known that

f(z) ≺ g(z), (z ∈ U) =⇒ f(0) = g(0), f(U) ⊂ g(U). (1.12)

Furthermore, if the function g is univalent in U, then we have the following equivalence:

f(z) ≺ g(z), (z ∈ U) ⇐⇒ f(0) = g(0), f(U) ⊂ g(U). (1.13)

In recent years, Deng [6] (see also Kamali [7], Altintaş et al. [8], Srivastava et al. [9],
and Xu et al. [10]) introduced and investigated the following subclass of A involving the S
Sălăgean lagean operator and obtained the coefficient bounds for this function class.

Definition 1.1. A function f ∈ A is said to be in the class Sn(λ, α, b) if it satisfies the inequality

�
(
1 +

1
b

(
(1 − λ)Dn+1f(z) + λDn+2f(z)
(1 − λ)Dnf(z) + λDn+1f(z)

− 1

))
> α (z ∈ U), (1.14)

where

n ∈ N0, b ∈ C \ {0}, 0 � α < 1, 0 � λ � 1. (1.15)

It is easy to see that the class Sn(λ, α, b) includes the classes S∗(α) and K(α) as its
special cases.

Now, motivated essentially by the above-mentioned function classes, we introduce the
following subclass ofA of analytic functions.

Definition 1.2. A function f ∈ A is said to be in the classMn(λ, β, b) if it satisfies the inequality:

�
(
1 +

1
b

(
(1 − λ)Dn+1f(z) + λDn+2f(z)
(1 − λ)Dnf(z) + λDn+1f(z)

− 1

))
< β (z ∈ U), (1.16)

where

n ∈ N0, b ∈ C \ {0}, β > 1, 0 � λ � 1. (1.17)

It is also easy to see that the classes M(β) and N(β) are special cases of the class
Mn(λ, β, b).

In this paper, we aim at proving some coefficient inequalities and subordination
properties for the classes Sn(λ, β, b) and Mn(λ, β, b). The results presented here would
provide extensions of those given in earlier works. Several other new results are also
obtained.
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2. Coefficient Inequalities

In this section, we derive some coefficient inequalities for the classes Sn(λ, α, b) and
Mn(λ, α, b).

Theorem 2.1. Let

n ∈ N0, b ∈ C \ {0}, 0 � α < 1, 0 � λ � 1. (2.1)

If f ∈ A satisfies the coefficient inequality

∞∑

j=2

[
(1 − λ)jn + λjn+1

][
j − 1 + |b|(1 − α)

]∣∣aj

∣∣ � |b|(1 − α), (2.2)

then f ∈ Sn(λ, α, b).

Proof. To prove f ∈ Sn(λ, α, b), it is sufficient to show that

∣∣∣∣∣
(1 − λ)Dn+1f(z) + λDn+2f(z)
(1 − λ)Dnf(z) + λDn+1f(z)

− 1

∣∣∣∣∣ < |b|(1 − α) (z ∈ U). (2.3)

By noting that

∣∣∣∣∣
(1 − λ)Dn+1f(z) + λDn+2f(z)
(1 − λ)Dnf(z) + λDn+1f(z)

− 1

∣∣∣∣∣

=

∣∣∣∣∣

∑∞
j=2
[
(1 − λ)

(
jn+1 − jn

)
+ λ
(
jn+2 − jn+1

)]
ajz

j−1

1 +
∑∞

j=2
[
(1 − λ)jn + λjn+1

]
ajzj−1

∣∣∣∣∣

�
∑∞

j=2
[
(1 − λ)

(
jn+1 − jn

)
+ λ
(
jn+2 − jn+1

)]∣∣aj

∣∣

1 −∑∞
j=2
[
(1 − λ)jn + λjn+1

]∣∣aj

∣∣ ,

(2.4)

it follows from (2.2) that the above last expression is bounded by |b|(1 − α). This completes
the proof of Theorem 2.1.

