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We introduce right (left) g-semisymmetric ring as a new concept to generalize the well-known
concept: symmetric ring. Examples are given to show that these classes of rings are distinct.
They coincide under some conditions. It is shown that R is bounded right g-semisymmetric with
boundary 1 from right if and only if R is symmetric, whenever R is regular. It is shown that a
ring R is strongly regular if and only if R is regular and bounded right g-semisymmetric with
boundary 1 from right. For a right p.p.-ring R it is shown that R is reduced if and only if R is
symmetric, if and only if R is bounded right g-semisymmetric ring with boundary 1 from left, if
and only if R is IFP, if and only if R is abelian. We prove that there is a special subring of the
ring of 3 × 3 matrices over a ring without zero divisors which is bounded right g-semisymmetric
with boundary 2 from left and boundary 2 from right. Also we show that flat left modules over
bounded left g-semisymmetric ring with boundaries 1 from left and 1 from right are bounded left
g-semisymmetric with boundaries 1 from left and 1 from right.

1. Introduction

Throughout this paper, all rings are associated with identity and all modules are unitary. For
a subset X of R, the left (right) annihilator of X in R is denoted by l(X) (r(X)). If X = {a},
we usually abbreviate l(a) (r(a)). According to Lambic [1], a ring R is called symmetric
if abc = 0 then acb = 0 for a, b ∈ R. A ring R is called reduced if it has no nonzero
nilpotent elements. Reduced rings are symmetric according to [2, Theorem 1.3]. According
to Lee and Zhou [3], a left R-module M is reduced if a2m = 0 implies aRm = 0, for all
a ∈ R, m ∈ M. Abelian rings are rings in which each idempotent is central. According
to Buhphang and Rege [4], a left R-module M is semicommutative, if am = 0 implies
aRm = 0, for all a ∈ R,m ∈ M. Reduced rings are symmetric [2, Theorem 1.3]. Commutative
rings are symmetric. Semicommutative rings are abelian [5, Lemma 2.7]. Several examples
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in the indicated references were given to show that the converse of these implications is
not necessary to be true, for example, [2, Example II.5] is an example of noncommutative
nonreduced symmetric ring. g-semisymmetric rings are defined and studied herein. A ring
R is called right g-semisymmetric if for a, b, c ∈ R with abc = 0, there exist two positive
integers n = n(c), l = l(b) such that acnbl = 0. A ring R is called bounded right g-
semisymmetric with boundary n from left if for a, b, c ∈ R with abc = 0, there exists two
positive integers n, l = l(b) such that acsbl = 0, for all s ≥ n. Clearly, symmetric rings are
right g-semisymmetric. Examples 2.2 and 2.21 are given to show that there exist right g-
semisymmetric rings which are not symmetric. Bounded right g-semisymmetric ring with
boundary 1 from left is abelian. This is false for rings without identity, by Example 2.2. Also
its converse is not necessary true as shown from Example 2.17. The converse holds if R is
right p.p.-ring, by Theorem 2.19.

2. G-Semisymmetric Rings

Definition 2.1. (1) A right R-module M is called g-semisymmetric if for m ∈ M and a, b ∈ R
with mab = 0, there exist two positive integers n = n(b), l = l(a) such that mbnal = 0. A
ring R is called right g-semisymmetric if for a, b, c ∈ R with abc = 0, there exist two positive
integers n = n(c), l = l(b) such that acnbl = 0.

(2) A left R-module M is called g-semisymmetric if for m ∈ M and a, b ∈ R with
abm = 0, there exist two positive integers n = n(b), l = l(a) such that bnalm = 0. A ring R
is called left g-semisymmetric if for a, b, c ∈ R with abc = 0, there exist two positive integers
n = n(b), l = l(a) such that bnalc = 0.

(3) A right R-module M is called bounded g-semisymmetric with boundary n from
left if for m ∈ M and a, b ∈ R with mab = 0, there exist two positive integers n, l = l(a) such
thatmbsal = 0, for all s ≥ n. A ringR is called bounded right g-semisymmetric with boundary
n from left if for a, b, c ∈ Rwith abc = 0, there exist two positive integers n, l = l(b) such that
acsbl = 0, for all s ≥ n.

(4) A right R-module M is called bounded g-semisymmetric with boundary l from
right if form ∈ M and a, b ∈ Rwithmab = 0, there exist two positive integers n = n(b), l such
thatmbnas = 0, for all s ≥ l. A ring R is called bounded right g-semisymmetric with boundary
l from right if for a, b, c ∈ R with abc = 0, there exist two positive integers n = n(c), l such
that acnbs = 0, for all s ≥ l.

(5) A left R-moduleM is called bounded g-semisymmetric with boundary n from left
if for m ∈ M and a, b ∈ R with abm = 0, there exist two positive integers n, l such that
abm = 0, then bsalm = 0, for all s ≥ n. A ring R is called bounded left g-semisymmetric with
boundary n from left if for a, b, c ∈ Rwith abc = 0, there exist two positive integers n, l = l(a)
such that bsalc = 0, for all s ≥ n.

(6)A left R-moduleM is called bounded g-semisymmetric with boundary l from right
if for m ∈ M and a, b ∈ R with abm = 0, there exist two positive integers n = n(b), l such
that abm = 0, then bnasm = 0, for all s ≥ l. A ring R is called bounded left g-semisymmetric
with boundary l from right if for a, b, c ∈ R with abc = 0, there exist two positive integers
n = n(b), l such that bnasc = 0, for all s ≥ l.

Every symmetric ring is right g-semisymmetric ring, the converse is not true as
illustrated by the following example, due originally to Bell [6, Example 9]with changes in its
multiplications.
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Example 2.2. Let S = {a, b} be the semigroup with multiplication a2 = ba = a, b2 = ab = b. Put
T = F2S, which is a four-element semigroup ring without identity. This ring T is bounded right
g-semisymmetric ring with boundary 2 from right and with boundary 1 from left, but T is neither
symmetric ring nor reversible.

Remark 2.3. (1) A ring R is left g-semisymmetric if and only if the module RR is g-
semisymmetric. (2) A ring R is right g-semisymmetric if and only if the module RR is g-
semisymmetric.

Proposition 2.4. The following conditions are equivalent for a right R-module M.

(1) M is g-semisymmetric.

(2) All cyclic submodules ofM are g-semisymmetric.

Proof. (1) ⇒ (2) Let N = mR be a cyclic submodules of M, and let m′ ∈ N. Since M is g-
semisymmetric, then for a, b ∈ Rwithm′ab = 0, it implies thatm′bman = 0, and some positive
integers m = m(b),n = n(a). Hence N is g-semisymmetric.

(2) ⇒ (1) Let a, b ∈ R, m ∈ M such that mab = 0. Since the cyclic R-module mR is
semisymmetric, then there exist positive integers m = m(b), n = n(a) such that mbman = 0.
Therefore M is g-semisymmetric.

Proposition 2.5. The following conditions are equivalent for a ring R.

(i) R is strongly regular.

(ii) Every right R-module is flat and g-semisymmetric with boundary 1 from right.

(iii) Every cyclic right R-module is flat and g-semisymmetric with boundary 1 from right.

(iv) R is regular and bounded right g-semisymmetric with boundary 1 from right.

Proof. (i) ⇒ (ii) Let R be a strongly regular ring, and let M be a right R-module. Then M
is flat module. Let m ∈ M and r, s ∈ R with mrs = 0, and let I = {x ∈ R | mx = 0}. Since
R is strongly regular, then the right ideal I of R is a two-sided ideal and R has no nilpotent
elements. Hence R = R/I has no nilpotent elements. Since rs ∈ I, then ((s)m(r)n)2 = 0 and
hence (s)mr = 0. This shows that msmr = 0. Therefore M is bounded g-semisymmetric with
boundary 1 from right.

(ii) ⇒ (iii) Clear.
(iii) ⇒ (iv) Suppose that every cyclic right R-module is flat and g-semisymmetric

with boundary 1 from right. Since every cyclic right R-module is flat, then R is a regular ring
[7, Theorem 4.21]. Since every cyclic right R-module is g-semisymmetric with boundary 1
from right, then RR is g-semisymmetric with boundary 1 from right proving that the ring R
is bounded right g-semisymmetric with boundary 1 from right.