Theorem 2.2. Let

n ∈ N0, b ∈ C \ {0}, β > 1, 0 � λ � 1. (2.5)

If f ∈ A satisfies the coefficient inequality

∞∑

j=2

[
(1 − λ)jn + λjn+1

](|b − 1| + j +
∣∣j − 1 − (2β − 1

)
b
∣∣)∣∣aj

∣∣ � 2|b|(β − 1
)
, (2.6)

then f ∈ Mn(λ, β).
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Proof. To prove f ∈ Mn(λ, β, b), it suffices to show that

∣∣∣∣∣1 +
1
b

(
(1 − λ)Dn+1f(z) + λDn+2f(z)
(1 − λ)Dnf(z) + λDn+1f(z)

− 1

)∣∣∣∣∣

<

∣∣∣∣∣1 +
1
b

(
(1 − λ)Dn+1f(z) + λDn+2f(z)
(1 − λ)Dnf(z) + λDn+1f(z)

− 1

)
− 2β

∣∣∣∣∣.

(2.7)

We consider M ∈ R defined by

M :=
∣∣∣(b − 1)

[
(1 − λ)Dnf(z) + λDn+1f(z)

]
+ (1 − λ)Dn+1f(z) + λDn+2f(z)

∣∣∣

−
∣∣∣(1 − λ)Dn+1f(z) + λDn+2f(z) − [(2β − 1

)
b + 1

][
(1 − λ)Dnf(z) + λDn+1f(z)

]∣∣∣

=

∣∣∣∣∣∣
bz +

∞∑

j=2

{
(b − 1)

[
(1 − λ)jn + λjn+1

]
+
[
(1 − λ)jn+1 + λjn+2

]}
ajz

j

∣∣∣∣∣∣

−
∣∣∣∣∣∣
z +

∞∑

j=2

[
(1 − λ)jn+1 + λjn+2

]
ajz

j − [(2β − 1
)
b + 1

]
⎛

⎝z +
∞∑

j=2

[
(1 − λ)jn + λjn+1

]
ajz

j

⎞

⎠

∣∣∣∣∣∣
.

(2.8)

Thus, for |z| = r < 1, we have

M � |b|r +
∞∑

j=2

{
|b − 1|

[
(1 − λ)jn + λjn+1

]
+ (1 − λ)jn+1 + λjn+2

}∣∣aj

∣∣rj

−
⎡

⎣(2β − 1
)|b|r −

∞∑

j=2

∣∣∣
[
(1 − λ)jn+1 + λjn+2

]
− [(2β − 1

)
b + 1

][
(1 − λ)jn + λjn+1

]∣∣∣
∣∣aj

∣∣rj
⎤

⎦

<

⎛

⎝
∞∑

j=2

{
|b − 1|

[
(1 − λ)jn + λjn+1

]
+ (1 − λ)jn+1 + λjn+2

+
∣∣∣
[
(1 − λ)jn+1 + λjn+2

]
− [(2β − 1

)
b + 1

][
(1 − λ)jn + λjn+1

]∣∣∣
}∣∣aj

∣∣ − 2
(
β − 1

)|b|
⎞

⎠r.

(2.9)

It follows from (2.6) that M < 0, which implies that (2.7) holds, that is, f ∈ Mn(λ, β, b). The
proof of Theorem 2.2 is evidently completed.
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To prove our next result, we need the following lemma.

Lemma 2.3. Let β > 1 and b ∈ C \ {0}. Suppose also that the sequence {Bj}∞j=1 is defined by

B1 = 1
(
j = 1

)
,

Bj =
2|b|(β − 1

)

j − 1

j−1∑

k=1

Bk

(
j ∈ N \ {1}),

(2.10)

then

Bj =
1

(
j − 1

)
!

j−2∏

k=0

[
2|b|(β − 1

)
+ k
] (

j ∈ N \ {1}). (2.11)

Proof. We make use of the principle of mathematical induction to prove the assertion (2.11)
of Lemma 2.3. Indeed, from (2.10), we know that

B2 = 2|b|(β − 1
)
=

1
1!

0∏

k=0

[
2|b|(β − 1

)
+ k
]
, (2.12)

which implies that (2.11) holds for j = 2.
We now suppose that (2.11) holds for j = m (m � 2), then

Bm =
1

(m − 1)!

m−2∏

k=0

[
2|b|(β − 1

)
+ k
]
. (2.13)

Combining (2.10) and (2.13), we find that

Bm+1 =
2|b|(β − 1

)

m

m∑

k=1

Bk

=
2|b|(β − 1

)

m

m−1∑

k=1

Bk +
2|b|(β − 1

)

m
Bm

=
2|b|(β − 1

)

m
· m − 1
2|b|(β − 1

)Bm +
2|b|(β − 1

)

m
Bm

=
2|b|(β − 1

)
+m − 1

m
Bm

=
1
m!

m−1∏

k=0

[
2|b|(β − 1

)
+ k
]
,

(2.14)

which shows that (2.11) holds for j = m + 1. The proof of Lemma 2.3 is evidently completed.
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Theorem 2.4. Let f ∈ Mn(λ, β, b), then

∣∣aj

∣∣ � 1
(
j − 1

)
!
(
1 − λ + λj

)
jn

j−2∏

k=0

[
2|b|(β − 1

)
+ k
] (

j ∈ N \ {1}). (2.15)

Proof. We first suppose that

F(z) := (1 − λ)Dnf(z) + λDn+1f(z) = z +
∞∑

j=2

Bjz
j (

z ∈ U; f ∈ A), (2.16)

where

Bj = jn
(
1 − λ + λj

)
aj . (2.17)

Next, by setting

h(z) :=
β − 1 − (1/b)(zF ′(z)/F(z) − 1)

β − 1
= 1 + h1z + h2z

2 + · · ·
(
z ∈ U; f ∈ Mn

(
λ, β, b

))
,

(2.18)

we easily find that h ∈ P. It follows from (2.18) that

zF ′(z) =
[
1 + b

(
β − 1

)]
F(z) − b

(
β − 1

)
h(z)F(z). (2.19)

We now find from (2.16), (2.18), and (2.19) that

z + 2B2z
2 + · · · + jBjz

j + · · ·
=
[
1 + b

(
β − 1

)](
z + B2z

2 + · · · + Bjz
j + · · ·

)

− b
(
β − 1

)(
1 + h1z + h2z

2 + · · · + hjz
j + · · ·

)(
z + B2z

2 + · · · + Bjz
j + · · ·

)
.

(2.20)

By evaluating the coefficients of zj in both the sides of (2.20), we get

jBj =
[
1 + b

(
β − 1

)]
Bj − b

(
β − 1

)(
hj−1 + hj−2B2 + · · · + h1Bj−1 + Bj

)
. (2.21)

On the other hand, it is well known that

|hk| � 2 (k ∈ N). (2.22)

Combining (2.21) and (2.22), we easily get

∣∣Bj

∣∣ �
2|b|(β − 1

)

j − 1

j−1∑

k=1

|Bk|
(
B1 = 1; j ∈ N \ {1}). (2.23)
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Suppose that β > 1 and b ∈ C \ {0}. We define the sequence {Bj}∞j=1 as follows:

B1 = 1
(
j = 1

)
,

Bj =
2|b|(β − 1

)

j − 1

j−1∑

k=1

Bk

(
j ∈ N \ {1}).