(iv) ⇒ (i) Let R be regular and bounded right g-semisymmetric with boundary 1 from
right. Suppose that x ∈ R with x2 = 0. Since R is regular, then there exists y ∈ R such that
x = xyx. Since R is bounded right g-semisymmetric ring with boundary 1 from right and
y(x)(xy) = 0, then y(xy)nxl = 0 for all l ≥ 1. Since x = xyx = xyxyx = xyxyxyx = · · · =
(xy)nx, then yx = y(xy)nx = 0. Therefore x = xyx = 0. Hence R has no nonzero nilpotent
element and R is strongly regular ring.

Corollary 2.6. If a ring R is regular and bounded right g-semisymmetric with boundary 1 from right,
then R is reduced.



4 ISRN Algebra

A one-sided ideal I of a ring R is said to have the insertion-of-factors principle (or
simply IFP) if ab ∈ I implies aRb ⊆ I for a, b ∈ R. Hence the ring R is called IFP ring if the
zero ideal of R has the IFP. Such rings are also known as semicommutative rings or rings
satisfying SI condition or ZI rings, see [6, 8–10]. The equivalences of (1), (2), (4), (5), and
(6) in the following proposition are in [11, Proposition 2.7 (7)]. By Corollary 2.6 and the fact
that every symmetric ring is bounded right g-semisymmetric with boundary 1 from right, we
state without proof the following proposition.

Proposition 2.7. LetR be a von Neumann regular ring. Then the following conditions are equivalent:

(1) R is right (left) duo,

(2) R is reduced,

(3) R is bounded right g-semisymmetric with boundary 1 from right,

(4) R is symmetric,

(5) R is IFP,

(6) R is abelian.

Proposition 2.8. (1) The class of right g-semisymmetric rings is closed under subrings.
(2) The class of bounded right g-semisymmetric rings with boundaries 1 from left and 1 from

right is closed under direct products.
(3) A ring is semiperfect and bounded right g-semisymmetric with boundary 1 from left if and

only if R is a finite direct sum of local bounded right g-semisymmetric rings from left.
(4) A ring R is strongly regular if and only if R is regular and bounded right g-semisymmetric

ring with boundary 1 from left if and only if R is regular and bounded right g-semisymmetric ring
with boundary 1 from right.

Proof. (1) Trivial.
(2) Assume that R is a direct product of bounded right g-semisymmetric rings

Ri, i ∈ I with boundaries 1 from left and 1 from right. Let xi, yi, zi ∈ Ri, i ∈ I
with (x1, x2, . . .)(y1, y2, . . .)(z1, z2, . . .) = (0, 0, . . .). Then xiyizi = 0, i = 1, 2, . . . . Since
Ri, i ∈ I are bounded right g-semisymmetric rings with boundaries 1 from left and
1 from right, then xiz

si
i y

ni

i = 0, for all si ≥ 1, and ni ≥ 1, i = 1, 2 . . . . Therefore
(x1, x2, . . .)(z1, z2, . . .)

s(y1, y2, . . .)
n = 0, for all s ≥ 1 and n ≥ 1. Hence R is bounded right

g-semisymmetric ring with boundaries 1 from left and 1 from right.
(3) Assume that R is semiperfect bounded right g-semisymmetric ring with boundary

1 from left. Since R is semiperfect, R has a finite orthogonal set of local idempotents whose
sum is 1 [1, Proposition 3.7.2]. Hence we consider R =

∑n
i=1 eiR such that each eiRei is a local

ring. Since R is bounded right g-semisymmetric rings with boundary 1 from left, then R is
abelian by Lemma 2.16, whence every ei is central and eiR is an ideal ofR, i = 1, 2, . . . , n. Thus
eiR = eiRei, for all i = 1, 2, . . . , n. It follows that each eiR is bounded right g-semisymmetric
ring with boundary 1 from left, by (1).

Conversely, suppose that R is a finite direct sum of local bounded right g-
semisymmetric rings with boundary 1 from left. Then, by (2), and the fact that local rings
are semiperfect, R is bounded right g-semisymmetric ring with boundary 1 from left.