(2.24)

In order to prove that

∣∣Bj

∣∣ � Bj

(
j ∈ N \ {1}), (2.25)

we use the principle of mathematical induction. By noting that

|B2| � 2|b|(β − 1
)
, (2.26)

thus, assuming that

|Bm| � Bm

(
m ∈ {2, 3, . . . , j}), (2.27)

we find from (2.23) and (2.24) that

∣∣Bj+1
∣∣ �

2|b|(β − 1
)

j

j∑

k=1

|Bk| �
2|b|(β − 1

)

j

j∑

k=1

Bk = Bj+1
(
j ∈ N

)
. (2.28)

Therefore, by the principle of mathematical induction, we have

∣∣Bj

∣∣ � Bj

(
j ∈ N \ {1}) (2.29)

as desired.
By virtue of Lemma 2.3 and (2.24), we know that

Bj =
1

(
j − 1

)
!

j−2∏

k=0

[
2|b|(β − 1

)
+ k
] (

j ∈ N \ {1}). (2.30)

Combining (2.17), (2.29), and (2.30), we readily arrive at the coefficient estimates (2.15)
asserted by Theorem 2.4.

Remark 2.5. Setting λ = 0, b = 1, and n = 0 or 1 in Theorem 2.4, we get the corresponding
results obtained by Owa and Nishiwaki [3].

Remark 2.6. We cannot show that the result of Theorem 2.4 is sharp. Indeed, if one can prove
the sharpness of Theorem 2.4, the sharpness of the corresponding result obtained by Deng
[6] follows easily.
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3. Subordination Properties

In view of Theorems 2.1 and 2.2, we now introduce the following subclasses:

S̃n(λ, α, b) ⊂ Sn(λ, α, b), M̃n

(
λ, β, b

) ⊂ Mn

(
λ, β, b

)
, (3.1)

which consist of functions f ∈ A whose Taylor-Maclaurin coefficients satisfy the inequalities
(2.2) and (2.6), respectively.

A sequence {bj}∞j=1 of complex numbers is said to be a subordinating factor sequence
if, whenever f of the form (1.1) is analytic, univalent, and convex in U, we have the
subordination

∞∑

j=1

ajbjz
j ≺ f(z) (a1 = 1; z ∈ U). (3.2)

To derive the subordination properties for the classes S̃n(λ, α, b) and M̃n(λ, α, b), we
need the following lemma.

Lemma 3.1 (see [11]). The sequence {bj}∞j=1 is a subordinating factor sequence if and only if

�
⎛

⎝1 + 2
∞∑

j=1

bjz
j

⎞

⎠ > 0 (z ∈ U). (3.3)

Theorem 3.2. If f ∈ S̃n(λ, α, b) and g ∈ K(0), then

Φ(n, λ, α, b) · (f ∗ g)(z) ≺ g(z), (3.4)

�(f) > −|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]
2n(1 + λ)[1 + |b|(1 − α)]

, (3.5)

for

0 � λ � 1, 0 � α < 1, b ∈ C \ {0}, n ∈ N0, (3.6)

where, for convenience,

Φ(n, λ, α, b) :=
2n−1(1 + λ)[1 + |b|(1 − α)]

|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]
. (3.7)

The constant factor

2n−1(1 + λ)[1 + |b|(1 − α)]
|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]

(3.8)

in the subordination result (3.4) cannot be replaced by a larger one.
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Proof. Let f ∈ S̃n(λ, α, b) and suppose that

g(z) = z +
∞∑

j=2

cjz
j ∈ K := K(0), (3.9)

then

Φ(n, λ, α, b) · (f ∗ g)(z) = Φ(n, λ, α, b) ·
⎛

⎝z +
∞∑

j=2

ajcjz
j

⎞

⎠, (3.10)

where Φ(n, λ, α, b) is defined by (3.7).
If

{
Φ(n, λ, α, b) · aj

}∞
j=1 (3.11)

is a subordinating factor sequence with a1 = 1, then the subordination result (3.4) holds. By
Lemma 3.1, we know that this is equivalent to the inequality

�
⎛

⎝1 +
∞∑

j=1

2n(1 + λ)[1 + |b|(1 − α)]
|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]

ajz
j

⎞

⎠ > 0 (z ∈ U). (3.12)