(4) By Lemma 2.16, every bounded right g-semisymmetric ring with boundary 1 from
left with identity is abelian. Moreover, as R is regular, then this is equivalent to R be strongly
regular by [12, Theorem 3.7] which is equivalent to the condition R is regular and bounded
right g-semisymmetric ring with boundary 1 from right, by Proposition 2.5.
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Proposition 2.9. Let θ : R → A be a ring homomorphism and M a left A-module; then M is a left
R-module via r ·m = θ(r) ·m. Moreover,

(1) If AM is g-semisymmetric, then so is RM,

(2) If θ is onto andRM is g-semisymmetric, then so is AM.

Proof. (1) Suppose AM is g-semisymmetric, and let a, b ∈ R, m ∈ M such that abm = 0.
Then 0 = abm = θ(ab)m = θ(a)θ(b)m. Since AM is g-semisymmetric, then there exist
positive integers s = s(b), t = t(a) such that θ(b)sθ(a)tm = 0. Hence bsatm = θ(bsat)m =
θ(bs)θ(at)m = θ(b)s(θ(a))tm = 0. Therefore RM is g-semisymmetric.

(2) Let a, b ∈ A, m ∈ M such that abm = 0. Since θ is onto, there exists r, s ∈ R
such that θ(r) = a, θ(s) = b. Now 0 = abm = θ(r)θ(s)m = rsm. Since RM is g-
semisymmetric, then there exist positive integers t = t(s), n = n(r) such that strnm = 0
and btanm = θ(st)(θ(r))nm = θ(st)θ(rn)m = strnm = 0. Hence AM is g-semisymmetric.

Lemma 2.10 (see [10, Proposition 2.6]). Suppose that M is a flat left R-module. Then for every
exact sequence 0 → K → F → M → 0 where F is R-free, one has (IF) ∩K = IK for each right
ideal I of R; in particular, one has xF ∩K = xK for each element x of R.

Lemma 2.11. Let R be a bounded left g-semisymmetric ring with boundaries 1 from left and 1 from
right, then every free left R-moduleM is bounded g-semisymmetric with boundaries 1 from left and 1
from right.

Proof. Since M is free module, then M is isomorphic to a (possibly infinite) direct sum of
copies of R, see [7]. Since R is bounded left g-semisymmetric ring with boundaries 1 from left
and 1 from right, then RM is bounded g-semisymmetric with boundaries 1 from left and 1
from right, by Proposition 2.8.

Now we are ready to prove the following proposition.

Proposition 2.12. Flat left modules over bounded left g-semisymmetric ring with boundaries 1 from
left and 1 from right are bounded left g-semisymmetric with boundaries 1 from left and 1 from right.

Proof. Let RM be a flat module over bounded left g-semisymmetric ring Rwith boundaries 1
from left and 1 from right. Let m ∈ M and a ∈ R be such that abm = 0. Suppose that for the
epimorphism β : F → M the sequence 0 → K → F → M → 0 is exact. Now there exists
y ∈ F such that β(y) = m. This implies that β(aby) = abm = 0. Hence aby ∈ ker(β) = ImK =
K. Therefore aby ∈ (abF) ∩ K = abK, by Lemma 2.10. Hence for some k ∈ K, aby = abk,
yielding ab(y − k) = 0. Since F is free R-module over bounded left g-semisymmetric ring
with boundaries 1 from left and 1 from right, then RF is bounded g-semisymmetric with
boundaries 1 from left and 1 from right, by Lemma 2.11. Therefore bnas(y − k) = 0, for all
n ≥ 1 and s ≥ 1. Hence bnasy = bnask and so β(bnasy) = β(bnask) gives bnasβ(y) = bnasβ(k),
for all n ≥ 1 and s ≥ 1. Since k ∈ ker β, then bnasβ(k) = 0 implies bnasβ(y) = 0, for all n ≥
1 and s ≥ 1. Hence bnasm = 0, for all n ≥ 1 and s ≥ 1. Thus RM is bounded g-semisymmetric
with boundaries 1 from left and 1 from right.

In the following propositions E(M) denotes the R-endomorphism ring of M. The
associativity is deduced from the generalized associativity situation in the standard Morita
context (R,M,M∗, E(M)) without explicit mention, where M∗ is the left E(M)-,right
R-bimodule HomR(M,R).
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A torsionless R-module M is an R-module M such that M is a direct product of copies
of R, or, equivalently, if 0/=m ∈ M, then there exists q ∈ M∗ such that mq/= 0. If M is
faithful R-module, then R is a submodule of a direct product of copies of M. The following
proposition is an application of Remark 2.3 and Proposition 2.8.

Proposition 2.13. The following conditions are equivalent.

(1) R is a bounded left g-semisymmetric ring with boundaries 1 from left and 1 from right.

(2) Every torsionless left R-module is bounded g-semisymmetric with boundaries 1 from left
and 1 from right.

(3) Every submodule of a free left R-module is bounded g-semisymmetric with boundaries 1
from left and 1 from right.

(4) There exists a faithful, bounded g-semisymmetric left R-module with boundaries 1 from left
and 1 from right.

An application of Propositions 2.13 and 2.9 yields the following proposition.

Proposition 2.14. For an R-module M, let R denote the ring R/ann(M). Then one has the
following.

(1) The leftR-moduleM is g-semisymmetric if and only if the leftR-moduleM is g-symmetric.

(2) If the left R-moduleM is bounded g-semisymmetric with boundaries 1 from left and 1 from
right, then R is bounded left g-semisymmetric with boundaries 1 from left and 1 from right.

(3) If the right E(M)-moduleM is bounded g-semisymmetric from left, then the ring E(M) is
bounded right g-semisymmetric with boundaries 1 from left and 1 from right.

An application of Proposition 2.9 yields (1); since the left R-, right E(M)-bimoduleM
is faithful as a left R-module and is also faithful as a right E(M)-module, applying (4) ⇒ (1)
of Proposition 2.13 we get (2) and (3).

Let M be a right R-module. Then as in [10]M is called

(1) reduced ifma2 = 0, then mRa = 0, a ∈ R,m ∈ M;

(2) ZI (zero-insertive ring) ifma = 0, then mRa = 0, a ∈ R,m ∈ M.

Proposition 2.15. Let R be a right R-module M. Then,

(1) ifM is reduced, thenM is symmetric [10, Proposition 2.2],

(2) ifM is symmetric, then M is ZI [10, Proposition 2.2].

Lemma 2.16. IfR is bounded right g-semisymmetric ring with boundary 1 from left, thenR is abelian.

Proof. Assume that R is bounded right g-semisymmetric ring with boundary 1 from left and
e is an idempotent. Then e−e2 = 0 gives e(1−e) = 0. Hence for all x ∈ R there exists a positive
integer n such that exs(1 − e)n = 0 for all s ≥ 1. Therefore ex = exe. And since (1 − e)e = 0,
then xe = exe. Therefore e is central.

The previous lemma is false for rings without identity. Indeed, the ring T in
Example 2.2 is a ring without identity and it is a bounded right g-semisymmetric ring with
boundary 2 from right and 1 from left which is nonabelian ring. Also its converse is not
necessary true as shown from the following example.
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Example 2.17. We use [1, Example 2.10], as a counter example. Let R = {( a b
c d

) ∈ M2 × 2(Z) : a ≡
d(mod2), b = c ≡ 0(mod2)}, where M2×2(Z) is the full matrix ring over the ring of integers.
Since the zero and the identity matrices are only the idempotent elements in R, then R is abelian ring.
Since

(
0 0
−2 2

)(
0 2
0 2

)(
2 4
0 2

)
= 0 and

(
0 0
−2 2

)(
2 4
0 2

)m( 0 2
0 2

)n
/= 0 for any positive integers m and n, then R is

not right g-semisymmetric ring.

A ring R be a right p.p.-ring if for any a ∈ R, r(a) = eR for some idempotent e of R.

Proposition 2.18. Let R be a right p.p.-ring. If R is abelian, then R is reduced.