Since

jn
(
1 − λ + λj

)[
j − 1 + |b|(1 − α)

] (
j � 2; 0 � λ � 1; 0 � α < 1; b ∈ C \ {0}; n ∈ N0

)
(3.13)

is an increasing function of j, and using Theorem 2.1, we have

�
⎛

⎝1 +
∞∑

j=1

2n(1 + λ)[1 + |b|(1 − α)]
|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]

ajz
j

⎞

⎠

= �
⎛

⎝1 +
2n(1 + λ)[1 + |b|(1 − α)]

|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]
a1z

+
1

|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]
·

∞∑

j=2

2n(1 + λ)[1 + |b|(1 − α)]ajz
j

⎞

⎠

� 1 − 2n(1 + λ)[1 + |b|(1 − α)]
|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]

r

− 1
|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]

·
∞∑

j=2

2n(1 + λ)[1 + |b|(1 − α)]
∣∣aj

∣∣rj

> 1 − 2n(1 + λ)[1 + |b|(1 − α)]
|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]

r − |b|(1 − α)
|b|(1 − α) + 2n(1 + λ)[1 + |b|(1 − α)]

r

= 1 − r > 0 (|z| = r < 1).

(3.14)
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This evidently proves the inequality (3.12), and hence also the subordination result (3.4),
asserted by Theorem 3.2. The inequality (3.5) asserted by Theorem 3.2 follows from (3.4) by
setting

g(z) =
z

1 − z
=

∞∑

j=1

zj ∈ K. (3.15)

Finally, we consider the function f0 defined by

f0(z) := z − |b|(1 − α)
2n(1 + λ)[1 + |b|(1 − α)]

z2 (n ∈ N0; 0 � λ � 1; 0 � α < 1; b ∈ C \ {0}), (3.16)

which belongs to the class S̃n(λ, α, b). Thus, by (3.4), we know that

Φ(n, λ, α, b) · f0(z) ≺ z

1 − z
(z ∈ U). (3.17)

Furthermore, it can be easily verified for the function f0 given by (3.16) that

min
z∈U

{�(Φ(n, λ, α, b) · f0(z)
)}

= −1
2
. (3.18)

We thus complete the proof of Theorem 3.2.

The proof of the following subordination result is much akin to that of Theorem 3.2.
We, therefore, choose to omit the analogous details involved.

Corollary 3.3. If f ∈ M̃n(λ, α, b) and g ∈ K(0), then

Ψ
(
n, λ, β, b

) · (f ∗ g)(z) ≺ g(z), (3.19)

�(f) > −|b|
(
β − 1

)
+ 2n−1(1 + λ)

(|b − 1| + 2 +
∣∣1 − (2β − 1

)
b
∣∣)

2n−1(1 + λ)
(|b − 1| + 2 +

∣∣1 − (2β − 1
)
b
∣∣) , (3.20)

for

0 � λ � 1, β > 1, b ∈ C \ {0}, n ∈ N0, (3.21)

where, for convenience,

Ψ
(
n, λ, β, b

)
:=

2n−2(1 + λ)
(|b − 1| + 2 +

∣∣1 − (2β − 1
)
b
∣∣)

|b|(β − 1
)
+ 2n−1(1 + λ)

(|b − 1| + 2 +
∣∣1 − (2β − 1

)
b
∣∣) . (3.22)
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The constant factor

2n−2(1 + λ)
(|b − 1| + 2 +

∣∣1 − (2β − 1
)
b
∣∣)

|b|(β − 1
)
+ 2n−1(1 + λ)

(|b − 1| + 2 +
∣∣1 − (2β − 1

)
b
∣∣) (3.23)

in the subordination result (3.19) cannot be replaced by a larger one.

Remark 3.4. Putting λ = 0, b = 1, and n = 0 or 1 in Corollary 3.3, we get the corresponding
results obtained by Srivastava and Attiya [4].
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