Proof. Let R be abelian right p.p.-ring. Let a2 = 0. Since R is right p.p.-ring, then r(a) = eR, for
some idempotent e of R. Since R is abelian and a ∈ r(a), then a = ea = ae = 0 and hence R is
reduced.

Since every reduced ring is symmetric, bounded right g-semisymmetric ring with
boundary 1 from left and IFP, since every bounded right g-semisymmetric ring with
boundary 1 from left is abelian, by Lemma 2.16 and since every reduced ring, symmetric ring,
and IFP ring are abelian, then we deduce the following theorem from the above proposition.

Theorem 2.19. Let R be right p.p.-ring. Then the following are equivalent.

(1) R is reduced.

(2) R is symmetric.

(3) R is bounded right g-semisymmetric ring with boundary 1 from left.

(4) R is IFP.

(5) R is abelian.

Theorem 2.20. Let S be a ring without zero divisors and R =
{(

a b c
0 a d
0 0 a

)
| a, b, c, d ∈ S

}
. Then R is

bounded right g-semisymmetric with boundary 2 from left and boundary 2 from right.

Proof. Suppose that 0/=A =
(

a1 b1 c1
0 a1 d1
0 0 a1

)

, 0/=B =
(

a2 b2 c2
0 a2 d2
0 0 a2

)

, 0/=C =
(

a3 b3 c3
0 a3 d3
0 0 a3

)

∈ R such that

ABC = 0. Then,

a1a2a3 = 0,

a1a2b3 + a1a3c3 + a2a3b1 = 0,

a1a2d3 + a3b1d2 + a2a3d1 = 0,

a1a2c3 + a1b2d3 + a1a3c2 + a2b1d3 + a3b1d2 + a2a3c1 = 0.

Therefore we have the following cases:
(1) if a1 = 0, a2 /= 0, a3 /= 0, then A = 0, impossible,

(2) if a1 /= 0, a2 = 0, a3 /= 0, then B =
( 0 b2 0

0 0 0
0 0 0

)
, andC =

(
a3 b3 c3
0 a3 0
0 0 a3

)

; in this case,ACB2 = 0,

(3) if a1 /= 0, a2 /= 0, a3 = 0, then C = 0, impossible,

(4) if a1 = 0, a2 = 0, a3 /= 0, then A =
(

0 0 c1
0 0 d1
0 0 0

)

, B =
( 0 b2 c2

0 0 0
0 0 0

)
, and C =

(
a3 b3 c3
0 a3 d3
0 0 a3

)

;

hence ACB2 = 0,

(5) if a1 = 0, a2 /= 0, a3 = 0, then A =
(

0 0 c1
0 0 d1
0 0 0

)

, B =
(

a2 b2 c2
0 a2 d2
0 0 a2

)

, and C =
(

0 b3 c3
0 0 0
0 0 0

)

which

implies that AC2B = 0,
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(6) if a1 /= 0, a2 = 0, a3 = 0, thenA =
(

a1 b1 c1
0 a1 d1
0 0 a1

)

, B =
(

0 0 c2
0 0 d2
0 0 a

)

, andC =
(

0 b3 c3
0 0 0
0 0 0

)

which

implies that ACB2 = 0.
These cases prove that R is bounded right g-semisymmetric ring with boundary 2 from

left and right.

The following example gives a bounded right g-semisymmetric ring with boundary 2
from left and right which is not symmetric.

Example 2.21. Let R =
{(

a b c
0 a d
0 0 a

)
| a, b, c, d ∈ Z

}
. Then R is a bounded right g-semisymmetric ring

with boundary 2 from left and boundary 2 from right which is not symmetric.
Since Z is a ring without zero divisors, then R is bounded right g-semisymmetric ring

with boundary 2 from left and boundary 2 from right, by the above theorem. This ring is

not symmetric, indeed; suppose A =
( 1 2 1

0 1 0
0 0 1

)
, B =

( 0 0 3
0 0 1
0 0 0

)
, C =

( 0 1 1
0 0 1
0 0 0

)
, then ABC = 0 and

ACB /= 0, and hence R is not symmetric ring. Also we notice that AB2 = 0 and ACB/= 0 and
therefore RR is not reduced.
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